Alzheimer's Disease: Current Perspectives and Advances in Physiological Modeling
Though Alzheimer's disease (AD) is the most common cause of dementia, complete disease-modifying treatments are yet to be fully attained. Until recently, transgenic mice constituted most in vitro model systems of AD used for preclinical drug screening; however, these models have so far failed t...
Gespeichert in:
Veröffentlicht in: | Bioengineering (Basel) 2021-12, Vol.8 (12), p.211, Article 211 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 211 |
container_title | Bioengineering (Basel) |
container_volume | 8 |
creator | Josephine Boder, E. Banerjee, Ipsita A. |
description | Though Alzheimer's disease (AD) is the most common cause of dementia, complete disease-modifying treatments are yet to be fully attained. Until recently, transgenic mice constituted most in vitro model systems of AD used for preclinical drug screening; however, these models have so far failed to adequately replicate the disease's pathophysiology. However, the generation of humanized APOE4 mouse models has led to key discoveries. Recent advances in stem cell differentiation techniques and the development of induced pluripotent stem cells (iPSCs) have facilitated the development of novel in vitro devices. These "microphysiological" systems-in vitro human cell culture systems designed to replicate in vivo physiology-employ varying levels of biomimicry and engineering control. Spheroid-based organoids, 3D cell culture systems, and microfluidic devices or a combination of these have the potential to replicate AD pathophysiology and pathogenesis in vitro and thus serve as both tools for testing therapeutics and models for experimental manipulation. |
doi_str_mv | 10.3390/bioengineering8120211 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8698996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7079dbf0d16d4bd0ae0be42a963cfc5b</doaj_id><sourcerecordid>2612752028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-f45861b27af25d5fd5161aa285b4dc0db8d29a7e7fc7dde73747d1f7b3c508c73</originalsourceid><addsrcrecordid>eNqNkstuEzEUhi0EolXoI4BGYgFSFfBlbM-wQIqmXCoVkQWsLV_OJI4mdrBngsrT4zYlahELVraPv_PrXH6EnhP8hrEWvzU-Qlj5AJB8WDWEYkrII3RKGRZzznj9-N79BJ3lvMEYE0Y5FfVTdMLqtsZM1KdouRh-rcFvIb3K1YXPoDO8q7opJQhjtYSUd2BHv4dc6eCqhdvrYMvDh2q5vs4-DnHlrR6qL9HBUIp5hp70eshwdnfO0PePH751n-dXXz9ddourueWYj_O-5o0ghkrdU-547zgRRGvacFM7i51pHG21BNlb6RxIJmvpSC8NK_mNlWyGLg-6LuqN2iW_1elaRe3VbSCmldJp9HYAJbFsnemxI8LVxmEN2EBNdSuY7S03Rev9QWs3mS04W1pPengg-vAn-LVaxb1qRNu0RWaGXt8JpPhjgjyqrc8WhkEHiFNWVJTZt0xgVtCXf6GbOKVQRnVDUcnLLptC8QNlU8w5QX8shmB1YwH1TwuUvBf3Ozlm_Vl4Ac4PwE8wsc_WQ1nnESsmkUxQLiW-9csMNf9Pd37Uo4-hi1MY2W9eltLb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612752028</pqid></control><display><type>article</type><title>Alzheimer's Disease: Current Perspectives and Advances in Physiological Modeling</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><creator>Josephine Boder, E. ; Banerjee, Ipsita A.</creator><creatorcontrib>Josephine Boder, E. ; Banerjee, Ipsita A.</creatorcontrib><description>Though Alzheimer's disease (AD) is the most common cause of dementia, complete disease-modifying treatments are yet to be fully attained. Until recently, transgenic mice constituted most in vitro model systems of AD used for preclinical drug screening; however, these models have so far failed to adequately replicate the disease's pathophysiology. However, the generation of humanized APOE4 mouse models has led to key discoveries. Recent advances in stem cell differentiation techniques and the development of induced pluripotent stem cells (iPSCs) have facilitated the development of novel in vitro devices. These "microphysiological" systems-in vitro human cell culture systems designed to replicate in vivo physiology-employ varying levels of biomimicry and engineering control. Spheroid-based organoids, 3D cell culture systems, and microfluidic devices or a combination of these have the potential to replicate AD pathophysiology and pathogenesis in vitro and thus serve as both tools for testing therapeutics and models for experimental manipulation.</description><identifier>ISSN: 2306-5354</identifier><identifier>EISSN: 2306-5354</identifier><identifier>DOI: 10.3390/bioengineering8120211</identifier><identifier>PMID: 34940364</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Alzheimer's disease ; Animal models ; Apolipoproteins ; Bioengineering ; biomimetics ; Biotechnology & Applied Microbiology ; Blood vessels ; Brain research ; Cell culture ; Cell differentiation ; Clinical trials ; Dementia disorders ; Differentiation (biology) ; Drug screening ; Engineering ; Engineering, Biomedical ; FDA approval ; Genes ; Hypotheses ; In vivo methods and tests ; Life Sciences & Biomedicine ; Microfluidic devices ; microphysiological systems ; Mutation ; Neurodegenerative diseases ; Organoids ; Pathogenesis ; Pathology ; Pathophysiology ; Patients ; Peptides ; Physiology ; Pluripotency ; Proteins ; Review ; Science & Technology ; Stem cell transplantation ; Stem cells ; Technology ; Transgenic mice</subject><ispartof>Bioengineering (Basel), 2021-12, Vol.8 (12), p.211, Article 211</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>11</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000736257700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c505t-f45861b27af25d5fd5161aa285b4dc0db8d29a7e7fc7dde73747d1f7b3c508c73</citedby><cites>FETCH-LOGICAL-c505t-f45861b27af25d5fd5161aa285b4dc0db8d29a7e7fc7dde73747d1f7b3c508c73</cites><orcidid>0000-0003-4631-2280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698996/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698996/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,27931,27932,39265,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34940364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Josephine Boder, E.</creatorcontrib><creatorcontrib>Banerjee, Ipsita A.</creatorcontrib><title>Alzheimer's Disease: Current Perspectives and Advances in Physiological Modeling</title><title>Bioengineering (Basel)</title><addtitle>BIOENGINEERING-BASEL</addtitle><addtitle>Bioengineering (Basel)</addtitle><description>Though Alzheimer's disease (AD) is the most common cause of dementia, complete disease-modifying treatments are yet to be fully attained. Until recently, transgenic mice constituted most in vitro model systems of AD used for preclinical drug screening; however, these models have so far failed to adequately replicate the disease's pathophysiology. However, the generation of humanized APOE4 mouse models has led to key discoveries. Recent advances in stem cell differentiation techniques and the development of induced pluripotent stem cells (iPSCs) have facilitated the development of novel in vitro devices. These "microphysiological" systems-in vitro human cell culture systems designed to replicate in vivo physiology-employ varying levels of biomimicry and engineering control. Spheroid-based organoids, 3D cell culture systems, and microfluidic devices or a combination of these have the potential to replicate AD pathophysiology and pathogenesis in vitro and thus serve as both tools for testing therapeutics and models for experimental manipulation.</description><subject>Alzheimer's disease</subject><subject>Animal models</subject><subject>Apolipoproteins</subject><subject>Bioengineering</subject><subject>biomimetics</subject><subject>Biotechnology & Applied Microbiology</subject><subject>Blood vessels</subject><subject>Brain research</subject><subject>Cell culture</subject><subject>Cell differentiation</subject><subject>Clinical trials</subject><subject>Dementia disorders</subject><subject>Differentiation (biology)</subject><subject>Drug screening</subject><subject>Engineering</subject><subject>Engineering, Biomedical</subject><subject>FDA approval</subject><subject>Genes</subject><subject>Hypotheses</subject><subject>In vivo methods and tests</subject><subject>Life Sciences & Biomedicine</subject><subject>Microfluidic devices</subject><subject>microphysiological systems</subject><subject>Mutation</subject><subject>Neurodegenerative diseases</subject><subject>Organoids</subject><subject>Pathogenesis</subject><subject>Pathology</subject><subject>Pathophysiology</subject><subject>Patients</subject><subject>Peptides</subject><subject>Physiology</subject><subject>Pluripotency</subject><subject>Proteins</subject><subject>Review</subject><subject>Science & Technology</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Technology</subject><subject>Transgenic mice</subject><issn>2306-5354</issn><issn>2306-5354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkstuEzEUhi0EolXoI4BGYgFSFfBlbM-wQIqmXCoVkQWsLV_OJI4mdrBngsrT4zYlahELVraPv_PrXH6EnhP8hrEWvzU-Qlj5AJB8WDWEYkrII3RKGRZzznj9-N79BJ3lvMEYE0Y5FfVTdMLqtsZM1KdouRh-rcFvIb3K1YXPoDO8q7opJQhjtYSUd2BHv4dc6eCqhdvrYMvDh2q5vs4-DnHlrR6qL9HBUIp5hp70eshwdnfO0PePH751n-dXXz9ddourueWYj_O-5o0ghkrdU-547zgRRGvacFM7i51pHG21BNlb6RxIJmvpSC8NK_mNlWyGLg-6LuqN2iW_1elaRe3VbSCmldJp9HYAJbFsnemxI8LVxmEN2EBNdSuY7S03Rev9QWs3mS04W1pPengg-vAn-LVaxb1qRNu0RWaGXt8JpPhjgjyqrc8WhkEHiFNWVJTZt0xgVtCXf6GbOKVQRnVDUcnLLptC8QNlU8w5QX8shmB1YwH1TwuUvBf3Ozlm_Vl4Ac4PwE8wsc_WQ1nnESsmkUxQLiW-9csMNf9Pd37Uo4-hi1MY2W9eltLb</recordid><startdate>20211212</startdate><enddate>20211212</enddate><creator>Josephine Boder, E.</creator><creator>Banerjee, Ipsita A.</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4631-2280</orcidid></search><sort><creationdate>20211212</creationdate><title>Alzheimer's Disease: Current Perspectives and Advances in Physiological Modeling</title><author>Josephine Boder, E. ; Banerjee, Ipsita A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-f45861b27af25d5fd5161aa285b4dc0db8d29a7e7fc7dde73747d1f7b3c508c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alzheimer's disease</topic><topic>Animal models</topic><topic>Apolipoproteins</topic><topic>Bioengineering</topic><topic>biomimetics</topic><topic>Biotechnology & Applied Microbiology</topic><topic>Blood vessels</topic><topic>Brain research</topic><topic>Cell culture</topic><topic>Cell differentiation</topic><topic>Clinical trials</topic><topic>Dementia disorders</topic><topic>Differentiation (biology)</topic><topic>Drug screening</topic><topic>Engineering</topic><topic>Engineering, Biomedical</topic><topic>FDA approval</topic><topic>Genes</topic><topic>Hypotheses</topic><topic>In vivo methods and tests</topic><topic>Life Sciences & Biomedicine</topic><topic>Microfluidic devices</topic><topic>microphysiological systems</topic><topic>Mutation</topic><topic>Neurodegenerative diseases</topic><topic>Organoids</topic><topic>Pathogenesis</topic><topic>Pathology</topic><topic>Pathophysiology</topic><topic>Patients</topic><topic>Peptides</topic><topic>Physiology</topic><topic>Pluripotency</topic><topic>Proteins</topic><topic>Review</topic><topic>Science & Technology</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Technology</topic><topic>Transgenic mice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Josephine Boder, E.</creatorcontrib><creatorcontrib>Banerjee, Ipsita A.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Bioengineering (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Josephine Boder, E.</au><au>Banerjee, Ipsita A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alzheimer's Disease: Current Perspectives and Advances in Physiological Modeling</atitle><jtitle>Bioengineering (Basel)</jtitle><stitle>BIOENGINEERING-BASEL</stitle><addtitle>Bioengineering (Basel)</addtitle><date>2021-12-12</date><risdate>2021</risdate><volume>8</volume><issue>12</issue><spage>211</spage><pages>211-</pages><artnum>211</artnum><issn>2306-5354</issn><eissn>2306-5354</eissn><abstract>Though Alzheimer's disease (AD) is the most common cause of dementia, complete disease-modifying treatments are yet to be fully attained. Until recently, transgenic mice constituted most in vitro model systems of AD used for preclinical drug screening; however, these models have so far failed to adequately replicate the disease's pathophysiology. However, the generation of humanized APOE4 mouse models has led to key discoveries. Recent advances in stem cell differentiation techniques and the development of induced pluripotent stem cells (iPSCs) have facilitated the development of novel in vitro devices. These "microphysiological" systems-in vitro human cell culture systems designed to replicate in vivo physiology-employ varying levels of biomimicry and engineering control. Spheroid-based organoids, 3D cell culture systems, and microfluidic devices or a combination of these have the potential to replicate AD pathophysiology and pathogenesis in vitro and thus serve as both tools for testing therapeutics and models for experimental manipulation.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>34940364</pmid><doi>10.3390/bioengineering8120211</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-4631-2280</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2306-5354 |
ispartof | Bioengineering (Basel), 2021-12, Vol.8 (12), p.211, Article 211 |
issn | 2306-5354 2306-5354 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8698996 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central |
subjects | Alzheimer's disease Animal models Apolipoproteins Bioengineering biomimetics Biotechnology & Applied Microbiology Blood vessels Brain research Cell culture Cell differentiation Clinical trials Dementia disorders Differentiation (biology) Drug screening Engineering Engineering, Biomedical FDA approval Genes Hypotheses In vivo methods and tests Life Sciences & Biomedicine Microfluidic devices microphysiological systems Mutation Neurodegenerative diseases Organoids Pathogenesis Pathology Pathophysiology Patients Peptides Physiology Pluripotency Proteins Review Science & Technology Stem cell transplantation Stem cells Technology Transgenic mice |
title | Alzheimer's Disease: Current Perspectives and Advances in Physiological Modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T17%3A54%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alzheimer's%20Disease:%20Current%20Perspectives%20and%20Advances%20in%20Physiological%20Modeling&rft.jtitle=Bioengineering%20(Basel)&rft.au=Josephine%20Boder,%20E.&rft.date=2021-12-12&rft.volume=8&rft.issue=12&rft.spage=211&rft.pages=211-&rft.artnum=211&rft.issn=2306-5354&rft.eissn=2306-5354&rft_id=info:doi/10.3390/bioengineering8120211&rft_dat=%3Cproquest_pubme%3E2612752028%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612752028&rft_id=info:pmid/34940364&rft_doaj_id=oai_doaj_org_article_7079dbf0d16d4bd0ae0be42a963cfc5b&rfr_iscdi=true |