SHED-Dependent Oncogenic Signaling of the PEAK3 Pseudo-Kinase

The PEAK1 and Pragmin/PEAK2 pseudo-kinases have emerged as important components of the protein tyrosine kinase pathway implicated in cancer progression. They can signal using a scaffolding mechanism that involves a conserved split helical dimerization (SHED) module. We recently identified PEAK3 as a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2021-12, Vol.13 (24), p.6344
Hauptverfasser: Ounoughene, Youcef, Fourgous, Elise, Boublik, Yvan, Saland, Estelle, Guiraud, Nathan, Recher, Christian, Urbach, Serge, Fort, Philippe, Sarry, Jean-Emmanuel, Fesquet, Didier, Roche, Serge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 6344
container_title Cancers
container_volume 13
creator Ounoughene, Youcef
Fourgous, Elise
Boublik, Yvan
Saland, Estelle
Guiraud, Nathan
Recher, Christian
Urbach, Serge
Fort, Philippe
Sarry, Jean-Emmanuel
Fesquet, Didier
Roche, Serge
description The PEAK1 and Pragmin/PEAK2 pseudo-kinases have emerged as important components of the protein tyrosine kinase pathway implicated in cancer progression. They can signal using a scaffolding mechanism that involves a conserved split helical dimerization (SHED) module. We recently identified PEAK3 as a novel member of this family based on structural homology; however, its signaling mechanism remains unclear. In this study, we found that, although it can self-associate, PEAK3 shows higher evolutionary divergence than PEAK1/2. Moreover, the PEAK3 protein is strongly expressed in human hematopoietic cells and is upregulated in acute myeloid leukemia. Functionally, PEAK3 overexpression in U2OS sarcoma cells enhanced their growth and migratory properties, while its silencing in THP1 leukemic cells reduced these effects. Importantly, an intact SHED module was required for these PEAK3 oncogenic activities. Mechanistically, through a phosphokinase survey, we identified PEAK3 as a novel inducer of AKT signaling, independent of growth-factor stimulation. Then, proteomic analyses revealed that PEAK3 interacts with the signaling proteins GRB2 and ASAP1/2 and the protein kinase PYK2, and that these interactions require the SHED domain. Moreover, PEAK3 activated PYK2, which promoted PEAK3 tyrosine phosphorylation, its association with GRB2 and ASAP1, and AKT signaling. Thus, the PEAK1-3 pseudo-kinases may use a conserved SHED-dependent mechanism to activate specific signaling proteins to promote oncogenesis.
doi_str_mv 10.3390/cancers13246344
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8699254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2612737000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-327eb364f2c6e16261996e3a13c7ad6a8f520bbbc08fba299b61d82e44d4a5643</originalsourceid><addsrcrecordid>eNpdkcFLwzAUxoMoKtOzNyl40UO1yUuT5qAw5nSygYJ6Dmn6ulW6ZDar4H9v56bocklIfu97X95HyAlNLgFUcmWNs9gECowL4HyHHLJEslgIxXf_nA_IcQhvSbcAqBRynxwAV5wrkR6S6-fR8Da-xQW6At0yenTWT9FVNnqups7UlZtGvoyWM4yehv0xRE8B28LH48qZgEdkrzR1wOPN3iOvd8OXwSiePN4_DPqT2PI0XcbAJOYgeMmsQCqYoEoJBEPBSlMIk5UpS_I8t0lW5oYplQtaZAw5L7hJBYceuVnrLtp8joXtnDam1oummpvmU3tT6f8vrprpqf_QmVCKpSuBi7XAbKts1J_o1V0CKU0hkx-0Y883zRr_3mJY6nkVLNa1cejboDv7nIFUTHTo2Rb65tumG9s3xSTI1dR75GpN2caH0GD564AmepWk3kqyqzj9-99f_ic3-AL6R5fs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612737000</pqid></control><display><type>article</type><title>SHED-Dependent Oncogenic Signaling of the PEAK3 Pseudo-Kinase</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ounoughene, Youcef ; Fourgous, Elise ; Boublik, Yvan ; Saland, Estelle ; Guiraud, Nathan ; Recher, Christian ; Urbach, Serge ; Fort, Philippe ; Sarry, Jean-Emmanuel ; Fesquet, Didier ; Roche, Serge</creator><creatorcontrib>Ounoughene, Youcef ; Fourgous, Elise ; Boublik, Yvan ; Saland, Estelle ; Guiraud, Nathan ; Recher, Christian ; Urbach, Serge ; Fort, Philippe ; Sarry, Jean-Emmanuel ; Fesquet, Didier ; Roche, Serge</creatorcontrib><description>The PEAK1 and Pragmin/PEAK2 pseudo-kinases have emerged as important components of the protein tyrosine kinase pathway implicated in cancer progression. They can signal using a scaffolding mechanism that involves a conserved split helical dimerization (SHED) module. We recently identified PEAK3 as a novel member of this family based on structural homology; however, its signaling mechanism remains unclear. In this study, we found that, although it can self-associate, PEAK3 shows higher evolutionary divergence than PEAK1/2. Moreover, the PEAK3 protein is strongly expressed in human hematopoietic cells and is upregulated in acute myeloid leukemia. Functionally, PEAK3 overexpression in U2OS sarcoma cells enhanced their growth and migratory properties, while its silencing in THP1 leukemic cells reduced these effects. Importantly, an intact SHED module was required for these PEAK3 oncogenic activities. Mechanistically, through a phosphokinase survey, we identified PEAK3 as a novel inducer of AKT signaling, independent of growth-factor stimulation. Then, proteomic analyses revealed that PEAK3 interacts with the signaling proteins GRB2 and ASAP1/2 and the protein kinase PYK2, and that these interactions require the SHED domain. Moreover, PEAK3 activated PYK2, which promoted PEAK3 tyrosine phosphorylation, its association with GRB2 and ASAP1, and AKT signaling. Thus, the PEAK1-3 pseudo-kinases may use a conserved SHED-dependent mechanism to activate specific signaling proteins to promote oncogenesis.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers13246344</identifier><identifier>PMID: 34944965</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acute myeloid leukemia ; AKT protein ; Antibodies ; Binding sites ; Cancer ; Cell growth ; Dimerization ; Divergence ; Genes ; Grb2 protein ; Homology ; Kinases ; Life Sciences ; Localization ; Mutation ; Myeloid leukemia ; Phosphorylation ; Protein expression ; Protein-tyrosine kinase ; Proteins ; Proteomics ; Sarcoma ; Signal transduction ; Tumorigenesis ; Tumors</subject><ispartof>Cancers, 2021-12, Vol.13 (24), p.6344</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-327eb364f2c6e16261996e3a13c7ad6a8f520bbbc08fba299b61d82e44d4a5643</citedby><cites>FETCH-LOGICAL-c455t-327eb364f2c6e16261996e3a13c7ad6a8f520bbbc08fba299b61d82e44d4a5643</cites><orcidid>0000-0002-6704-2032 ; 0000-0001-5657-9689 ; 0000-0003-3413-3859 ; 0000-0001-5997-8722 ; 0000-0002-3626-250X ; 0000-0001-8663-2006 ; 0000-0002-3332-4525 ; 0000-0001-8521-3061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699254/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699254/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34944965$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03515387$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ounoughene, Youcef</creatorcontrib><creatorcontrib>Fourgous, Elise</creatorcontrib><creatorcontrib>Boublik, Yvan</creatorcontrib><creatorcontrib>Saland, Estelle</creatorcontrib><creatorcontrib>Guiraud, Nathan</creatorcontrib><creatorcontrib>Recher, Christian</creatorcontrib><creatorcontrib>Urbach, Serge</creatorcontrib><creatorcontrib>Fort, Philippe</creatorcontrib><creatorcontrib>Sarry, Jean-Emmanuel</creatorcontrib><creatorcontrib>Fesquet, Didier</creatorcontrib><creatorcontrib>Roche, Serge</creatorcontrib><title>SHED-Dependent Oncogenic Signaling of the PEAK3 Pseudo-Kinase</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>The PEAK1 and Pragmin/PEAK2 pseudo-kinases have emerged as important components of the protein tyrosine kinase pathway implicated in cancer progression. They can signal using a scaffolding mechanism that involves a conserved split helical dimerization (SHED) module. We recently identified PEAK3 as a novel member of this family based on structural homology; however, its signaling mechanism remains unclear. In this study, we found that, although it can self-associate, PEAK3 shows higher evolutionary divergence than PEAK1/2. Moreover, the PEAK3 protein is strongly expressed in human hematopoietic cells and is upregulated in acute myeloid leukemia. Functionally, PEAK3 overexpression in U2OS sarcoma cells enhanced their growth and migratory properties, while its silencing in THP1 leukemic cells reduced these effects. Importantly, an intact SHED module was required for these PEAK3 oncogenic activities. Mechanistically, through a phosphokinase survey, we identified PEAK3 as a novel inducer of AKT signaling, independent of growth-factor stimulation. Then, proteomic analyses revealed that PEAK3 interacts with the signaling proteins GRB2 and ASAP1/2 and the protein kinase PYK2, and that these interactions require the SHED domain. Moreover, PEAK3 activated PYK2, which promoted PEAK3 tyrosine phosphorylation, its association with GRB2 and ASAP1, and AKT signaling. Thus, the PEAK1-3 pseudo-kinases may use a conserved SHED-dependent mechanism to activate specific signaling proteins to promote oncogenesis.</description><subject>Acute myeloid leukemia</subject><subject>AKT protein</subject><subject>Antibodies</subject><subject>Binding sites</subject><subject>Cancer</subject><subject>Cell growth</subject><subject>Dimerization</subject><subject>Divergence</subject><subject>Genes</subject><subject>Grb2 protein</subject><subject>Homology</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Localization</subject><subject>Mutation</subject><subject>Myeloid leukemia</subject><subject>Phosphorylation</subject><subject>Protein expression</subject><subject>Protein-tyrosine kinase</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Sarcoma</subject><subject>Signal transduction</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkcFLwzAUxoMoKtOzNyl40UO1yUuT5qAw5nSygYJ6Dmn6ulW6ZDar4H9v56bocklIfu97X95HyAlNLgFUcmWNs9gECowL4HyHHLJEslgIxXf_nA_IcQhvSbcAqBRynxwAV5wrkR6S6-fR8Da-xQW6At0yenTWT9FVNnqups7UlZtGvoyWM4yehv0xRE8B28LH48qZgEdkrzR1wOPN3iOvd8OXwSiePN4_DPqT2PI0XcbAJOYgeMmsQCqYoEoJBEPBSlMIk5UpS_I8t0lW5oYplQtaZAw5L7hJBYceuVnrLtp8joXtnDam1oummpvmU3tT6f8vrprpqf_QmVCKpSuBi7XAbKts1J_o1V0CKU0hkx-0Y883zRr_3mJY6nkVLNa1cejboDv7nIFUTHTo2Rb65tumG9s3xSTI1dR75GpN2caH0GD564AmepWk3kqyqzj9-99f_ic3-AL6R5fs</recordid><startdate>20211217</startdate><enddate>20211217</enddate><creator>Ounoughene, Youcef</creator><creator>Fourgous, Elise</creator><creator>Boublik, Yvan</creator><creator>Saland, Estelle</creator><creator>Guiraud, Nathan</creator><creator>Recher, Christian</creator><creator>Urbach, Serge</creator><creator>Fort, Philippe</creator><creator>Sarry, Jean-Emmanuel</creator><creator>Fesquet, Didier</creator><creator>Roche, Serge</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6704-2032</orcidid><orcidid>https://orcid.org/0000-0001-5657-9689</orcidid><orcidid>https://orcid.org/0000-0003-3413-3859</orcidid><orcidid>https://orcid.org/0000-0001-5997-8722</orcidid><orcidid>https://orcid.org/0000-0002-3626-250X</orcidid><orcidid>https://orcid.org/0000-0001-8663-2006</orcidid><orcidid>https://orcid.org/0000-0002-3332-4525</orcidid><orcidid>https://orcid.org/0000-0001-8521-3061</orcidid></search><sort><creationdate>20211217</creationdate><title>SHED-Dependent Oncogenic Signaling of the PEAK3 Pseudo-Kinase</title><author>Ounoughene, Youcef ; Fourgous, Elise ; Boublik, Yvan ; Saland, Estelle ; Guiraud, Nathan ; Recher, Christian ; Urbach, Serge ; Fort, Philippe ; Sarry, Jean-Emmanuel ; Fesquet, Didier ; Roche, Serge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-327eb364f2c6e16261996e3a13c7ad6a8f520bbbc08fba299b61d82e44d4a5643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acute myeloid leukemia</topic><topic>AKT protein</topic><topic>Antibodies</topic><topic>Binding sites</topic><topic>Cancer</topic><topic>Cell growth</topic><topic>Dimerization</topic><topic>Divergence</topic><topic>Genes</topic><topic>Grb2 protein</topic><topic>Homology</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Localization</topic><topic>Mutation</topic><topic>Myeloid leukemia</topic><topic>Phosphorylation</topic><topic>Protein expression</topic><topic>Protein-tyrosine kinase</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Sarcoma</topic><topic>Signal transduction</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ounoughene, Youcef</creatorcontrib><creatorcontrib>Fourgous, Elise</creatorcontrib><creatorcontrib>Boublik, Yvan</creatorcontrib><creatorcontrib>Saland, Estelle</creatorcontrib><creatorcontrib>Guiraud, Nathan</creatorcontrib><creatorcontrib>Recher, Christian</creatorcontrib><creatorcontrib>Urbach, Serge</creatorcontrib><creatorcontrib>Fort, Philippe</creatorcontrib><creatorcontrib>Sarry, Jean-Emmanuel</creatorcontrib><creatorcontrib>Fesquet, Didier</creatorcontrib><creatorcontrib>Roche, Serge</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ounoughene, Youcef</au><au>Fourgous, Elise</au><au>Boublik, Yvan</au><au>Saland, Estelle</au><au>Guiraud, Nathan</au><au>Recher, Christian</au><au>Urbach, Serge</au><au>Fort, Philippe</au><au>Sarry, Jean-Emmanuel</au><au>Fesquet, Didier</au><au>Roche, Serge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SHED-Dependent Oncogenic Signaling of the PEAK3 Pseudo-Kinase</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2021-12-17</date><risdate>2021</risdate><volume>13</volume><issue>24</issue><spage>6344</spage><pages>6344-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>The PEAK1 and Pragmin/PEAK2 pseudo-kinases have emerged as important components of the protein tyrosine kinase pathway implicated in cancer progression. They can signal using a scaffolding mechanism that involves a conserved split helical dimerization (SHED) module. We recently identified PEAK3 as a novel member of this family based on structural homology; however, its signaling mechanism remains unclear. In this study, we found that, although it can self-associate, PEAK3 shows higher evolutionary divergence than PEAK1/2. Moreover, the PEAK3 protein is strongly expressed in human hematopoietic cells and is upregulated in acute myeloid leukemia. Functionally, PEAK3 overexpression in U2OS sarcoma cells enhanced their growth and migratory properties, while its silencing in THP1 leukemic cells reduced these effects. Importantly, an intact SHED module was required for these PEAK3 oncogenic activities. Mechanistically, through a phosphokinase survey, we identified PEAK3 as a novel inducer of AKT signaling, independent of growth-factor stimulation. Then, proteomic analyses revealed that PEAK3 interacts with the signaling proteins GRB2 and ASAP1/2 and the protein kinase PYK2, and that these interactions require the SHED domain. Moreover, PEAK3 activated PYK2, which promoted PEAK3 tyrosine phosphorylation, its association with GRB2 and ASAP1, and AKT signaling. Thus, the PEAK1-3 pseudo-kinases may use a conserved SHED-dependent mechanism to activate specific signaling proteins to promote oncogenesis.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34944965</pmid><doi>10.3390/cancers13246344</doi><orcidid>https://orcid.org/0000-0002-6704-2032</orcidid><orcidid>https://orcid.org/0000-0001-5657-9689</orcidid><orcidid>https://orcid.org/0000-0003-3413-3859</orcidid><orcidid>https://orcid.org/0000-0001-5997-8722</orcidid><orcidid>https://orcid.org/0000-0002-3626-250X</orcidid><orcidid>https://orcid.org/0000-0001-8663-2006</orcidid><orcidid>https://orcid.org/0000-0002-3332-4525</orcidid><orcidid>https://orcid.org/0000-0001-8521-3061</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2021-12, Vol.13 (24), p.6344
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8699254
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Acute myeloid leukemia
AKT protein
Antibodies
Binding sites
Cancer
Cell growth
Dimerization
Divergence
Genes
Grb2 protein
Homology
Kinases
Life Sciences
Localization
Mutation
Myeloid leukemia
Phosphorylation
Protein expression
Protein-tyrosine kinase
Proteins
Proteomics
Sarcoma
Signal transduction
Tumorigenesis
Tumors
title SHED-Dependent Oncogenic Signaling of the PEAK3 Pseudo-Kinase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A58%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SHED-Dependent%20Oncogenic%20Signaling%20of%20the%20PEAK3%20Pseudo-Kinase&rft.jtitle=Cancers&rft.au=Ounoughene,%20Youcef&rft.date=2021-12-17&rft.volume=13&rft.issue=24&rft.spage=6344&rft.pages=6344-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers13246344&rft_dat=%3Cproquest_pubme%3E2612737000%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612737000&rft_id=info:pmid/34944965&rfr_iscdi=true