Genome instability independent of type I interferon signaling drives neuropathology caused by impaired ribonucleotide excision repair

Aicardi-Goutières syndrome (AGS) is a monogenic type I interferonopathy characterized by neurodevelopmental defects and upregulation of type I interferon signaling and neuroinflammation. Mutations in genes that function in nucleic acid metabolism, including RNASEH2, are linked to AGS. Ribonuclease H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2021-12, Vol.109 (24), p.3962-3979.e6
Hauptverfasser: Aditi, Downing, Susanna M., Schreiner, Patrick A., Kwak, Young Don, Li, Yang, Shaw, Timothy I., Russell, Helen R., McKinnon, Peter J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3979.e6
container_issue 24
container_start_page 3962
container_title Neuron (Cambridge, Mass.)
container_volume 109
creator Aditi
Downing, Susanna M.
Schreiner, Patrick A.
Kwak, Young Don
Li, Yang
Shaw, Timothy I.
Russell, Helen R.
McKinnon, Peter J.
description Aicardi-Goutières syndrome (AGS) is a monogenic type I interferonopathy characterized by neurodevelopmental defects and upregulation of type I interferon signaling and neuroinflammation. Mutations in genes that function in nucleic acid metabolism, including RNASEH2, are linked to AGS. Ribonuclease H2 (RNASEH2) is a genome surveillance factor critical for DNA integrity by removing ribonucleotides incorporated into replicating DNA. Here we show that RNASEH2 is necessary for neurogenesis and to avoid activation of interferon-responsive genes and neuroinflammation. Cerebellar defects after RNASEH2B inactivation are rescued by p53 but not cGAS deletion, suggesting that DNA damage signaling, not neuroinflammation, accounts for neuropathology. Coincident inactivation of Atm and Rnaseh2 further affected cerebellar development causing ataxia, which was dependent upon aberrant activation of non-homologous end-joining (NHEJ). The loss of ATM also markedly exacerbates cGAS-dependent type I interferon signaling. Thus, DNA damage-dependent signaling rather than type I interferon signaling underlies neurodegeneration in this class of neurodevelopmental/neuroinflammatory disease. •RNASEH2 is necessary for neurogenesis and prevention of neuroinflammation•ATM suppresses the neural impact of Rnaseh2 inactivation•Neuropathology from disabled RNASEH2B is rescued by p53 but not cGAS inactivation Mutations in RNASEH2 are linked to Aicardi-Goutières syndrome. Aditi et al. show that RNASEH2 is necessary for neurogenesis and to avoid activation of interferon-responsive genes. These defects are rescued by p53 but not cGAS inactivation, suggesting that DNA damage signaling, not neuroinflammation, accounts for neuropathology in this class of disease.
doi_str_mv 10.1016/j.neuron.2021.09.040
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8686690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627321007133</els_id><sourcerecordid>2582809357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-67f18a37da36b07351f3c672e353f60d3023282b3533bcdbcc8d5f423cfbf6023</originalsourceid><addsrcrecordid>eNp9UU1v1DAQtRAVXQr_ACEfuST4I3GSCxKqoFSq1Et7tvwx2XqV2MF2VuwP6P_Gy5YCFy722PPmvZl5CL2jpKaEio-72sMag68ZYbQmQ00a8gJtKBm6qqHD8BJtSD-ISrCOn6PXKe0IoU070FfonDeibVsmNujxCnyYATufstJucvlQYgsLlMNnHEacDwvg6_KbIY5QFHFyW68m57fYRreHhH91sqj8EKawPWCj1gQW60I1L8rFEkeng1_NBCE7Cxh-GJdcoYpwBLxBZ6OaErx9ui_Q_dcvd5ffqpvbq-vLzzeVaQTPlehG2iveWcWFJh1v6ciN6Bjwlo-CWE4YZz3T5cm1sdqY3rZjw7gZdckzfoE-nXiXVc9gTZkwqkku0c0qHmRQTv6b8e5BbsNe9qIXYiCF4MMTQQzfV0hZzi4ZmCblIaxJsrZnPRl42xVoc4KaGFKKMD7LUCKPDsqdPDkojw5KMsjiYCl7_3eLz0W_LfszA5RF7R1EmYwDb8CWRZssbXD_V_gJOb-0GQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582809357</pqid></control><display><type>article</type><title>Genome instability independent of type I interferon signaling drives neuropathology caused by impaired ribonucleotide excision repair</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Aditi ; Downing, Susanna M. ; Schreiner, Patrick A. ; Kwak, Young Don ; Li, Yang ; Shaw, Timothy I. ; Russell, Helen R. ; McKinnon, Peter J.</creator><creatorcontrib>Aditi ; Downing, Susanna M. ; Schreiner, Patrick A. ; Kwak, Young Don ; Li, Yang ; Shaw, Timothy I. ; Russell, Helen R. ; McKinnon, Peter J.</creatorcontrib><description>Aicardi-Goutières syndrome (AGS) is a monogenic type I interferonopathy characterized by neurodevelopmental defects and upregulation of type I interferon signaling and neuroinflammation. Mutations in genes that function in nucleic acid metabolism, including RNASEH2, are linked to AGS. Ribonuclease H2 (RNASEH2) is a genome surveillance factor critical for DNA integrity by removing ribonucleotides incorporated into replicating DNA. Here we show that RNASEH2 is necessary for neurogenesis and to avoid activation of interferon-responsive genes and neuroinflammation. Cerebellar defects after RNASEH2B inactivation are rescued by p53 but not cGAS deletion, suggesting that DNA damage signaling, not neuroinflammation, accounts for neuropathology. Coincident inactivation of Atm and Rnaseh2 further affected cerebellar development causing ataxia, which was dependent upon aberrant activation of non-homologous end-joining (NHEJ). The loss of ATM also markedly exacerbates cGAS-dependent type I interferon signaling. Thus, DNA damage-dependent signaling rather than type I interferon signaling underlies neurodegeneration in this class of neurodevelopmental/neuroinflammatory disease. •RNASEH2 is necessary for neurogenesis and prevention of neuroinflammation•ATM suppresses the neural impact of Rnaseh2 inactivation•Neuropathology from disabled RNASEH2B is rescued by p53 but not cGAS inactivation Mutations in RNASEH2 are linked to Aicardi-Goutières syndrome. Aditi et al. show that RNASEH2 is necessary for neurogenesis and to avoid activation of interferon-responsive genes. These defects are rescued by p53 but not cGAS inactivation, suggesting that DNA damage signaling, not neuroinflammation, accounts for neuropathology in this class of disease.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2021.09.040</identifier><identifier>PMID: 34655526</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aicardi-Goutières syndrome ; ATM ; Cerebellum ; cGAS/STING ; DNA damage ; DNA Repair ; Genomic Instability ; Humans ; Interferon Type I ; Microglia ; Neurodegeneration ; Neurodevelopment ; Neuroinflammation ; Ribonuclease H - genetics ; Ribonuclease H - metabolism ; Ribonucleotides ; RNaseH2</subject><ispartof>Neuron (Cambridge, Mass.), 2021-12, Vol.109 (24), p.3962-3979.e6</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-67f18a37da36b07351f3c672e353f60d3023282b3533bcdbcc8d5f423cfbf6023</citedby><cites>FETCH-LOGICAL-c463t-67f18a37da36b07351f3c672e353f60d3023282b3533bcdbcc8d5f423cfbf6023</cites><orcidid>0000-0002-0485-3778 ; 0000-0001-5391-2642</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627321007133$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34655526$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aditi</creatorcontrib><creatorcontrib>Downing, Susanna M.</creatorcontrib><creatorcontrib>Schreiner, Patrick A.</creatorcontrib><creatorcontrib>Kwak, Young Don</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Shaw, Timothy I.</creatorcontrib><creatorcontrib>Russell, Helen R.</creatorcontrib><creatorcontrib>McKinnon, Peter J.</creatorcontrib><title>Genome instability independent of type I interferon signaling drives neuropathology caused by impaired ribonucleotide excision repair</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Aicardi-Goutières syndrome (AGS) is a monogenic type I interferonopathy characterized by neurodevelopmental defects and upregulation of type I interferon signaling and neuroinflammation. Mutations in genes that function in nucleic acid metabolism, including RNASEH2, are linked to AGS. Ribonuclease H2 (RNASEH2) is a genome surveillance factor critical for DNA integrity by removing ribonucleotides incorporated into replicating DNA. Here we show that RNASEH2 is necessary for neurogenesis and to avoid activation of interferon-responsive genes and neuroinflammation. Cerebellar defects after RNASEH2B inactivation are rescued by p53 but not cGAS deletion, suggesting that DNA damage signaling, not neuroinflammation, accounts for neuropathology. Coincident inactivation of Atm and Rnaseh2 further affected cerebellar development causing ataxia, which was dependent upon aberrant activation of non-homologous end-joining (NHEJ). The loss of ATM also markedly exacerbates cGAS-dependent type I interferon signaling. Thus, DNA damage-dependent signaling rather than type I interferon signaling underlies neurodegeneration in this class of neurodevelopmental/neuroinflammatory disease. •RNASEH2 is necessary for neurogenesis and prevention of neuroinflammation•ATM suppresses the neural impact of Rnaseh2 inactivation•Neuropathology from disabled RNASEH2B is rescued by p53 but not cGAS inactivation Mutations in RNASEH2 are linked to Aicardi-Goutières syndrome. Aditi et al. show that RNASEH2 is necessary for neurogenesis and to avoid activation of interferon-responsive genes. These defects are rescued by p53 but not cGAS inactivation, suggesting that DNA damage signaling, not neuroinflammation, accounts for neuropathology in this class of disease.</description><subject>Aicardi-Goutières syndrome</subject><subject>ATM</subject><subject>Cerebellum</subject><subject>cGAS/STING</subject><subject>DNA damage</subject><subject>DNA Repair</subject><subject>Genomic Instability</subject><subject>Humans</subject><subject>Interferon Type I</subject><subject>Microglia</subject><subject>Neurodegeneration</subject><subject>Neurodevelopment</subject><subject>Neuroinflammation</subject><subject>Ribonuclease H - genetics</subject><subject>Ribonuclease H - metabolism</subject><subject>Ribonucleotides</subject><subject>RNaseH2</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1v1DAQtRAVXQr_ACEfuST4I3GSCxKqoFSq1Et7tvwx2XqV2MF2VuwP6P_Gy5YCFy722PPmvZl5CL2jpKaEio-72sMag68ZYbQmQ00a8gJtKBm6qqHD8BJtSD-ISrCOn6PXKe0IoU070FfonDeibVsmNujxCnyYATufstJucvlQYgsLlMNnHEacDwvg6_KbIY5QFHFyW68m57fYRreHhH91sqj8EKawPWCj1gQW60I1L8rFEkeng1_NBCE7Cxh-GJdcoYpwBLxBZ6OaErx9ui_Q_dcvd5ffqpvbq-vLzzeVaQTPlehG2iveWcWFJh1v6ciN6Bjwlo-CWE4YZz3T5cm1sdqY3rZjw7gZdckzfoE-nXiXVc9gTZkwqkku0c0qHmRQTv6b8e5BbsNe9qIXYiCF4MMTQQzfV0hZzi4ZmCblIaxJsrZnPRl42xVoc4KaGFKKMD7LUCKPDsqdPDkojw5KMsjiYCl7_3eLz0W_LfszA5RF7R1EmYwDb8CWRZssbXD_V_gJOb-0GQ</recordid><startdate>20211215</startdate><enddate>20211215</enddate><creator>Aditi</creator><creator>Downing, Susanna M.</creator><creator>Schreiner, Patrick A.</creator><creator>Kwak, Young Don</creator><creator>Li, Yang</creator><creator>Shaw, Timothy I.</creator><creator>Russell, Helen R.</creator><creator>McKinnon, Peter J.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0485-3778</orcidid><orcidid>https://orcid.org/0000-0001-5391-2642</orcidid></search><sort><creationdate>20211215</creationdate><title>Genome instability independent of type I interferon signaling drives neuropathology caused by impaired ribonucleotide excision repair</title><author>Aditi ; Downing, Susanna M. ; Schreiner, Patrick A. ; Kwak, Young Don ; Li, Yang ; Shaw, Timothy I. ; Russell, Helen R. ; McKinnon, Peter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-67f18a37da36b07351f3c672e353f60d3023282b3533bcdbcc8d5f423cfbf6023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aicardi-Goutières syndrome</topic><topic>ATM</topic><topic>Cerebellum</topic><topic>cGAS/STING</topic><topic>DNA damage</topic><topic>DNA Repair</topic><topic>Genomic Instability</topic><topic>Humans</topic><topic>Interferon Type I</topic><topic>Microglia</topic><topic>Neurodegeneration</topic><topic>Neurodevelopment</topic><topic>Neuroinflammation</topic><topic>Ribonuclease H - genetics</topic><topic>Ribonuclease H - metabolism</topic><topic>Ribonucleotides</topic><topic>RNaseH2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aditi</creatorcontrib><creatorcontrib>Downing, Susanna M.</creatorcontrib><creatorcontrib>Schreiner, Patrick A.</creatorcontrib><creatorcontrib>Kwak, Young Don</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Shaw, Timothy I.</creatorcontrib><creatorcontrib>Russell, Helen R.</creatorcontrib><creatorcontrib>McKinnon, Peter J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aditi</au><au>Downing, Susanna M.</au><au>Schreiner, Patrick A.</au><au>Kwak, Young Don</au><au>Li, Yang</au><au>Shaw, Timothy I.</au><au>Russell, Helen R.</au><au>McKinnon, Peter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome instability independent of type I interferon signaling drives neuropathology caused by impaired ribonucleotide excision repair</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2021-12-15</date><risdate>2021</risdate><volume>109</volume><issue>24</issue><spage>3962</spage><epage>3979.e6</epage><pages>3962-3979.e6</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Aicardi-Goutières syndrome (AGS) is a monogenic type I interferonopathy characterized by neurodevelopmental defects and upregulation of type I interferon signaling and neuroinflammation. Mutations in genes that function in nucleic acid metabolism, including RNASEH2, are linked to AGS. Ribonuclease H2 (RNASEH2) is a genome surveillance factor critical for DNA integrity by removing ribonucleotides incorporated into replicating DNA. Here we show that RNASEH2 is necessary for neurogenesis and to avoid activation of interferon-responsive genes and neuroinflammation. Cerebellar defects after RNASEH2B inactivation are rescued by p53 but not cGAS deletion, suggesting that DNA damage signaling, not neuroinflammation, accounts for neuropathology. Coincident inactivation of Atm and Rnaseh2 further affected cerebellar development causing ataxia, which was dependent upon aberrant activation of non-homologous end-joining (NHEJ). The loss of ATM also markedly exacerbates cGAS-dependent type I interferon signaling. Thus, DNA damage-dependent signaling rather than type I interferon signaling underlies neurodegeneration in this class of neurodevelopmental/neuroinflammatory disease. •RNASEH2 is necessary for neurogenesis and prevention of neuroinflammation•ATM suppresses the neural impact of Rnaseh2 inactivation•Neuropathology from disabled RNASEH2B is rescued by p53 but not cGAS inactivation Mutations in RNASEH2 are linked to Aicardi-Goutières syndrome. Aditi et al. show that RNASEH2 is necessary for neurogenesis and to avoid activation of interferon-responsive genes. These defects are rescued by p53 but not cGAS inactivation, suggesting that DNA damage signaling, not neuroinflammation, accounts for neuropathology in this class of disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34655526</pmid><doi>10.1016/j.neuron.2021.09.040</doi><orcidid>https://orcid.org/0000-0002-0485-3778</orcidid><orcidid>https://orcid.org/0000-0001-5391-2642</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2021-12, Vol.109 (24), p.3962-3979.e6
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8686690
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Aicardi-Goutières syndrome
ATM
Cerebellum
cGAS/STING
DNA damage
DNA Repair
Genomic Instability
Humans
Interferon Type I
Microglia
Neurodegeneration
Neurodevelopment
Neuroinflammation
Ribonuclease H - genetics
Ribonuclease H - metabolism
Ribonucleotides
RNaseH2
title Genome instability independent of type I interferon signaling drives neuropathology caused by impaired ribonucleotide excision repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%20instability%20independent%20of%20type%20I%20interferon%20signaling%20drives%20neuropathology%20caused%20by%20impaired%20ribonucleotide%20excision%20repair&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Aditi&rft.date=2021-12-15&rft.volume=109&rft.issue=24&rft.spage=3962&rft.epage=3979.e6&rft.pages=3962-3979.e6&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2021.09.040&rft_dat=%3Cproquest_pubme%3E2582809357%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582809357&rft_id=info:pmid/34655526&rft_els_id=S0896627321007133&rfr_iscdi=true