Disjoint motif discovery in biological network using pattern join method
The biological network plays a key role in protein function annotation, protein superfamily classification, disease diagnosis, etc. These networks exhibit global properties like small-world property, power-law degree distribution, hierarchical modularity, robustness, etc. Along with these, the biolo...
Gespeichert in:
Veröffentlicht in: | IET systems biology 2019-10, Vol.13 (5), p.213-224 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 224 |
---|---|
container_issue | 5 |
container_start_page | 213 |
container_title | IET systems biology |
container_volume | 13 |
creator | Patra, Sabyasachi Mohapatra, Anjali |
description | The biological network plays a key role in protein function annotation, protein superfamily classification, disease diagnosis, etc. These networks exhibit global properties like small-world property, power-law degree distribution, hierarchical modularity, robustness, etc. Along with these, the biological network also possesses some local properties like clustering and network motif. Network motifs are recurrent and statistically over-represented subgraphs in a target network. Operation of a biological network is controlled by these motifs, and they are responsible for many biological applications. Discovery of network motifs is a computationally hard problem and involves a subgraph isomorphism check which is NP-complete. In recent years, researchers have developed various tools and algorithms to detect network motifs efficiently. However, it is still a challenging task to discover the network motif within a practical time bound for the large motif. In this study, an efficient pattern-join based algorithm is proposed to discover network motif in biological networks. The performance of the proposed algorithm is evaluated on the transcription regulatory network of Escherichia coli and the protein interaction network of Saccharomyces cerevisiae. The running time of the proposed algorithm outperforms most of the existing algorithms to discover large motifs. |
doi_str_mv | 10.1049/iet-syb.2019.0008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8687339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2295480353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4888-25b9279eaacde746eb9a48c1d84c82e4f21eec4a57236f16ab9bd5a590b2bad13</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EoqXlAdggL9lksB07sVkg0ZZSpEpdQBesLNu5mXpI7MF2Ws3bk2jKCDZ05Sv5nHN_PoTeULKihKv3HkqVd3bFCFUrQoh8ho5pK2glpWifH2qujtCrnDeECNEI8hId1VTUUglxjK4ufN5EHwoeY_E97nx28R7SDvuArY9DXHtnBhygPMT0E0_ZhzXemlIgBbw48QjlLnan6EVvhgyvH98TdHv5-fv5VXV98-Xr-afrynEpZcWEVaxVYIzroOUNWGW4dLST3EkGvGcUwHEjWlY3PW2MVbYTRihimTUdrU_Qx33udrIjdA5CSWbQ2-RHk3Y6Gq___Qn-Tq_jvZaNbOtazQHvHgNS_DVBLnqcd4ZhMAHilDVjSnBJalHPUrqXuhRzTtAf2lCiFwJ6JqBnAnohoBcCs-ft3_MdHH9OPgs-7AUPfoDd04n6248zdnZJCONLerU3L7JNnFKYb_2faX4DMbenDw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2295480353</pqid></control><display><type>article</type><title>Disjoint motif discovery in biological network using pattern join method</title><source>MEDLINE</source><source>Wiley Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Patra, Sabyasachi ; Mohapatra, Anjali</creator><creatorcontrib>Patra, Sabyasachi ; Mohapatra, Anjali</creatorcontrib><description>The biological network plays a key role in protein function annotation, protein superfamily classification, disease diagnosis, etc. These networks exhibit global properties like small-world property, power-law degree distribution, hierarchical modularity, robustness, etc. Along with these, the biological network also possesses some local properties like clustering and network motif. Network motifs are recurrent and statistically over-represented subgraphs in a target network. Operation of a biological network is controlled by these motifs, and they are responsible for many biological applications. Discovery of network motifs is a computationally hard problem and involves a subgraph isomorphism check which is NP-complete. In recent years, researchers have developed various tools and algorithms to detect network motifs efficiently. However, it is still a challenging task to discover the network motif within a practical time bound for the large motif. In this study, an efficient pattern-join based algorithm is proposed to discover network motif in biological networks. The performance of the proposed algorithm is evaluated on the transcription regulatory network of Escherichia coli and the protein interaction network of Saccharomyces cerevisiae. The running time of the proposed algorithm outperforms most of the existing algorithms to discover large motifs.</description><identifier>ISSN: 1751-8849</identifier><identifier>EISSN: 1751-8857</identifier><identifier>DOI: 10.1049/iet-syb.2019.0008</identifier><identifier>PMID: 31538955</identifier><language>eng</language><publisher>England: The Institution of Engineering and Technology</publisher><subject>Algorithms ; bioinformatics ; biological network ; complex networks ; computational complexity ; diseases ; disjoint motif discovery ; Escherichia coli ; Escherichia coli - genetics ; Gene Regulatory Networks ; genetics ; graph theory ; microorganisms ; Models, Biological ; molecular biophysics ; network motif ; network theory (graphs) ; pattern classification ; pattern join method ; Protein Interaction Mapping ; protein interaction network ; proteins ; Research Article ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - metabolism ; target network ; transcription regulatory network ; Transcription, Genetic</subject><ispartof>IET systems biology, 2019-10, Vol.13 (5), p.213-224</ispartof><rights>2019 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4888-25b9279eaacde746eb9a48c1d84c82e4f21eec4a57236f16ab9bd5a590b2bad13</citedby><cites>FETCH-LOGICAL-c4888-25b9279eaacde746eb9a48c1d84c82e4f21eec4a57236f16ab9bd5a590b2bad13</cites><orcidid>0000-0001-9846-4804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687339/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687339/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31538955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patra, Sabyasachi</creatorcontrib><creatorcontrib>Mohapatra, Anjali</creatorcontrib><title>Disjoint motif discovery in biological network using pattern join method</title><title>IET systems biology</title><addtitle>IET Syst Biol</addtitle><description>The biological network plays a key role in protein function annotation, protein superfamily classification, disease diagnosis, etc. These networks exhibit global properties like small-world property, power-law degree distribution, hierarchical modularity, robustness, etc. Along with these, the biological network also possesses some local properties like clustering and network motif. Network motifs are recurrent and statistically over-represented subgraphs in a target network. Operation of a biological network is controlled by these motifs, and they are responsible for many biological applications. Discovery of network motifs is a computationally hard problem and involves a subgraph isomorphism check which is NP-complete. In recent years, researchers have developed various tools and algorithms to detect network motifs efficiently. However, it is still a challenging task to discover the network motif within a practical time bound for the large motif. In this study, an efficient pattern-join based algorithm is proposed to discover network motif in biological networks. The performance of the proposed algorithm is evaluated on the transcription regulatory network of Escherichia coli and the protein interaction network of Saccharomyces cerevisiae. The running time of the proposed algorithm outperforms most of the existing algorithms to discover large motifs.</description><subject>Algorithms</subject><subject>bioinformatics</subject><subject>biological network</subject><subject>complex networks</subject><subject>computational complexity</subject><subject>diseases</subject><subject>disjoint motif discovery</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Gene Regulatory Networks</subject><subject>genetics</subject><subject>graph theory</subject><subject>microorganisms</subject><subject>Models, Biological</subject><subject>molecular biophysics</subject><subject>network motif</subject><subject>network theory (graphs)</subject><subject>pattern classification</subject><subject>pattern join method</subject><subject>Protein Interaction Mapping</subject><subject>protein interaction network</subject><subject>proteins</subject><subject>Research Article</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>target network</subject><subject>transcription regulatory network</subject><subject>Transcription, Genetic</subject><issn>1751-8849</issn><issn>1751-8857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EoqXlAdggL9lksB07sVkg0ZZSpEpdQBesLNu5mXpI7MF2Ws3bk2jKCDZ05Sv5nHN_PoTeULKihKv3HkqVd3bFCFUrQoh8ho5pK2glpWifH2qujtCrnDeECNEI8hId1VTUUglxjK4ufN5EHwoeY_E97nx28R7SDvuArY9DXHtnBhygPMT0E0_ZhzXemlIgBbw48QjlLnan6EVvhgyvH98TdHv5-fv5VXV98-Xr-afrynEpZcWEVaxVYIzroOUNWGW4dLST3EkGvGcUwHEjWlY3PW2MVbYTRihimTUdrU_Qx33udrIjdA5CSWbQ2-RHk3Y6Gq___Qn-Tq_jvZaNbOtazQHvHgNS_DVBLnqcd4ZhMAHilDVjSnBJalHPUrqXuhRzTtAf2lCiFwJ6JqBnAnohoBcCs-ft3_MdHH9OPgs-7AUPfoDd04n6248zdnZJCONLerU3L7JNnFKYb_2faX4DMbenDw</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Patra, Sabyasachi</creator><creator>Mohapatra, Anjali</creator><general>The Institution of Engineering and Technology</general><scope>IDLOA</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9846-4804</orcidid></search><sort><creationdate>201910</creationdate><title>Disjoint motif discovery in biological network using pattern join method</title><author>Patra, Sabyasachi ; Mohapatra, Anjali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4888-25b9279eaacde746eb9a48c1d84c82e4f21eec4a57236f16ab9bd5a590b2bad13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>bioinformatics</topic><topic>biological network</topic><topic>complex networks</topic><topic>computational complexity</topic><topic>diseases</topic><topic>disjoint motif discovery</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Gene Regulatory Networks</topic><topic>genetics</topic><topic>graph theory</topic><topic>microorganisms</topic><topic>Models, Biological</topic><topic>molecular biophysics</topic><topic>network motif</topic><topic>network theory (graphs)</topic><topic>pattern classification</topic><topic>pattern join method</topic><topic>Protein Interaction Mapping</topic><topic>protein interaction network</topic><topic>proteins</topic><topic>Research Article</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>target network</topic><topic>transcription regulatory network</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patra, Sabyasachi</creatorcontrib><creatorcontrib>Mohapatra, Anjali</creatorcontrib><collection>IET Digital Library (Open Access)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IET systems biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patra, Sabyasachi</au><au>Mohapatra, Anjali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disjoint motif discovery in biological network using pattern join method</atitle><jtitle>IET systems biology</jtitle><addtitle>IET Syst Biol</addtitle><date>2019-10</date><risdate>2019</risdate><volume>13</volume><issue>5</issue><spage>213</spage><epage>224</epage><pages>213-224</pages><issn>1751-8849</issn><eissn>1751-8857</eissn><abstract>The biological network plays a key role in protein function annotation, protein superfamily classification, disease diagnosis, etc. These networks exhibit global properties like small-world property, power-law degree distribution, hierarchical modularity, robustness, etc. Along with these, the biological network also possesses some local properties like clustering and network motif. Network motifs are recurrent and statistically over-represented subgraphs in a target network. Operation of a biological network is controlled by these motifs, and they are responsible for many biological applications. Discovery of network motifs is a computationally hard problem and involves a subgraph isomorphism check which is NP-complete. In recent years, researchers have developed various tools and algorithms to detect network motifs efficiently. However, it is still a challenging task to discover the network motif within a practical time bound for the large motif. In this study, an efficient pattern-join based algorithm is proposed to discover network motif in biological networks. The performance of the proposed algorithm is evaluated on the transcription regulatory network of Escherichia coli and the protein interaction network of Saccharomyces cerevisiae. The running time of the proposed algorithm outperforms most of the existing algorithms to discover large motifs.</abstract><cop>England</cop><pub>The Institution of Engineering and Technology</pub><pmid>31538955</pmid><doi>10.1049/iet-syb.2019.0008</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9846-4804</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8849 |
ispartof | IET systems biology, 2019-10, Vol.13 (5), p.213-224 |
issn | 1751-8849 1751-8857 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8687339 |
source | MEDLINE; Wiley Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central |
subjects | Algorithms bioinformatics biological network complex networks computational complexity diseases disjoint motif discovery Escherichia coli Escherichia coli - genetics Gene Regulatory Networks genetics graph theory microorganisms Models, Biological molecular biophysics network motif network theory (graphs) pattern classification pattern join method Protein Interaction Mapping protein interaction network proteins Research Article Saccharomyces cerevisiae Saccharomyces cerevisiae - metabolism target network transcription regulatory network Transcription, Genetic |
title | Disjoint motif discovery in biological network using pattern join method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disjoint%20motif%20discovery%20in%20biological%20network%20using%20pattern%20join%20method&rft.jtitle=IET%20systems%20biology&rft.au=Patra,%20Sabyasachi&rft.date=2019-10&rft.volume=13&rft.issue=5&rft.spage=213&rft.epage=224&rft.pages=213-224&rft.issn=1751-8849&rft.eissn=1751-8857&rft_id=info:doi/10.1049/iet-syb.2019.0008&rft_dat=%3Cproquest_pubme%3E2295480353%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2295480353&rft_id=info:pmid/31538955&rfr_iscdi=true |