Global minimization via classical tunneling assisted by collective force field formation
Simple elements interacting in networks can give rise to intricate emergent behaviors. Examples such as synchronization and phase transitions often apply in many contexts, as many different systems may reduce to the same effective model. Here, we demonstrate such a behavior in a model inspired by me...
Gespeichert in:
Veröffentlicht in: | Science advances 2021-12, Vol.7 (52), p.eabh1542-eabh1542 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | eabh1542 |
---|---|
container_issue | 52 |
container_start_page | eabh1542 |
container_title | Science advances |
container_volume | 7 |
creator | Caravelli, Francesco Sheldon, Forrest C Traversa, Fabio L |
description | Simple elements interacting in networks can give rise to intricate emergent behaviors. Examples such as synchronization and phase transitions often apply in many contexts, as many different systems may reduce to the same effective model. Here, we demonstrate such a behavior in a model inspired by memristors. When weakly driven, the system is described by movement in an effective potential, but when strongly driven, instabilities cause escapes from local minima, which can be interpreted as an unstable tunneling mechanism. We dub this collective and nonperturbative effect a “Lyapunov force,” which steers the system toward the global minimum of the potential function, even if the full system has a constellation of equilibrium points growing exponentially with the system size. This mechanism is appealing for its physical relevance in nanoscale physics and for its possible applications in optimization, Monte Carlo schemes, and machine learning. |
doi_str_mv | 10.1126/sciadv.abh1542 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8694608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2613295081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-25126b199f849aa4392f6570bccd2db10ccc7d1ecb4af696c77ccfb637afde323</originalsourceid><addsrcrecordid>eNpVUU1LAzEUDKJoUa8eZfHkpTVfm91cBBG_oOBFwVtI3mZtJLupm7RQf72prVIveY-8yWTmDUJnBE8IoeIqgtPNcqLNjJSc7qERZVU5piWv93f6I3Qa4wfGmHAhSiIP0RHjkgkuyhF6e_DBaF90rned-9LJhb5YOl2A1zE6yKO06HvrXf9erG9isk1hVgUE7y0kt7RFGwbIp7O-WffdD8kJOmi1j_Z0W4_R6_3dy-3jePr88HR7Mx0DJ1XKArMRQ6Rsay615kzSVpQVNgANbQzBAFA1xILhuhVSQFUBtEawSreNZZQdo-sN73xhOtuA7dOgvZoPrtPDSgXt1P9J72bqPSxVLSQXuM4EFxuCEJNTeaXJwgxC9gxJkbrMiqoMutz-MoTPhY1JdS6C9V73NiyiooIwKktckwydbKAwhBgH2_5pIVitY1Ob2NQ2tvzgfNfBH_w3JPYNZgmYSw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2613295081</pqid></control><display><type>article</type><title>Global minimization via classical tunneling assisted by collective force field formation</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Caravelli, Francesco ; Sheldon, Forrest C ; Traversa, Fabio L</creator><creatorcontrib>Caravelli, Francesco ; Sheldon, Forrest C ; Traversa, Fabio L ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Simple elements interacting in networks can give rise to intricate emergent behaviors. Examples such as synchronization and phase transitions often apply in many contexts, as many different systems may reduce to the same effective model. Here, we demonstrate such a behavior in a model inspired by memristors. When weakly driven, the system is described by movement in an effective potential, but when strongly driven, instabilities cause escapes from local minima, which can be interpreted as an unstable tunneling mechanism. We dub this collective and nonperturbative effect a “Lyapunov force,” which steers the system toward the global minimum of the potential function, even if the full system has a constellation of equilibrium points growing exponentially with the system size. This mechanism is appealing for its physical relevance in nanoscale physics and for its possible applications in optimization, Monte Carlo schemes, and machine learning.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abh1542</identifier><identifier>PMID: 34936465</identifier><language>eng</language><publisher>United States: AAAS</publisher><subject>Computer Science ; Lyapunov force ; Mathematics ; MATHEMATICS AND COMPUTING ; memristors ; Physical and Materials Sciences ; Physics ; SciAdv r-articles ; tunneling</subject><ispartof>Science advances, 2021-12, Vol.7 (52), p.eabh1542-eabh1542</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-25126b199f849aa4392f6570bccd2db10ccc7d1ecb4af696c77ccfb637afde323</citedby><cites>FETCH-LOGICAL-c417t-25126b199f849aa4392f6570bccd2db10ccc7d1ecb4af696c77ccfb637afde323</cites><orcidid>0000-0002-7321-8364 ; 0000-0002-5878-8115 ; 0000-0001-7964-3030 ; 0000000179643030 ; 0000000258788115 ; 0000000273218364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694608/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694608/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34936465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1853927$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Caravelli, Francesco</creatorcontrib><creatorcontrib>Sheldon, Forrest C</creatorcontrib><creatorcontrib>Traversa, Fabio L</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Global minimization via classical tunneling assisted by collective force field formation</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Simple elements interacting in networks can give rise to intricate emergent behaviors. Examples such as synchronization and phase transitions often apply in many contexts, as many different systems may reduce to the same effective model. Here, we demonstrate such a behavior in a model inspired by memristors. When weakly driven, the system is described by movement in an effective potential, but when strongly driven, instabilities cause escapes from local minima, which can be interpreted as an unstable tunneling mechanism. We dub this collective and nonperturbative effect a “Lyapunov force,” which steers the system toward the global minimum of the potential function, even if the full system has a constellation of equilibrium points growing exponentially with the system size. This mechanism is appealing for its physical relevance in nanoscale physics and for its possible applications in optimization, Monte Carlo schemes, and machine learning.</description><subject>Computer Science</subject><subject>Lyapunov force</subject><subject>Mathematics</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>memristors</subject><subject>Physical and Materials Sciences</subject><subject>Physics</subject><subject>SciAdv r-articles</subject><subject>tunneling</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVUU1LAzEUDKJoUa8eZfHkpTVfm91cBBG_oOBFwVtI3mZtJLupm7RQf72prVIveY-8yWTmDUJnBE8IoeIqgtPNcqLNjJSc7qERZVU5piWv93f6I3Qa4wfGmHAhSiIP0RHjkgkuyhF6e_DBaF90rned-9LJhb5YOl2A1zE6yKO06HvrXf9erG9isk1hVgUE7y0kt7RFGwbIp7O-WffdD8kJOmi1j_Z0W4_R6_3dy-3jePr88HR7Mx0DJ1XKArMRQ6Rsay615kzSVpQVNgANbQzBAFA1xILhuhVSQFUBtEawSreNZZQdo-sN73xhOtuA7dOgvZoPrtPDSgXt1P9J72bqPSxVLSQXuM4EFxuCEJNTeaXJwgxC9gxJkbrMiqoMutz-MoTPhY1JdS6C9V73NiyiooIwKktckwydbKAwhBgH2_5pIVitY1Ob2NQ2tvzgfNfBH_w3JPYNZgmYSw</recordid><startdate>20211224</startdate><enddate>20211224</enddate><creator>Caravelli, Francesco</creator><creator>Sheldon, Forrest C</creator><creator>Traversa, Fabio L</creator><general>AAAS</general><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7321-8364</orcidid><orcidid>https://orcid.org/0000-0002-5878-8115</orcidid><orcidid>https://orcid.org/0000-0001-7964-3030</orcidid><orcidid>https://orcid.org/0000000179643030</orcidid><orcidid>https://orcid.org/0000000258788115</orcidid><orcidid>https://orcid.org/0000000273218364</orcidid></search><sort><creationdate>20211224</creationdate><title>Global minimization via classical tunneling assisted by collective force field formation</title><author>Caravelli, Francesco ; Sheldon, Forrest C ; Traversa, Fabio L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-25126b199f849aa4392f6570bccd2db10ccc7d1ecb4af696c77ccfb637afde323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer Science</topic><topic>Lyapunov force</topic><topic>Mathematics</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>memristors</topic><topic>Physical and Materials Sciences</topic><topic>Physics</topic><topic>SciAdv r-articles</topic><topic>tunneling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caravelli, Francesco</creatorcontrib><creatorcontrib>Sheldon, Forrest C</creatorcontrib><creatorcontrib>Traversa, Fabio L</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caravelli, Francesco</au><au>Sheldon, Forrest C</au><au>Traversa, Fabio L</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global minimization via classical tunneling assisted by collective force field formation</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2021-12-24</date><risdate>2021</risdate><volume>7</volume><issue>52</issue><spage>eabh1542</spage><epage>eabh1542</epage><pages>eabh1542-eabh1542</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Simple elements interacting in networks can give rise to intricate emergent behaviors. Examples such as synchronization and phase transitions often apply in many contexts, as many different systems may reduce to the same effective model. Here, we demonstrate such a behavior in a model inspired by memristors. When weakly driven, the system is described by movement in an effective potential, but when strongly driven, instabilities cause escapes from local minima, which can be interpreted as an unstable tunneling mechanism. We dub this collective and nonperturbative effect a “Lyapunov force,” which steers the system toward the global minimum of the potential function, even if the full system has a constellation of equilibrium points growing exponentially with the system size. This mechanism is appealing for its physical relevance in nanoscale physics and for its possible applications in optimization, Monte Carlo schemes, and machine learning.</abstract><cop>United States</cop><pub>AAAS</pub><pmid>34936465</pmid><doi>10.1126/sciadv.abh1542</doi><orcidid>https://orcid.org/0000-0002-7321-8364</orcidid><orcidid>https://orcid.org/0000-0002-5878-8115</orcidid><orcidid>https://orcid.org/0000-0001-7964-3030</orcidid><orcidid>https://orcid.org/0000000179643030</orcidid><orcidid>https://orcid.org/0000000258788115</orcidid><orcidid>https://orcid.org/0000000273218364</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2021-12, Vol.7 (52), p.eabh1542-eabh1542 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8694608 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Computer Science Lyapunov force Mathematics MATHEMATICS AND COMPUTING memristors Physical and Materials Sciences Physics SciAdv r-articles tunneling |
title | Global minimization via classical tunneling assisted by collective force field formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20minimization%20via%20classical%20tunneling%20assisted%20by%20collective%20force%20field%20formation&rft.jtitle=Science%20advances&rft.au=Caravelli,%20Francesco&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2021-12-24&rft.volume=7&rft.issue=52&rft.spage=eabh1542&rft.epage=eabh1542&rft.pages=eabh1542-eabh1542&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abh1542&rft_dat=%3Cproquest_pubme%3E2613295081%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2613295081&rft_id=info:pmid/34936465&rfr_iscdi=true |