High coercivity Pr2Fe14B magnetic nanoparticles by a mechanochemical method
Nd2Fe14B nanoparticles are widely used because of their outstanding hard magnetic properties. In fact, Pr2Fe14B has higher magneto-crystalline anisotropy than Nd2Fe14B, which makes Pr-Fe-B a promising magnetic material. However, the chemical synthesis route to Pr2Fe14B nanoparticles is challenging b...
Gespeichert in:
Veröffentlicht in: | RSC advances 2021-03, Vol.11 (20), p.12315-12320 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12320 |
---|---|
container_issue | 20 |
container_start_page | 12315 |
container_title | RSC advances |
container_volume | 11 |
creator | Shang, Xiaoyun Tu, Haoran Zhang, Jingjing Ni, Bingying Wang, Liying Wang, Minggang Wu, Chen Zhao, Zhankui |
description | Nd2Fe14B nanoparticles are widely used because of their outstanding hard magnetic properties. In fact, Pr2Fe14B has higher magneto-crystalline anisotropy than Nd2Fe14B, which makes Pr-Fe-B a promising magnetic material. However, the chemical synthesis route to Pr2Fe14B nanoparticles is challenging because of the higher reduction potential of Pr3+, as well as the complex annealing conditions. In this work, Pr2Fe14B nanoparticles were successfully synthesized via an efficient and green mechanochemical method consisting of high energy ball milling, annealing, and a washing process. Microstructural investigations revealed that the oxide precursors were uniformly wrapped by CaO and CaH2, which formed an embedded structure after ball milling. Then, Pr2Fe14B powder was synthesized via a time-saving annealing process. The impact of the Pr2O3 content and the preparation conditions was investigated. The coercivity of the as-annealed powder with 100 wt% Pr2O3 excess is 18.9 kOe. After magnetic alignment, the coercivity, remanence, and maximum energy product were: 9.8 kOe, 78.4 emu g−1, and 9.8 MGOe, respectively. The present work provides a promising strategy for preparing anisotropic Pr-Fe-B permanent magnetic materials. |
doi_str_mv | 10.1039/d1ra01846a |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8697032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2506660057</sourcerecordid><originalsourceid>FETCH-LOGICAL-p307t-7a5f82916a56a2828684daec61d580aec64a0601fb04b45de4164affc30108513</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdBbKm9-AsCXrxEZz-zuQharBULetBzmGw2zZZ8uUkK_feu2IvOZd555-WBGUKuKNxS4OldQT0C1ULhGZkzECpmoNIZWQ7DHkIpSZmiF2TGpWA8kTAnrxu3qyLTWW_cwY3H6N2ztaXiMWpw19rRmajFtuvRB1nbIcqPEUaNNVVwTWUbZ7AO81h1xSU5L7Ee7PLUF-Rz_fSx2sTbt-eX1cM27jkkY5ygLDVLqUKpkGmmlRYFWqNoITX8CIGggJY5iFzIwgoanLI0HChoSfmC3P9y-ylvbGFsO3qss967Bv0x69Blfzetq7Jdd8i0ShPgLABuTgDffU12GLPGDcbWNba2m4aMhUcprUHwEL3-F913k2_DeRmToJQCkAn_Br58cy0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506660057</pqid></control><display><type>article</type><title>High coercivity Pr2Fe14B magnetic nanoparticles by a mechanochemical method</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Shang, Xiaoyun ; Tu, Haoran ; Zhang, Jingjing ; Ni, Bingying ; Wang, Liying ; Wang, Minggang ; Wu, Chen ; Zhao, Zhankui</creator><creatorcontrib>Shang, Xiaoyun ; Tu, Haoran ; Zhang, Jingjing ; Ni, Bingying ; Wang, Liying ; Wang, Minggang ; Wu, Chen ; Zhao, Zhankui</creatorcontrib><description>Nd2Fe14B nanoparticles are widely used because of their outstanding hard magnetic properties. In fact, Pr2Fe14B has higher magneto-crystalline anisotropy than Nd2Fe14B, which makes Pr-Fe-B a promising magnetic material. However, the chemical synthesis route to Pr2Fe14B nanoparticles is challenging because of the higher reduction potential of Pr3+, as well as the complex annealing conditions. In this work, Pr2Fe14B nanoparticles were successfully synthesized via an efficient and green mechanochemical method consisting of high energy ball milling, annealing, and a washing process. Microstructural investigations revealed that the oxide precursors were uniformly wrapped by CaO and CaH2, which formed an embedded structure after ball milling. Then, Pr2Fe14B powder was synthesized via a time-saving annealing process. The impact of the Pr2O3 content and the preparation conditions was investigated. The coercivity of the as-annealed powder with 100 wt% Pr2O3 excess is 18.9 kOe. After magnetic alignment, the coercivity, remanence, and maximum energy product were: 9.8 kOe, 78.4 emu g−1, and 9.8 MGOe, respectively. The present work provides a promising strategy for preparing anisotropic Pr-Fe-B permanent magnetic materials.</description><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d1ra01846a</identifier><identifier>PMID: 35423750</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anisotropy ; Annealing ; Ball milling ; Chemical synthesis ; Chemistry ; Coercivity ; Embedded structures ; Magnetic materials ; Magnetic properties ; Magnetism ; Nanoparticles ; Praseodymium oxide ; Remanence</subject><ispartof>RSC advances, 2021-03, Vol.11 (20), p.12315-12320</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><rights>This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8697032/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8697032/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Shang, Xiaoyun</creatorcontrib><creatorcontrib>Tu, Haoran</creatorcontrib><creatorcontrib>Zhang, Jingjing</creatorcontrib><creatorcontrib>Ni, Bingying</creatorcontrib><creatorcontrib>Wang, Liying</creatorcontrib><creatorcontrib>Wang, Minggang</creatorcontrib><creatorcontrib>Wu, Chen</creatorcontrib><creatorcontrib>Zhao, Zhankui</creatorcontrib><title>High coercivity Pr2Fe14B magnetic nanoparticles by a mechanochemical method</title><title>RSC advances</title><description>Nd2Fe14B nanoparticles are widely used because of their outstanding hard magnetic properties. In fact, Pr2Fe14B has higher magneto-crystalline anisotropy than Nd2Fe14B, which makes Pr-Fe-B a promising magnetic material. However, the chemical synthesis route to Pr2Fe14B nanoparticles is challenging because of the higher reduction potential of Pr3+, as well as the complex annealing conditions. In this work, Pr2Fe14B nanoparticles were successfully synthesized via an efficient and green mechanochemical method consisting of high energy ball milling, annealing, and a washing process. Microstructural investigations revealed that the oxide precursors were uniformly wrapped by CaO and CaH2, which formed an embedded structure after ball milling. Then, Pr2Fe14B powder was synthesized via a time-saving annealing process. The impact of the Pr2O3 content and the preparation conditions was investigated. The coercivity of the as-annealed powder with 100 wt% Pr2O3 excess is 18.9 kOe. After magnetic alignment, the coercivity, remanence, and maximum energy product were: 9.8 kOe, 78.4 emu g−1, and 9.8 MGOe, respectively. The present work provides a promising strategy for preparing anisotropic Pr-Fe-B permanent magnetic materials.</description><subject>Anisotropy</subject><subject>Annealing</subject><subject>Ball milling</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Coercivity</subject><subject>Embedded structures</subject><subject>Magnetic materials</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Nanoparticles</subject><subject>Praseodymium oxide</subject><subject>Remanence</subject><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdBbKm9-AsCXrxEZz-zuQharBULetBzmGw2zZZ8uUkK_feu2IvOZd555-WBGUKuKNxS4OldQT0C1ULhGZkzECpmoNIZWQ7DHkIpSZmiF2TGpWA8kTAnrxu3qyLTWW_cwY3H6N2ztaXiMWpw19rRmajFtuvRB1nbIcqPEUaNNVVwTWUbZ7AO81h1xSU5L7Ee7PLUF-Rz_fSx2sTbt-eX1cM27jkkY5ygLDVLqUKpkGmmlRYFWqNoITX8CIGggJY5iFzIwgoanLI0HChoSfmC3P9y-ylvbGFsO3qss967Bv0x69Blfzetq7Jdd8i0ShPgLABuTgDffU12GLPGDcbWNba2m4aMhUcprUHwEL3-F913k2_DeRmToJQCkAn_Br58cy0</recordid><startdate>20210329</startdate><enddate>20210329</enddate><creator>Shang, Xiaoyun</creator><creator>Tu, Haoran</creator><creator>Zhang, Jingjing</creator><creator>Ni, Bingying</creator><creator>Wang, Liying</creator><creator>Wang, Minggang</creator><creator>Wu, Chen</creator><creator>Zhao, Zhankui</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210329</creationdate><title>High coercivity Pr2Fe14B magnetic nanoparticles by a mechanochemical method</title><author>Shang, Xiaoyun ; Tu, Haoran ; Zhang, Jingjing ; Ni, Bingying ; Wang, Liying ; Wang, Minggang ; Wu, Chen ; Zhao, Zhankui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p307t-7a5f82916a56a2828684daec61d580aec64a0601fb04b45de4164affc30108513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Annealing</topic><topic>Ball milling</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Coercivity</topic><topic>Embedded structures</topic><topic>Magnetic materials</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Nanoparticles</topic><topic>Praseodymium oxide</topic><topic>Remanence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Xiaoyun</creatorcontrib><creatorcontrib>Tu, Haoran</creatorcontrib><creatorcontrib>Zhang, Jingjing</creatorcontrib><creatorcontrib>Ni, Bingying</creatorcontrib><creatorcontrib>Wang, Liying</creatorcontrib><creatorcontrib>Wang, Minggang</creatorcontrib><creatorcontrib>Wu, Chen</creatorcontrib><creatorcontrib>Zhao, Zhankui</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shang, Xiaoyun</au><au>Tu, Haoran</au><au>Zhang, Jingjing</au><au>Ni, Bingying</au><au>Wang, Liying</au><au>Wang, Minggang</au><au>Wu, Chen</au><au>Zhao, Zhankui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High coercivity Pr2Fe14B magnetic nanoparticles by a mechanochemical method</atitle><jtitle>RSC advances</jtitle><date>2021-03-29</date><risdate>2021</risdate><volume>11</volume><issue>20</issue><spage>12315</spage><epage>12320</epage><pages>12315-12320</pages><eissn>2046-2069</eissn><abstract>Nd2Fe14B nanoparticles are widely used because of their outstanding hard magnetic properties. In fact, Pr2Fe14B has higher magneto-crystalline anisotropy than Nd2Fe14B, which makes Pr-Fe-B a promising magnetic material. However, the chemical synthesis route to Pr2Fe14B nanoparticles is challenging because of the higher reduction potential of Pr3+, as well as the complex annealing conditions. In this work, Pr2Fe14B nanoparticles were successfully synthesized via an efficient and green mechanochemical method consisting of high energy ball milling, annealing, and a washing process. Microstructural investigations revealed that the oxide precursors were uniformly wrapped by CaO and CaH2, which formed an embedded structure after ball milling. Then, Pr2Fe14B powder was synthesized via a time-saving annealing process. The impact of the Pr2O3 content and the preparation conditions was investigated. The coercivity of the as-annealed powder with 100 wt% Pr2O3 excess is 18.9 kOe. After magnetic alignment, the coercivity, remanence, and maximum energy product were: 9.8 kOe, 78.4 emu g−1, and 9.8 MGOe, respectively. The present work provides a promising strategy for preparing anisotropic Pr-Fe-B permanent magnetic materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>35423750</pmid><doi>10.1039/d1ra01846a</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2046-2069 |
ispartof | RSC advances, 2021-03, Vol.11 (20), p.12315-12320 |
issn | 2046-2069 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8697032 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Anisotropy Annealing Ball milling Chemical synthesis Chemistry Coercivity Embedded structures Magnetic materials Magnetic properties Magnetism Nanoparticles Praseodymium oxide Remanence |
title | High coercivity Pr2Fe14B magnetic nanoparticles by a mechanochemical method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T20%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20coercivity%20Pr2Fe14B%20magnetic%20nanoparticles%20by%20a%20mechanochemical%20method&rft.jtitle=RSC%20advances&rft.au=Shang,%20Xiaoyun&rft.date=2021-03-29&rft.volume=11&rft.issue=20&rft.spage=12315&rft.epage=12320&rft.pages=12315-12320&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d1ra01846a&rft_dat=%3Cproquest_pubme%3E2506660057%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506660057&rft_id=info:pmid/35423750&rfr_iscdi=true |