Deep learning-based classification of breast cancer cells using transmembrane receptor dynamics

Abstract Motivation Motions of transmembrane receptors on cancer cell surfaces can reveal biophysical features of the cancer cells, thus providing a method for characterizing cancer cell phenotypes. While conventional analysis of receptor motions in the cell membrane mostly relies on the mean-square...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2021-12, Vol.38 (1), p.243-249
Hauptverfasser: Kim, Mirae, Hong, Soonwoo, Yankeelov, Thomas E, Yeh, Hsin-Chih, Liu, Yen-Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 249
container_issue 1
container_start_page 243
container_title Bioinformatics
container_volume 38
creator Kim, Mirae
Hong, Soonwoo
Yankeelov, Thomas E
Yeh, Hsin-Chih
Liu, Yen-Liang
description Abstract Motivation Motions of transmembrane receptors on cancer cell surfaces can reveal biophysical features of the cancer cells, thus providing a method for characterizing cancer cell phenotypes. While conventional analysis of receptor motions in the cell membrane mostly relies on the mean-squared displacement plots, much information is lost when producing these plots from the trajectories. Here we employ deep learning to classify breast cancer cell types based on the trajectories of epidermal growth factor receptor (EGFR). Our model is an artificial neural network trained on the EGFR motions acquired from six breast cancer cell lines of varying invasiveness and receptor status: MCF7 (hormone receptor positive), BT474 (HER2-positive), SKBR3 (HER2-positive), MDA-MB-468 (triple negative, TN), MDA-MB-231 (TN) and BT549 (TN). Results The model successfully classified the trajectories within individual cell lines with 83% accuracy and predicted receptor status with 85% accuracy. To further validate the method, epithelial–mesenchymal transition (EMT) was induced in benign MCF10A cells, noninvasive MCF7 cancer cells and highly invasive MDA-MB-231 cancer cells, and EGFR trajectories from these cells were tested. As expected, after EMT induction, both MCF10A and MCF7 cells showed higher rates of classification as TN cells, but not the MDA-MB-231 cells. Whereas deep learning-based cancer cell classifications are primarily based on the optical transmission images of cell morphology and the fluorescence images of cell organelles or cytoskeletal structures, here we demonstrated an alternative way to classify cancer cells using a dynamic, biophysical feature that is readily accessible. Availability and implementation A python implementation of deep learning-based classification can be found at https://github.com/soonwoohong/Deep-learning-for-EGFR-trajectory-classification. Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btab581
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8696113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btab581</oup_id><sourcerecordid>2561489996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-e6ec8db4e32c7f1303711b8f594abf029ab37d4cac04ebecbf03d39da255f7de3</originalsourceid><addsrcrecordid>eNqNkc1u3CAUhVHUKJMmeYURy26cgPmx2USK0jatNFI3zRoBviRUNrhgV8rbl9FMombX1UVwzse5OghtKbmmRLEbG1KIPuXJLMGVG7sYK3p6gs4pl6RpiVAf6pnJruE9YRv0sZRfhAjKOT9DG8aZIkL250h_BpjxCCbHEJ8aawoM2I2mlOCDq_AUcfLYZjBlwc5EBxk7GMeC11IdeMkmlgkmWyfgDA7mJWU8vEQz1WSX6NSbscDVcV6gx69fft5_a3Y_Hr7f3-0ax4VcGpDg-sFyYK3rPGWEdZTa3gvFjfWkVcaybuDOOMLBgqt3bGBqMK0QvhuAXaDbA3de7QSDg1iDjXrOYTL5RScT9PuXGJ71U_qje6kkpawCPh0BOf1eoSx6CmW_aF0rrUW3QlLeK6VklcqD1OVUSgb_9g0let-Oft-OPrZTjdt_Q77ZXuuoAnoQpHX-X-hfLUqnlQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561489996</pqid></control><display><type>article</type><title>Deep learning-based classification of breast cancer cells using transmembrane receptor dynamics</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kim, Mirae ; Hong, Soonwoo ; Yankeelov, Thomas E ; Yeh, Hsin-Chih ; Liu, Yen-Liang</creator><creatorcontrib>Kim, Mirae ; Hong, Soonwoo ; Yankeelov, Thomas E ; Yeh, Hsin-Chih ; Liu, Yen-Liang</creatorcontrib><description>Abstract Motivation Motions of transmembrane receptors on cancer cell surfaces can reveal biophysical features of the cancer cells, thus providing a method for characterizing cancer cell phenotypes. While conventional analysis of receptor motions in the cell membrane mostly relies on the mean-squared displacement plots, much information is lost when producing these plots from the trajectories. Here we employ deep learning to classify breast cancer cell types based on the trajectories of epidermal growth factor receptor (EGFR). Our model is an artificial neural network trained on the EGFR motions acquired from six breast cancer cell lines of varying invasiveness and receptor status: MCF7 (hormone receptor positive), BT474 (HER2-positive), SKBR3 (HER2-positive), MDA-MB-468 (triple negative, TN), MDA-MB-231 (TN) and BT549 (TN). Results The model successfully classified the trajectories within individual cell lines with 83% accuracy and predicted receptor status with 85% accuracy. To further validate the method, epithelial–mesenchymal transition (EMT) was induced in benign MCF10A cells, noninvasive MCF7 cancer cells and highly invasive MDA-MB-231 cancer cells, and EGFR trajectories from these cells were tested. As expected, after EMT induction, both MCF10A and MCF7 cells showed higher rates of classification as TN cells, but not the MDA-MB-231 cells. Whereas deep learning-based cancer cell classifications are primarily based on the optical transmission images of cell morphology and the fluorescence images of cell organelles or cytoskeletal structures, here we demonstrated an alternative way to classify cancer cells using a dynamic, biophysical feature that is readily accessible. Availability and implementation A python implementation of deep learning-based classification can be found at https://github.com/soonwoohong/Deep-learning-for-EGFR-trajectory-classification. Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btab581</identifier><identifier>PMID: 34390568</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Breast Neoplasms ; Cell Line, Tumor ; Deep Learning ; Epithelial-Mesenchymal Transition - genetics ; ErbB Receptors - genetics ; ErbB Receptors - metabolism ; Female ; Humans ; MCF-7 Cells ; Original Papers</subject><ispartof>Bioinformatics, 2021-12, Vol.38 (1), p.243-249</ispartof><rights>The Author(s) 2021. Published by Oxford University Press. 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-e6ec8db4e32c7f1303711b8f594abf029ab37d4cac04ebecbf03d39da255f7de3</citedby><cites>FETCH-LOGICAL-c456t-e6ec8db4e32c7f1303711b8f594abf029ab37d4cac04ebecbf03d39da255f7de3</cites><orcidid>0000-0001-6654-5626 ; 0000-0002-7618-9052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8696113/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8696113/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34390568$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Mirae</creatorcontrib><creatorcontrib>Hong, Soonwoo</creatorcontrib><creatorcontrib>Yankeelov, Thomas E</creatorcontrib><creatorcontrib>Yeh, Hsin-Chih</creatorcontrib><creatorcontrib>Liu, Yen-Liang</creatorcontrib><title>Deep learning-based classification of breast cancer cells using transmembrane receptor dynamics</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation Motions of transmembrane receptors on cancer cell surfaces can reveal biophysical features of the cancer cells, thus providing a method for characterizing cancer cell phenotypes. While conventional analysis of receptor motions in the cell membrane mostly relies on the mean-squared displacement plots, much information is lost when producing these plots from the trajectories. Here we employ deep learning to classify breast cancer cell types based on the trajectories of epidermal growth factor receptor (EGFR). Our model is an artificial neural network trained on the EGFR motions acquired from six breast cancer cell lines of varying invasiveness and receptor status: MCF7 (hormone receptor positive), BT474 (HER2-positive), SKBR3 (HER2-positive), MDA-MB-468 (triple negative, TN), MDA-MB-231 (TN) and BT549 (TN). Results The model successfully classified the trajectories within individual cell lines with 83% accuracy and predicted receptor status with 85% accuracy. To further validate the method, epithelial–mesenchymal transition (EMT) was induced in benign MCF10A cells, noninvasive MCF7 cancer cells and highly invasive MDA-MB-231 cancer cells, and EGFR trajectories from these cells were tested. As expected, after EMT induction, both MCF10A and MCF7 cells showed higher rates of classification as TN cells, but not the MDA-MB-231 cells. Whereas deep learning-based cancer cell classifications are primarily based on the optical transmission images of cell morphology and the fluorescence images of cell organelles or cytoskeletal structures, here we demonstrated an alternative way to classify cancer cells using a dynamic, biophysical feature that is readily accessible. Availability and implementation A python implementation of deep learning-based classification can be found at https://github.com/soonwoohong/Deep-learning-for-EGFR-trajectory-classification. Supplementary information Supplementary data are available at Bioinformatics online.</description><subject>Breast Neoplasms</subject><subject>Cell Line, Tumor</subject><subject>Deep Learning</subject><subject>Epithelial-Mesenchymal Transition - genetics</subject><subject>ErbB Receptors - genetics</subject><subject>ErbB Receptors - metabolism</subject><subject>Female</subject><subject>Humans</subject><subject>MCF-7 Cells</subject><subject>Original Papers</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc1u3CAUhVHUKJMmeYURy26cgPmx2USK0jatNFI3zRoBviRUNrhgV8rbl9FMombX1UVwzse5OghtKbmmRLEbG1KIPuXJLMGVG7sYK3p6gs4pl6RpiVAf6pnJruE9YRv0sZRfhAjKOT9DG8aZIkL250h_BpjxCCbHEJ8aawoM2I2mlOCDq_AUcfLYZjBlwc5EBxk7GMeC11IdeMkmlgkmWyfgDA7mJWU8vEQz1WSX6NSbscDVcV6gx69fft5_a3Y_Hr7f3-0ax4VcGpDg-sFyYK3rPGWEdZTa3gvFjfWkVcaybuDOOMLBgqt3bGBqMK0QvhuAXaDbA3de7QSDg1iDjXrOYTL5RScT9PuXGJ71U_qje6kkpawCPh0BOf1eoSx6CmW_aF0rrUW3QlLeK6VklcqD1OVUSgb_9g0let-Oft-OPrZTjdt_Q77ZXuuoAnoQpHX-X-hfLUqnlQ</recordid><startdate>20211222</startdate><enddate>20211222</enddate><creator>Kim, Mirae</creator><creator>Hong, Soonwoo</creator><creator>Yankeelov, Thomas E</creator><creator>Yeh, Hsin-Chih</creator><creator>Liu, Yen-Liang</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6654-5626</orcidid><orcidid>https://orcid.org/0000-0002-7618-9052</orcidid></search><sort><creationdate>20211222</creationdate><title>Deep learning-based classification of breast cancer cells using transmembrane receptor dynamics</title><author>Kim, Mirae ; Hong, Soonwoo ; Yankeelov, Thomas E ; Yeh, Hsin-Chih ; Liu, Yen-Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-e6ec8db4e32c7f1303711b8f594abf029ab37d4cac04ebecbf03d39da255f7de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Breast Neoplasms</topic><topic>Cell Line, Tumor</topic><topic>Deep Learning</topic><topic>Epithelial-Mesenchymal Transition - genetics</topic><topic>ErbB Receptors - genetics</topic><topic>ErbB Receptors - metabolism</topic><topic>Female</topic><topic>Humans</topic><topic>MCF-7 Cells</topic><topic>Original Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Mirae</creatorcontrib><creatorcontrib>Hong, Soonwoo</creatorcontrib><creatorcontrib>Yankeelov, Thomas E</creatorcontrib><creatorcontrib>Yeh, Hsin-Chih</creatorcontrib><creatorcontrib>Liu, Yen-Liang</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Mirae</au><au>Hong, Soonwoo</au><au>Yankeelov, Thomas E</au><au>Yeh, Hsin-Chih</au><au>Liu, Yen-Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning-based classification of breast cancer cells using transmembrane receptor dynamics</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2021-12-22</date><risdate>2021</risdate><volume>38</volume><issue>1</issue><spage>243</spage><epage>249</epage><pages>243-249</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Motivation Motions of transmembrane receptors on cancer cell surfaces can reveal biophysical features of the cancer cells, thus providing a method for characterizing cancer cell phenotypes. While conventional analysis of receptor motions in the cell membrane mostly relies on the mean-squared displacement plots, much information is lost when producing these plots from the trajectories. Here we employ deep learning to classify breast cancer cell types based on the trajectories of epidermal growth factor receptor (EGFR). Our model is an artificial neural network trained on the EGFR motions acquired from six breast cancer cell lines of varying invasiveness and receptor status: MCF7 (hormone receptor positive), BT474 (HER2-positive), SKBR3 (HER2-positive), MDA-MB-468 (triple negative, TN), MDA-MB-231 (TN) and BT549 (TN). Results The model successfully classified the trajectories within individual cell lines with 83% accuracy and predicted receptor status with 85% accuracy. To further validate the method, epithelial–mesenchymal transition (EMT) was induced in benign MCF10A cells, noninvasive MCF7 cancer cells and highly invasive MDA-MB-231 cancer cells, and EGFR trajectories from these cells were tested. As expected, after EMT induction, both MCF10A and MCF7 cells showed higher rates of classification as TN cells, but not the MDA-MB-231 cells. Whereas deep learning-based cancer cell classifications are primarily based on the optical transmission images of cell morphology and the fluorescence images of cell organelles or cytoskeletal structures, here we demonstrated an alternative way to classify cancer cells using a dynamic, biophysical feature that is readily accessible. Availability and implementation A python implementation of deep learning-based classification can be found at https://github.com/soonwoohong/Deep-learning-for-EGFR-trajectory-classification. Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34390568</pmid><doi>10.1093/bioinformatics/btab581</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6654-5626</orcidid><orcidid>https://orcid.org/0000-0002-7618-9052</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2021-12, Vol.38 (1), p.243-249
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8696113
source Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Breast Neoplasms
Cell Line, Tumor
Deep Learning
Epithelial-Mesenchymal Transition - genetics
ErbB Receptors - genetics
ErbB Receptors - metabolism
Female
Humans
MCF-7 Cells
Original Papers
title Deep learning-based classification of breast cancer cells using transmembrane receptor dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning-based%20classification%20of%20breast%20cancer%20cells%20using%20transmembrane%20receptor%20dynamics&rft.jtitle=Bioinformatics&rft.au=Kim,%20Mirae&rft.date=2021-12-22&rft.volume=38&rft.issue=1&rft.spage=243&rft.epage=249&rft.pages=243-249&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btab581&rft_dat=%3Cproquest_pubme%3E2561489996%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561489996&rft_id=info:pmid/34390568&rft_oup_id=10.1093/bioinformatics/btab581&rfr_iscdi=true