High coercivity Pr2Fe14B magnetic nanoparticles by a mechanochemical method

Nd2Fe14B nanoparticles are widely used because of their outstanding hard magnetic properties. In fact, Pr2Fe14B has higher magneto-crystalline anisotropy than Nd2Fe14B, which makes Pr-Fe-B a promising magnetic material. However, the chemical synthesis route to Pr2Fe14B nanoparticles is challenging b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2021-03, Vol.11 (20), p.12315-12320
Hauptverfasser: Shang, Xiaoyun, Tu, Haoran, Zhang, Jingjing, Ni, Bingying, Wang, Liying, Wang, Minggang, Wu, Chen, Zhao, Zhankui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12320
container_issue 20
container_start_page 12315
container_title RSC advances
container_volume 11
creator Shang, Xiaoyun
Tu, Haoran
Zhang, Jingjing
Ni, Bingying
Wang, Liying
Wang, Minggang
Wu, Chen
Zhao, Zhankui
description Nd2Fe14B nanoparticles are widely used because of their outstanding hard magnetic properties. In fact, Pr2Fe14B has higher magneto-crystalline anisotropy than Nd2Fe14B, which makes Pr-Fe-B a promising magnetic material. However, the chemical synthesis route to Pr2Fe14B nanoparticles is challenging because of the higher reduction potential of Pr3+, as well as the complex annealing conditions. In this work, Pr2Fe14B nanoparticles were successfully synthesized via an efficient and green mechanochemical method consisting of high energy ball milling, annealing, and a washing process. Microstructural investigations revealed that the oxide precursors were uniformly wrapped by CaO and CaH2, which formed an embedded structure after ball milling. Then, Pr2Fe14B powder was synthesized via a time-saving annealing process. The impact of the Pr2O3 content and the preparation conditions was investigated. The coercivity of the as-annealed powder with 100 wt% Pr2O3 excess is 18.9 kOe. After magnetic alignment, the coercivity, remanence, and maximum energy product were: 9.8 kOe, 78.4 emu g−1, and 9.8 MGOe, respectively. The present work provides a promising strategy for preparing anisotropic Pr-Fe-B permanent magnetic materials.
doi_str_mv 10.1039/d1ra01846a
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8697032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2506660057</sourcerecordid><originalsourceid>FETCH-LOGICAL-p307t-7a5f82916a56a2828684daec61d580aec64a0601fb04b45de4164affc30108513</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdBbKm9-AsCXrxEZz-zuQharBULetBzmGw2zZZ8uUkK_feu2IvOZd555-WBGUKuKNxS4OldQT0C1ULhGZkzECpmoNIZWQ7DHkIpSZmiF2TGpWA8kTAnrxu3qyLTWW_cwY3H6N2ztaXiMWpw19rRmajFtuvRB1nbIcqPEUaNNVVwTWUbZ7AO81h1xSU5L7Ee7PLUF-Rz_fSx2sTbt-eX1cM27jkkY5ygLDVLqUKpkGmmlRYFWqNoITX8CIGggJY5iFzIwgoanLI0HChoSfmC3P9y-ylvbGFsO3qss967Bv0x69Blfzetq7Jdd8i0ShPgLABuTgDffU12GLPGDcbWNba2m4aMhUcprUHwEL3-F913k2_DeRmToJQCkAn_Br58cy0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506660057</pqid></control><display><type>article</type><title>High coercivity Pr2Fe14B magnetic nanoparticles by a mechanochemical method</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Shang, Xiaoyun ; Tu, Haoran ; Zhang, Jingjing ; Ni, Bingying ; Wang, Liying ; Wang, Minggang ; Wu, Chen ; Zhao, Zhankui</creator><creatorcontrib>Shang, Xiaoyun ; Tu, Haoran ; Zhang, Jingjing ; Ni, Bingying ; Wang, Liying ; Wang, Minggang ; Wu, Chen ; Zhao, Zhankui</creatorcontrib><description>Nd2Fe14B nanoparticles are widely used because of their outstanding hard magnetic properties. In fact, Pr2Fe14B has higher magneto-crystalline anisotropy than Nd2Fe14B, which makes Pr-Fe-B a promising magnetic material. However, the chemical synthesis route to Pr2Fe14B nanoparticles is challenging because of the higher reduction potential of Pr3+, as well as the complex annealing conditions. In this work, Pr2Fe14B nanoparticles were successfully synthesized via an efficient and green mechanochemical method consisting of high energy ball milling, annealing, and a washing process. Microstructural investigations revealed that the oxide precursors were uniformly wrapped by CaO and CaH2, which formed an embedded structure after ball milling. Then, Pr2Fe14B powder was synthesized via a time-saving annealing process. The impact of the Pr2O3 content and the preparation conditions was investigated. The coercivity of the as-annealed powder with 100 wt% Pr2O3 excess is 18.9 kOe. After magnetic alignment, the coercivity, remanence, and maximum energy product were: 9.8 kOe, 78.4 emu g−1, and 9.8 MGOe, respectively. The present work provides a promising strategy for preparing anisotropic Pr-Fe-B permanent magnetic materials.</description><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d1ra01846a</identifier><identifier>PMID: 35423750</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anisotropy ; Annealing ; Ball milling ; Chemical synthesis ; Chemistry ; Coercivity ; Embedded structures ; Magnetic materials ; Magnetic properties ; Magnetism ; Nanoparticles ; Praseodymium oxide ; Remanence</subject><ispartof>RSC advances, 2021-03, Vol.11 (20), p.12315-12320</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><rights>This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8697032/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8697032/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Shang, Xiaoyun</creatorcontrib><creatorcontrib>Tu, Haoran</creatorcontrib><creatorcontrib>Zhang, Jingjing</creatorcontrib><creatorcontrib>Ni, Bingying</creatorcontrib><creatorcontrib>Wang, Liying</creatorcontrib><creatorcontrib>Wang, Minggang</creatorcontrib><creatorcontrib>Wu, Chen</creatorcontrib><creatorcontrib>Zhao, Zhankui</creatorcontrib><title>High coercivity Pr2Fe14B magnetic nanoparticles by a mechanochemical method</title><title>RSC advances</title><description>Nd2Fe14B nanoparticles are widely used because of their outstanding hard magnetic properties. In fact, Pr2Fe14B has higher magneto-crystalline anisotropy than Nd2Fe14B, which makes Pr-Fe-B a promising magnetic material. However, the chemical synthesis route to Pr2Fe14B nanoparticles is challenging because of the higher reduction potential of Pr3+, as well as the complex annealing conditions. In this work, Pr2Fe14B nanoparticles were successfully synthesized via an efficient and green mechanochemical method consisting of high energy ball milling, annealing, and a washing process. Microstructural investigations revealed that the oxide precursors were uniformly wrapped by CaO and CaH2, which formed an embedded structure after ball milling. Then, Pr2Fe14B powder was synthesized via a time-saving annealing process. The impact of the Pr2O3 content and the preparation conditions was investigated. The coercivity of the as-annealed powder with 100 wt% Pr2O3 excess is 18.9 kOe. After magnetic alignment, the coercivity, remanence, and maximum energy product were: 9.8 kOe, 78.4 emu g−1, and 9.8 MGOe, respectively. The present work provides a promising strategy for preparing anisotropic Pr-Fe-B permanent magnetic materials.</description><subject>Anisotropy</subject><subject>Annealing</subject><subject>Ball milling</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Coercivity</subject><subject>Embedded structures</subject><subject>Magnetic materials</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Nanoparticles</subject><subject>Praseodymium oxide</subject><subject>Remanence</subject><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdBbKm9-AsCXrxEZz-zuQharBULetBzmGw2zZZ8uUkK_feu2IvOZd555-WBGUKuKNxS4OldQT0C1ULhGZkzECpmoNIZWQ7DHkIpSZmiF2TGpWA8kTAnrxu3qyLTWW_cwY3H6N2ztaXiMWpw19rRmajFtuvRB1nbIcqPEUaNNVVwTWUbZ7AO81h1xSU5L7Ee7PLUF-Rz_fSx2sTbt-eX1cM27jkkY5ygLDVLqUKpkGmmlRYFWqNoITX8CIGggJY5iFzIwgoanLI0HChoSfmC3P9y-ylvbGFsO3qss967Bv0x69Blfzetq7Jdd8i0ShPgLABuTgDffU12GLPGDcbWNba2m4aMhUcprUHwEL3-F913k2_DeRmToJQCkAn_Br58cy0</recordid><startdate>20210329</startdate><enddate>20210329</enddate><creator>Shang, Xiaoyun</creator><creator>Tu, Haoran</creator><creator>Zhang, Jingjing</creator><creator>Ni, Bingying</creator><creator>Wang, Liying</creator><creator>Wang, Minggang</creator><creator>Wu, Chen</creator><creator>Zhao, Zhankui</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210329</creationdate><title>High coercivity Pr2Fe14B magnetic nanoparticles by a mechanochemical method</title><author>Shang, Xiaoyun ; Tu, Haoran ; Zhang, Jingjing ; Ni, Bingying ; Wang, Liying ; Wang, Minggang ; Wu, Chen ; Zhao, Zhankui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p307t-7a5f82916a56a2828684daec61d580aec64a0601fb04b45de4164affc30108513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Annealing</topic><topic>Ball milling</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Coercivity</topic><topic>Embedded structures</topic><topic>Magnetic materials</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Nanoparticles</topic><topic>Praseodymium oxide</topic><topic>Remanence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Xiaoyun</creatorcontrib><creatorcontrib>Tu, Haoran</creatorcontrib><creatorcontrib>Zhang, Jingjing</creatorcontrib><creatorcontrib>Ni, Bingying</creatorcontrib><creatorcontrib>Wang, Liying</creatorcontrib><creatorcontrib>Wang, Minggang</creatorcontrib><creatorcontrib>Wu, Chen</creatorcontrib><creatorcontrib>Zhao, Zhankui</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shang, Xiaoyun</au><au>Tu, Haoran</au><au>Zhang, Jingjing</au><au>Ni, Bingying</au><au>Wang, Liying</au><au>Wang, Minggang</au><au>Wu, Chen</au><au>Zhao, Zhankui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High coercivity Pr2Fe14B magnetic nanoparticles by a mechanochemical method</atitle><jtitle>RSC advances</jtitle><date>2021-03-29</date><risdate>2021</risdate><volume>11</volume><issue>20</issue><spage>12315</spage><epage>12320</epage><pages>12315-12320</pages><eissn>2046-2069</eissn><abstract>Nd2Fe14B nanoparticles are widely used because of their outstanding hard magnetic properties. In fact, Pr2Fe14B has higher magneto-crystalline anisotropy than Nd2Fe14B, which makes Pr-Fe-B a promising magnetic material. However, the chemical synthesis route to Pr2Fe14B nanoparticles is challenging because of the higher reduction potential of Pr3+, as well as the complex annealing conditions. In this work, Pr2Fe14B nanoparticles were successfully synthesized via an efficient and green mechanochemical method consisting of high energy ball milling, annealing, and a washing process. Microstructural investigations revealed that the oxide precursors were uniformly wrapped by CaO and CaH2, which formed an embedded structure after ball milling. Then, Pr2Fe14B powder was synthesized via a time-saving annealing process. The impact of the Pr2O3 content and the preparation conditions was investigated. The coercivity of the as-annealed powder with 100 wt% Pr2O3 excess is 18.9 kOe. After magnetic alignment, the coercivity, remanence, and maximum energy product were: 9.8 kOe, 78.4 emu g−1, and 9.8 MGOe, respectively. The present work provides a promising strategy for preparing anisotropic Pr-Fe-B permanent magnetic materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>35423750</pmid><doi>10.1039/d1ra01846a</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2046-2069
ispartof RSC advances, 2021-03, Vol.11 (20), p.12315-12320
issn 2046-2069
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8697032
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Anisotropy
Annealing
Ball milling
Chemical synthesis
Chemistry
Coercivity
Embedded structures
Magnetic materials
Magnetic properties
Magnetism
Nanoparticles
Praseodymium oxide
Remanence
title High coercivity Pr2Fe14B magnetic nanoparticles by a mechanochemical method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T20%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20coercivity%20Pr2Fe14B%20magnetic%20nanoparticles%20by%20a%20mechanochemical%20method&rft.jtitle=RSC%20advances&rft.au=Shang,%20Xiaoyun&rft.date=2021-03-29&rft.volume=11&rft.issue=20&rft.spage=12315&rft.epage=12320&rft.pages=12315-12320&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d1ra01846a&rft_dat=%3Cproquest_pubme%3E2506660057%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506660057&rft_id=info:pmid/35423750&rfr_iscdi=true