Alzheimer's Disease: Current Perspectives and Advances in Physiological Modeling

Though Alzheimer's disease (AD) is the most common cause of dementia, complete disease-modifying treatments are yet to be fully attained. Until recently, transgenic mice constituted most in vitro model systems of AD used for preclinical drug screening; however, these models have so far failed t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioengineering (Basel) 2021-12, Vol.8 (12), p.211, Article 211
Hauptverfasser: Josephine Boder, E., Banerjee, Ipsita A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 211
container_title Bioengineering (Basel)
container_volume 8
creator Josephine Boder, E.
Banerjee, Ipsita A.
description Though Alzheimer's disease (AD) is the most common cause of dementia, complete disease-modifying treatments are yet to be fully attained. Until recently, transgenic mice constituted most in vitro model systems of AD used for preclinical drug screening; however, these models have so far failed to adequately replicate the disease's pathophysiology. However, the generation of humanized APOE4 mouse models has led to key discoveries. Recent advances in stem cell differentiation techniques and the development of induced pluripotent stem cells (iPSCs) have facilitated the development of novel in vitro devices. These "microphysiological" systems-in vitro human cell culture systems designed to replicate in vivo physiology-employ varying levels of biomimicry and engineering control. Spheroid-based organoids, 3D cell culture systems, and microfluidic devices or a combination of these have the potential to replicate AD pathophysiology and pathogenesis in vitro and thus serve as both tools for testing therapeutics and models for experimental manipulation.
doi_str_mv 10.3390/bioengineering8120211
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8698996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7079dbf0d16d4bd0ae0be42a963cfc5b</doaj_id><sourcerecordid>2612752028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-f45861b27af25d5fd5161aa285b4dc0db8d29a7e7fc7dde73747d1f7b3c508c73</originalsourceid><addsrcrecordid>eNqNkstuEzEUhi0EolXoI4BGYgFSFfBlbM-wQIqmXCoVkQWsLV_OJI4mdrBngsrT4zYlahELVraPv_PrXH6EnhP8hrEWvzU-Qlj5AJB8WDWEYkrII3RKGRZzznj9-N79BJ3lvMEYE0Y5FfVTdMLqtsZM1KdouRh-rcFvIb3K1YXPoDO8q7opJQhjtYSUd2BHv4dc6eCqhdvrYMvDh2q5vs4-DnHlrR6qL9HBUIp5hp70eshwdnfO0PePH751n-dXXz9ddourueWYj_O-5o0ghkrdU-547zgRRGvacFM7i51pHG21BNlb6RxIJmvpSC8NK_mNlWyGLg-6LuqN2iW_1elaRe3VbSCmldJp9HYAJbFsnemxI8LVxmEN2EBNdSuY7S03Rev9QWs3mS04W1pPengg-vAn-LVaxb1qRNu0RWaGXt8JpPhjgjyqrc8WhkEHiFNWVJTZt0xgVtCXf6GbOKVQRnVDUcnLLptC8QNlU8w5QX8shmB1YwH1TwuUvBf3Ozlm_Vl4Ac4PwE8wsc_WQ1nnESsmkUxQLiW-9csMNf9Pd37Uo4-hi1MY2W9eltLb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612752028</pqid></control><display><type>article</type><title>Alzheimer's Disease: Current Perspectives and Advances in Physiological Modeling</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><creator>Josephine Boder, E. ; Banerjee, Ipsita A.</creator><creatorcontrib>Josephine Boder, E. ; Banerjee, Ipsita A.</creatorcontrib><description>Though Alzheimer's disease (AD) is the most common cause of dementia, complete disease-modifying treatments are yet to be fully attained. Until recently, transgenic mice constituted most in vitro model systems of AD used for preclinical drug screening; however, these models have so far failed to adequately replicate the disease's pathophysiology. However, the generation of humanized APOE4 mouse models has led to key discoveries. Recent advances in stem cell differentiation techniques and the development of induced pluripotent stem cells (iPSCs) have facilitated the development of novel in vitro devices. These "microphysiological" systems-in vitro human cell culture systems designed to replicate in vivo physiology-employ varying levels of biomimicry and engineering control. Spheroid-based organoids, 3D cell culture systems, and microfluidic devices or a combination of these have the potential to replicate AD pathophysiology and pathogenesis in vitro and thus serve as both tools for testing therapeutics and models for experimental manipulation.</description><identifier>ISSN: 2306-5354</identifier><identifier>EISSN: 2306-5354</identifier><identifier>DOI: 10.3390/bioengineering8120211</identifier><identifier>PMID: 34940364</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Alzheimer's disease ; Animal models ; Apolipoproteins ; Bioengineering ; biomimetics ; Biotechnology &amp; Applied Microbiology ; Blood vessels ; Brain research ; Cell culture ; Cell differentiation ; Clinical trials ; Dementia disorders ; Differentiation (biology) ; Drug screening ; Engineering ; Engineering, Biomedical ; FDA approval ; Genes ; Hypotheses ; In vivo methods and tests ; Life Sciences &amp; Biomedicine ; Microfluidic devices ; microphysiological systems ; Mutation ; Neurodegenerative diseases ; Organoids ; Pathogenesis ; Pathology ; Pathophysiology ; Patients ; Peptides ; Physiology ; Pluripotency ; Proteins ; Review ; Science &amp; Technology ; Stem cell transplantation ; Stem cells ; Technology ; Transgenic mice</subject><ispartof>Bioengineering (Basel), 2021-12, Vol.8 (12), p.211, Article 211</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>11</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000736257700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c505t-f45861b27af25d5fd5161aa285b4dc0db8d29a7e7fc7dde73747d1f7b3c508c73</citedby><cites>FETCH-LOGICAL-c505t-f45861b27af25d5fd5161aa285b4dc0db8d29a7e7fc7dde73747d1f7b3c508c73</cites><orcidid>0000-0003-4631-2280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698996/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698996/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,27931,27932,39265,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34940364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Josephine Boder, E.</creatorcontrib><creatorcontrib>Banerjee, Ipsita A.</creatorcontrib><title>Alzheimer's Disease: Current Perspectives and Advances in Physiological Modeling</title><title>Bioengineering (Basel)</title><addtitle>BIOENGINEERING-BASEL</addtitle><addtitle>Bioengineering (Basel)</addtitle><description>Though Alzheimer's disease (AD) is the most common cause of dementia, complete disease-modifying treatments are yet to be fully attained. Until recently, transgenic mice constituted most in vitro model systems of AD used for preclinical drug screening; however, these models have so far failed to adequately replicate the disease's pathophysiology. However, the generation of humanized APOE4 mouse models has led to key discoveries. Recent advances in stem cell differentiation techniques and the development of induced pluripotent stem cells (iPSCs) have facilitated the development of novel in vitro devices. These "microphysiological" systems-in vitro human cell culture systems designed to replicate in vivo physiology-employ varying levels of biomimicry and engineering control. Spheroid-based organoids, 3D cell culture systems, and microfluidic devices or a combination of these have the potential to replicate AD pathophysiology and pathogenesis in vitro and thus serve as both tools for testing therapeutics and models for experimental manipulation.</description><subject>Alzheimer's disease</subject><subject>Animal models</subject><subject>Apolipoproteins</subject><subject>Bioengineering</subject><subject>biomimetics</subject><subject>Biotechnology &amp; Applied Microbiology</subject><subject>Blood vessels</subject><subject>Brain research</subject><subject>Cell culture</subject><subject>Cell differentiation</subject><subject>Clinical trials</subject><subject>Dementia disorders</subject><subject>Differentiation (biology)</subject><subject>Drug screening</subject><subject>Engineering</subject><subject>Engineering, Biomedical</subject><subject>FDA approval</subject><subject>Genes</subject><subject>Hypotheses</subject><subject>In vivo methods and tests</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Microfluidic devices</subject><subject>microphysiological systems</subject><subject>Mutation</subject><subject>Neurodegenerative diseases</subject><subject>Organoids</subject><subject>Pathogenesis</subject><subject>Pathology</subject><subject>Pathophysiology</subject><subject>Patients</subject><subject>Peptides</subject><subject>Physiology</subject><subject>Pluripotency</subject><subject>Proteins</subject><subject>Review</subject><subject>Science &amp; Technology</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Technology</subject><subject>Transgenic mice</subject><issn>2306-5354</issn><issn>2306-5354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkstuEzEUhi0EolXoI4BGYgFSFfBlbM-wQIqmXCoVkQWsLV_OJI4mdrBngsrT4zYlahELVraPv_PrXH6EnhP8hrEWvzU-Qlj5AJB8WDWEYkrII3RKGRZzznj9-N79BJ3lvMEYE0Y5FfVTdMLqtsZM1KdouRh-rcFvIb3K1YXPoDO8q7opJQhjtYSUd2BHv4dc6eCqhdvrYMvDh2q5vs4-DnHlrR6qL9HBUIp5hp70eshwdnfO0PePH751n-dXXz9ddourueWYj_O-5o0ghkrdU-547zgRRGvacFM7i51pHG21BNlb6RxIJmvpSC8NK_mNlWyGLg-6LuqN2iW_1elaRe3VbSCmldJp9HYAJbFsnemxI8LVxmEN2EBNdSuY7S03Rev9QWs3mS04W1pPengg-vAn-LVaxb1qRNu0RWaGXt8JpPhjgjyqrc8WhkEHiFNWVJTZt0xgVtCXf6GbOKVQRnVDUcnLLptC8QNlU8w5QX8shmB1YwH1TwuUvBf3Ozlm_Vl4Ac4PwE8wsc_WQ1nnESsmkUxQLiW-9csMNf9Pd37Uo4-hi1MY2W9eltLb</recordid><startdate>20211212</startdate><enddate>20211212</enddate><creator>Josephine Boder, E.</creator><creator>Banerjee, Ipsita A.</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4631-2280</orcidid></search><sort><creationdate>20211212</creationdate><title>Alzheimer's Disease: Current Perspectives and Advances in Physiological Modeling</title><author>Josephine Boder, E. ; Banerjee, Ipsita A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-f45861b27af25d5fd5161aa285b4dc0db8d29a7e7fc7dde73747d1f7b3c508c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alzheimer's disease</topic><topic>Animal models</topic><topic>Apolipoproteins</topic><topic>Bioengineering</topic><topic>biomimetics</topic><topic>Biotechnology &amp; Applied Microbiology</topic><topic>Blood vessels</topic><topic>Brain research</topic><topic>Cell culture</topic><topic>Cell differentiation</topic><topic>Clinical trials</topic><topic>Dementia disorders</topic><topic>Differentiation (biology)</topic><topic>Drug screening</topic><topic>Engineering</topic><topic>Engineering, Biomedical</topic><topic>FDA approval</topic><topic>Genes</topic><topic>Hypotheses</topic><topic>In vivo methods and tests</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Microfluidic devices</topic><topic>microphysiological systems</topic><topic>Mutation</topic><topic>Neurodegenerative diseases</topic><topic>Organoids</topic><topic>Pathogenesis</topic><topic>Pathology</topic><topic>Pathophysiology</topic><topic>Patients</topic><topic>Peptides</topic><topic>Physiology</topic><topic>Pluripotency</topic><topic>Proteins</topic><topic>Review</topic><topic>Science &amp; Technology</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Technology</topic><topic>Transgenic mice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Josephine Boder, E.</creatorcontrib><creatorcontrib>Banerjee, Ipsita A.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Bioengineering (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Josephine Boder, E.</au><au>Banerjee, Ipsita A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alzheimer's Disease: Current Perspectives and Advances in Physiological Modeling</atitle><jtitle>Bioengineering (Basel)</jtitle><stitle>BIOENGINEERING-BASEL</stitle><addtitle>Bioengineering (Basel)</addtitle><date>2021-12-12</date><risdate>2021</risdate><volume>8</volume><issue>12</issue><spage>211</spage><pages>211-</pages><artnum>211</artnum><issn>2306-5354</issn><eissn>2306-5354</eissn><abstract>Though Alzheimer's disease (AD) is the most common cause of dementia, complete disease-modifying treatments are yet to be fully attained. Until recently, transgenic mice constituted most in vitro model systems of AD used for preclinical drug screening; however, these models have so far failed to adequately replicate the disease's pathophysiology. However, the generation of humanized APOE4 mouse models has led to key discoveries. Recent advances in stem cell differentiation techniques and the development of induced pluripotent stem cells (iPSCs) have facilitated the development of novel in vitro devices. These "microphysiological" systems-in vitro human cell culture systems designed to replicate in vivo physiology-employ varying levels of biomimicry and engineering control. Spheroid-based organoids, 3D cell culture systems, and microfluidic devices or a combination of these have the potential to replicate AD pathophysiology and pathogenesis in vitro and thus serve as both tools for testing therapeutics and models for experimental manipulation.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>34940364</pmid><doi>10.3390/bioengineering8120211</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-4631-2280</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2306-5354
ispartof Bioengineering (Basel), 2021-12, Vol.8 (12), p.211, Article 211
issn 2306-5354
2306-5354
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8698996
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central
subjects Alzheimer's disease
Animal models
Apolipoproteins
Bioengineering
biomimetics
Biotechnology & Applied Microbiology
Blood vessels
Brain research
Cell culture
Cell differentiation
Clinical trials
Dementia disorders
Differentiation (biology)
Drug screening
Engineering
Engineering, Biomedical
FDA approval
Genes
Hypotheses
In vivo methods and tests
Life Sciences & Biomedicine
Microfluidic devices
microphysiological systems
Mutation
Neurodegenerative diseases
Organoids
Pathogenesis
Pathology
Pathophysiology
Patients
Peptides
Physiology
Pluripotency
Proteins
Review
Science & Technology
Stem cell transplantation
Stem cells
Technology
Transgenic mice
title Alzheimer's Disease: Current Perspectives and Advances in Physiological Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T17%3A54%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alzheimer's%20Disease:%20Current%20Perspectives%20and%20Advances%20in%20Physiological%20Modeling&rft.jtitle=Bioengineering%20(Basel)&rft.au=Josephine%20Boder,%20E.&rft.date=2021-12-12&rft.volume=8&rft.issue=12&rft.spage=211&rft.pages=211-&rft.artnum=211&rft.issn=2306-5354&rft.eissn=2306-5354&rft_id=info:doi/10.3390/bioengineering8120211&rft_dat=%3Cproquest_pubme%3E2612752028%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612752028&rft_id=info:pmid/34940364&rft_doaj_id=oai_doaj_org_article_7079dbf0d16d4bd0ae0be42a963cfc5b&rfr_iscdi=true