Disjoint motif discovery in biological network using pattern join method

The biological network plays a key role in protein function annotation, protein superfamily classification, disease diagnosis, etc. These networks exhibit global properties like small-world property, power-law degree distribution, hierarchical modularity, robustness, etc. Along with these, the biolo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET systems biology 2019-10, Vol.13 (5), p.213-224
Hauptverfasser: Patra, Sabyasachi, Mohapatra, Anjali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 224
container_issue 5
container_start_page 213
container_title IET systems biology
container_volume 13
creator Patra, Sabyasachi
Mohapatra, Anjali
description The biological network plays a key role in protein function annotation, protein superfamily classification, disease diagnosis, etc. These networks exhibit global properties like small-world property, power-law degree distribution, hierarchical modularity, robustness, etc. Along with these, the biological network also possesses some local properties like clustering and network motif. Network motifs are recurrent and statistically over-represented subgraphs in a target network. Operation of a biological network is controlled by these motifs, and they are responsible for many biological applications. Discovery of network motifs is a computationally hard problem and involves a subgraph isomorphism check which is NP-complete. In recent years, researchers have developed various tools and algorithms to detect network motifs efficiently. However, it is still a challenging task to discover the network motif within a practical time bound for the large motif. In this study, an efficient pattern-join based algorithm is proposed to discover network motif in biological networks. The performance of the proposed algorithm is evaluated on the transcription regulatory network of Escherichia coli and the protein interaction network of Saccharomyces cerevisiae. The running time of the proposed algorithm outperforms most of the existing algorithms to discover large motifs.
doi_str_mv 10.1049/iet-syb.2019.0008
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8687339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2295480353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4888-25b9279eaacde746eb9a48c1d84c82e4f21eec4a57236f16ab9bd5a590b2bad13</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EoqXlAdggL9lksB07sVkg0ZZSpEpdQBesLNu5mXpI7MF2Ws3bk2jKCDZ05Sv5nHN_PoTeULKihKv3HkqVd3bFCFUrQoh8ho5pK2glpWifH2qujtCrnDeECNEI8hId1VTUUglxjK4ufN5EHwoeY_E97nx28R7SDvuArY9DXHtnBhygPMT0E0_ZhzXemlIgBbw48QjlLnan6EVvhgyvH98TdHv5-fv5VXV98-Xr-afrynEpZcWEVaxVYIzroOUNWGW4dLST3EkGvGcUwHEjWlY3PW2MVbYTRihimTUdrU_Qx33udrIjdA5CSWbQ2-RHk3Y6Gq___Qn-Tq_jvZaNbOtazQHvHgNS_DVBLnqcd4ZhMAHilDVjSnBJalHPUrqXuhRzTtAf2lCiFwJ6JqBnAnohoBcCs-ft3_MdHH9OPgs-7AUPfoDd04n6248zdnZJCONLerU3L7JNnFKYb_2faX4DMbenDw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2295480353</pqid></control><display><type>article</type><title>Disjoint motif discovery in biological network using pattern join method</title><source>MEDLINE</source><source>Wiley Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Patra, Sabyasachi ; Mohapatra, Anjali</creator><creatorcontrib>Patra, Sabyasachi ; Mohapatra, Anjali</creatorcontrib><description>The biological network plays a key role in protein function annotation, protein superfamily classification, disease diagnosis, etc. These networks exhibit global properties like small-world property, power-law degree distribution, hierarchical modularity, robustness, etc. Along with these, the biological network also possesses some local properties like clustering and network motif. Network motifs are recurrent and statistically over-represented subgraphs in a target network. Operation of a biological network is controlled by these motifs, and they are responsible for many biological applications. Discovery of network motifs is a computationally hard problem and involves a subgraph isomorphism check which is NP-complete. In recent years, researchers have developed various tools and algorithms to detect network motifs efficiently. However, it is still a challenging task to discover the network motif within a practical time bound for the large motif. In this study, an efficient pattern-join based algorithm is proposed to discover network motif in biological networks. The performance of the proposed algorithm is evaluated on the transcription regulatory network of Escherichia coli and the protein interaction network of Saccharomyces cerevisiae. The running time of the proposed algorithm outperforms most of the existing algorithms to discover large motifs.</description><identifier>ISSN: 1751-8849</identifier><identifier>EISSN: 1751-8857</identifier><identifier>DOI: 10.1049/iet-syb.2019.0008</identifier><identifier>PMID: 31538955</identifier><language>eng</language><publisher>England: The Institution of Engineering and Technology</publisher><subject>Algorithms ; bioinformatics ; biological network ; complex networks ; computational complexity ; diseases ; disjoint motif discovery ; Escherichia coli ; Escherichia coli - genetics ; Gene Regulatory Networks ; genetics ; graph theory ; microorganisms ; Models, Biological ; molecular biophysics ; network motif ; network theory (graphs) ; pattern classification ; pattern join method ; Protein Interaction Mapping ; protein interaction network ; proteins ; Research Article ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - metabolism ; target network ; transcription regulatory network ; Transcription, Genetic</subject><ispartof>IET systems biology, 2019-10, Vol.13 (5), p.213-224</ispartof><rights>2019 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4888-25b9279eaacde746eb9a48c1d84c82e4f21eec4a57236f16ab9bd5a590b2bad13</citedby><cites>FETCH-LOGICAL-c4888-25b9279eaacde746eb9a48c1d84c82e4f21eec4a57236f16ab9bd5a590b2bad13</cites><orcidid>0000-0001-9846-4804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687339/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687339/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31538955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patra, Sabyasachi</creatorcontrib><creatorcontrib>Mohapatra, Anjali</creatorcontrib><title>Disjoint motif discovery in biological network using pattern join method</title><title>IET systems biology</title><addtitle>IET Syst Biol</addtitle><description>The biological network plays a key role in protein function annotation, protein superfamily classification, disease diagnosis, etc. These networks exhibit global properties like small-world property, power-law degree distribution, hierarchical modularity, robustness, etc. Along with these, the biological network also possesses some local properties like clustering and network motif. Network motifs are recurrent and statistically over-represented subgraphs in a target network. Operation of a biological network is controlled by these motifs, and they are responsible for many biological applications. Discovery of network motifs is a computationally hard problem and involves a subgraph isomorphism check which is NP-complete. In recent years, researchers have developed various tools and algorithms to detect network motifs efficiently. However, it is still a challenging task to discover the network motif within a practical time bound for the large motif. In this study, an efficient pattern-join based algorithm is proposed to discover network motif in biological networks. The performance of the proposed algorithm is evaluated on the transcription regulatory network of Escherichia coli and the protein interaction network of Saccharomyces cerevisiae. The running time of the proposed algorithm outperforms most of the existing algorithms to discover large motifs.</description><subject>Algorithms</subject><subject>bioinformatics</subject><subject>biological network</subject><subject>complex networks</subject><subject>computational complexity</subject><subject>diseases</subject><subject>disjoint motif discovery</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Gene Regulatory Networks</subject><subject>genetics</subject><subject>graph theory</subject><subject>microorganisms</subject><subject>Models, Biological</subject><subject>molecular biophysics</subject><subject>network motif</subject><subject>network theory (graphs)</subject><subject>pattern classification</subject><subject>pattern join method</subject><subject>Protein Interaction Mapping</subject><subject>protein interaction network</subject><subject>proteins</subject><subject>Research Article</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>target network</subject><subject>transcription regulatory network</subject><subject>Transcription, Genetic</subject><issn>1751-8849</issn><issn>1751-8857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EoqXlAdggL9lksB07sVkg0ZZSpEpdQBesLNu5mXpI7MF2Ws3bk2jKCDZ05Sv5nHN_PoTeULKihKv3HkqVd3bFCFUrQoh8ho5pK2glpWifH2qujtCrnDeECNEI8hId1VTUUglxjK4ufN5EHwoeY_E97nx28R7SDvuArY9DXHtnBhygPMT0E0_ZhzXemlIgBbw48QjlLnan6EVvhgyvH98TdHv5-fv5VXV98-Xr-afrynEpZcWEVaxVYIzroOUNWGW4dLST3EkGvGcUwHEjWlY3PW2MVbYTRihimTUdrU_Qx33udrIjdA5CSWbQ2-RHk3Y6Gq___Qn-Tq_jvZaNbOtazQHvHgNS_DVBLnqcd4ZhMAHilDVjSnBJalHPUrqXuhRzTtAf2lCiFwJ6JqBnAnohoBcCs-ft3_MdHH9OPgs-7AUPfoDd04n6248zdnZJCONLerU3L7JNnFKYb_2faX4DMbenDw</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Patra, Sabyasachi</creator><creator>Mohapatra, Anjali</creator><general>The Institution of Engineering and Technology</general><scope>IDLOA</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9846-4804</orcidid></search><sort><creationdate>201910</creationdate><title>Disjoint motif discovery in biological network using pattern join method</title><author>Patra, Sabyasachi ; Mohapatra, Anjali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4888-25b9279eaacde746eb9a48c1d84c82e4f21eec4a57236f16ab9bd5a590b2bad13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>bioinformatics</topic><topic>biological network</topic><topic>complex networks</topic><topic>computational complexity</topic><topic>diseases</topic><topic>disjoint motif discovery</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Gene Regulatory Networks</topic><topic>genetics</topic><topic>graph theory</topic><topic>microorganisms</topic><topic>Models, Biological</topic><topic>molecular biophysics</topic><topic>network motif</topic><topic>network theory (graphs)</topic><topic>pattern classification</topic><topic>pattern join method</topic><topic>Protein Interaction Mapping</topic><topic>protein interaction network</topic><topic>proteins</topic><topic>Research Article</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>target network</topic><topic>transcription regulatory network</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patra, Sabyasachi</creatorcontrib><creatorcontrib>Mohapatra, Anjali</creatorcontrib><collection>IET Digital Library (Open Access)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IET systems biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patra, Sabyasachi</au><au>Mohapatra, Anjali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disjoint motif discovery in biological network using pattern join method</atitle><jtitle>IET systems biology</jtitle><addtitle>IET Syst Biol</addtitle><date>2019-10</date><risdate>2019</risdate><volume>13</volume><issue>5</issue><spage>213</spage><epage>224</epage><pages>213-224</pages><issn>1751-8849</issn><eissn>1751-8857</eissn><abstract>The biological network plays a key role in protein function annotation, protein superfamily classification, disease diagnosis, etc. These networks exhibit global properties like small-world property, power-law degree distribution, hierarchical modularity, robustness, etc. Along with these, the biological network also possesses some local properties like clustering and network motif. Network motifs are recurrent and statistically over-represented subgraphs in a target network. Operation of a biological network is controlled by these motifs, and they are responsible for many biological applications. Discovery of network motifs is a computationally hard problem and involves a subgraph isomorphism check which is NP-complete. In recent years, researchers have developed various tools and algorithms to detect network motifs efficiently. However, it is still a challenging task to discover the network motif within a practical time bound for the large motif. In this study, an efficient pattern-join based algorithm is proposed to discover network motif in biological networks. The performance of the proposed algorithm is evaluated on the transcription regulatory network of Escherichia coli and the protein interaction network of Saccharomyces cerevisiae. The running time of the proposed algorithm outperforms most of the existing algorithms to discover large motifs.</abstract><cop>England</cop><pub>The Institution of Engineering and Technology</pub><pmid>31538955</pmid><doi>10.1049/iet-syb.2019.0008</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9846-4804</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8849
ispartof IET systems biology, 2019-10, Vol.13 (5), p.213-224
issn 1751-8849
1751-8857
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8687339
source MEDLINE; Wiley Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central
subjects Algorithms
bioinformatics
biological network
complex networks
computational complexity
diseases
disjoint motif discovery
Escherichia coli
Escherichia coli - genetics
Gene Regulatory Networks
genetics
graph theory
microorganisms
Models, Biological
molecular biophysics
network motif
network theory (graphs)
pattern classification
pattern join method
Protein Interaction Mapping
protein interaction network
proteins
Research Article
Saccharomyces cerevisiae
Saccharomyces cerevisiae - metabolism
target network
transcription regulatory network
Transcription, Genetic
title Disjoint motif discovery in biological network using pattern join method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disjoint%20motif%20discovery%20in%20biological%20network%20using%20pattern%20join%20method&rft.jtitle=IET%20systems%20biology&rft.au=Patra,%20Sabyasachi&rft.date=2019-10&rft.volume=13&rft.issue=5&rft.spage=213&rft.epage=224&rft.pages=213-224&rft.issn=1751-8849&rft.eissn=1751-8857&rft_id=info:doi/10.1049/iet-syb.2019.0008&rft_dat=%3Cproquest_pubme%3E2295480353%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2295480353&rft_id=info:pmid/31538955&rfr_iscdi=true