Genome instability independent of type I interferon signaling drives neuropathology caused by impaired ribonucleotide excision repair
Aicardi-Goutières syndrome (AGS) is a monogenic type I interferonopathy characterized by neurodevelopmental defects and upregulation of type I interferon signaling and neuroinflammation. Mutations in genes that function in nucleic acid metabolism, including RNASEH2, are linked to AGS. Ribonuclease H...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2021-12, Vol.109 (24), p.3962-3979.e6 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3979.e6 |
---|---|
container_issue | 24 |
container_start_page | 3962 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 109 |
creator | Aditi Downing, Susanna M. Schreiner, Patrick A. Kwak, Young Don Li, Yang Shaw, Timothy I. Russell, Helen R. McKinnon, Peter J. |
description | Aicardi-Goutières syndrome (AGS) is a monogenic type I interferonopathy characterized by neurodevelopmental defects and upregulation of type I interferon signaling and neuroinflammation. Mutations in genes that function in nucleic acid metabolism, including RNASEH2, are linked to AGS. Ribonuclease H2 (RNASEH2) is a genome surveillance factor critical for DNA integrity by removing ribonucleotides incorporated into replicating DNA. Here we show that RNASEH2 is necessary for neurogenesis and to avoid activation of interferon-responsive genes and neuroinflammation. Cerebellar defects after RNASEH2B inactivation are rescued by p53 but not cGAS deletion, suggesting that DNA damage signaling, not neuroinflammation, accounts for neuropathology. Coincident inactivation of Atm and Rnaseh2 further affected cerebellar development causing ataxia, which was dependent upon aberrant activation of non-homologous end-joining (NHEJ). The loss of ATM also markedly exacerbates cGAS-dependent type I interferon signaling. Thus, DNA damage-dependent signaling rather than type I interferon signaling underlies neurodegeneration in this class of neurodevelopmental/neuroinflammatory disease.
•RNASEH2 is necessary for neurogenesis and prevention of neuroinflammation•ATM suppresses the neural impact of Rnaseh2 inactivation•Neuropathology from disabled RNASEH2B is rescued by p53 but not cGAS inactivation
Mutations in RNASEH2 are linked to Aicardi-Goutières syndrome. Aditi et al. show that RNASEH2 is necessary for neurogenesis and to avoid activation of interferon-responsive genes. These defects are rescued by p53 but not cGAS inactivation, suggesting that DNA damage signaling, not neuroinflammation, accounts for neuropathology in this class of disease. |
doi_str_mv | 10.1016/j.neuron.2021.09.040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8686690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627321007133</els_id><sourcerecordid>2582809357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-67f18a37da36b07351f3c672e353f60d3023282b3533bcdbcc8d5f423cfbf6023</originalsourceid><addsrcrecordid>eNp9UU1v1DAQtRAVXQr_ACEfuST4I3GSCxKqoFSq1Et7tvwx2XqV2MF2VuwP6P_Gy5YCFy722PPmvZl5CL2jpKaEio-72sMag68ZYbQmQ00a8gJtKBm6qqHD8BJtSD-ISrCOn6PXKe0IoU070FfonDeibVsmNujxCnyYATufstJucvlQYgsLlMNnHEacDwvg6_KbIY5QFHFyW68m57fYRreHhH91sqj8EKawPWCj1gQW60I1L8rFEkeng1_NBCE7Cxh-GJdcoYpwBLxBZ6OaErx9ui_Q_dcvd5ffqpvbq-vLzzeVaQTPlehG2iveWcWFJh1v6ciN6Bjwlo-CWE4YZz3T5cm1sdqY3rZjw7gZdckzfoE-nXiXVc9gTZkwqkku0c0qHmRQTv6b8e5BbsNe9qIXYiCF4MMTQQzfV0hZzi4ZmCblIaxJsrZnPRl42xVoc4KaGFKKMD7LUCKPDsqdPDkojw5KMsjiYCl7_3eLz0W_LfszA5RF7R1EmYwDb8CWRZssbXD_V_gJOb-0GQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582809357</pqid></control><display><type>article</type><title>Genome instability independent of type I interferon signaling drives neuropathology caused by impaired ribonucleotide excision repair</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Aditi ; Downing, Susanna M. ; Schreiner, Patrick A. ; Kwak, Young Don ; Li, Yang ; Shaw, Timothy I. ; Russell, Helen R. ; McKinnon, Peter J.</creator><creatorcontrib>Aditi ; Downing, Susanna M. ; Schreiner, Patrick A. ; Kwak, Young Don ; Li, Yang ; Shaw, Timothy I. ; Russell, Helen R. ; McKinnon, Peter J.</creatorcontrib><description>Aicardi-Goutières syndrome (AGS) is a monogenic type I interferonopathy characterized by neurodevelopmental defects and upregulation of type I interferon signaling and neuroinflammation. Mutations in genes that function in nucleic acid metabolism, including RNASEH2, are linked to AGS. Ribonuclease H2 (RNASEH2) is a genome surveillance factor critical for DNA integrity by removing ribonucleotides incorporated into replicating DNA. Here we show that RNASEH2 is necessary for neurogenesis and to avoid activation of interferon-responsive genes and neuroinflammation. Cerebellar defects after RNASEH2B inactivation are rescued by p53 but not cGAS deletion, suggesting that DNA damage signaling, not neuroinflammation, accounts for neuropathology. Coincident inactivation of Atm and Rnaseh2 further affected cerebellar development causing ataxia, which was dependent upon aberrant activation of non-homologous end-joining (NHEJ). The loss of ATM also markedly exacerbates cGAS-dependent type I interferon signaling. Thus, DNA damage-dependent signaling rather than type I interferon signaling underlies neurodegeneration in this class of neurodevelopmental/neuroinflammatory disease.
•RNASEH2 is necessary for neurogenesis and prevention of neuroinflammation•ATM suppresses the neural impact of Rnaseh2 inactivation•Neuropathology from disabled RNASEH2B is rescued by p53 but not cGAS inactivation
Mutations in RNASEH2 are linked to Aicardi-Goutières syndrome. Aditi et al. show that RNASEH2 is necessary for neurogenesis and to avoid activation of interferon-responsive genes. These defects are rescued by p53 but not cGAS inactivation, suggesting that DNA damage signaling, not neuroinflammation, accounts for neuropathology in this class of disease.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2021.09.040</identifier><identifier>PMID: 34655526</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aicardi-Goutières syndrome ; ATM ; Cerebellum ; cGAS/STING ; DNA damage ; DNA Repair ; Genomic Instability ; Humans ; Interferon Type I ; Microglia ; Neurodegeneration ; Neurodevelopment ; Neuroinflammation ; Ribonuclease H - genetics ; Ribonuclease H - metabolism ; Ribonucleotides ; RNaseH2</subject><ispartof>Neuron (Cambridge, Mass.), 2021-12, Vol.109 (24), p.3962-3979.e6</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-67f18a37da36b07351f3c672e353f60d3023282b3533bcdbcc8d5f423cfbf6023</citedby><cites>FETCH-LOGICAL-c463t-67f18a37da36b07351f3c672e353f60d3023282b3533bcdbcc8d5f423cfbf6023</cites><orcidid>0000-0002-0485-3778 ; 0000-0001-5391-2642</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627321007133$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34655526$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aditi</creatorcontrib><creatorcontrib>Downing, Susanna M.</creatorcontrib><creatorcontrib>Schreiner, Patrick A.</creatorcontrib><creatorcontrib>Kwak, Young Don</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Shaw, Timothy I.</creatorcontrib><creatorcontrib>Russell, Helen R.</creatorcontrib><creatorcontrib>McKinnon, Peter J.</creatorcontrib><title>Genome instability independent of type I interferon signaling drives neuropathology caused by impaired ribonucleotide excision repair</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Aicardi-Goutières syndrome (AGS) is a monogenic type I interferonopathy characterized by neurodevelopmental defects and upregulation of type I interferon signaling and neuroinflammation. Mutations in genes that function in nucleic acid metabolism, including RNASEH2, are linked to AGS. Ribonuclease H2 (RNASEH2) is a genome surveillance factor critical for DNA integrity by removing ribonucleotides incorporated into replicating DNA. Here we show that RNASEH2 is necessary for neurogenesis and to avoid activation of interferon-responsive genes and neuroinflammation. Cerebellar defects after RNASEH2B inactivation are rescued by p53 but not cGAS deletion, suggesting that DNA damage signaling, not neuroinflammation, accounts for neuropathology. Coincident inactivation of Atm and Rnaseh2 further affected cerebellar development causing ataxia, which was dependent upon aberrant activation of non-homologous end-joining (NHEJ). The loss of ATM also markedly exacerbates cGAS-dependent type I interferon signaling. Thus, DNA damage-dependent signaling rather than type I interferon signaling underlies neurodegeneration in this class of neurodevelopmental/neuroinflammatory disease.
•RNASEH2 is necessary for neurogenesis and prevention of neuroinflammation•ATM suppresses the neural impact of Rnaseh2 inactivation•Neuropathology from disabled RNASEH2B is rescued by p53 but not cGAS inactivation
Mutations in RNASEH2 are linked to Aicardi-Goutières syndrome. Aditi et al. show that RNASEH2 is necessary for neurogenesis and to avoid activation of interferon-responsive genes. These defects are rescued by p53 but not cGAS inactivation, suggesting that DNA damage signaling, not neuroinflammation, accounts for neuropathology in this class of disease.</description><subject>Aicardi-Goutières syndrome</subject><subject>ATM</subject><subject>Cerebellum</subject><subject>cGAS/STING</subject><subject>DNA damage</subject><subject>DNA Repair</subject><subject>Genomic Instability</subject><subject>Humans</subject><subject>Interferon Type I</subject><subject>Microglia</subject><subject>Neurodegeneration</subject><subject>Neurodevelopment</subject><subject>Neuroinflammation</subject><subject>Ribonuclease H - genetics</subject><subject>Ribonuclease H - metabolism</subject><subject>Ribonucleotides</subject><subject>RNaseH2</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1v1DAQtRAVXQr_ACEfuST4I3GSCxKqoFSq1Et7tvwx2XqV2MF2VuwP6P_Gy5YCFy722PPmvZl5CL2jpKaEio-72sMag68ZYbQmQ00a8gJtKBm6qqHD8BJtSD-ISrCOn6PXKe0IoU070FfonDeibVsmNujxCnyYATufstJucvlQYgsLlMNnHEacDwvg6_KbIY5QFHFyW68m57fYRreHhH91sqj8EKawPWCj1gQW60I1L8rFEkeng1_NBCE7Cxh-GJdcoYpwBLxBZ6OaErx9ui_Q_dcvd5ffqpvbq-vLzzeVaQTPlehG2iveWcWFJh1v6ciN6Bjwlo-CWE4YZz3T5cm1sdqY3rZjw7gZdckzfoE-nXiXVc9gTZkwqkku0c0qHmRQTv6b8e5BbsNe9qIXYiCF4MMTQQzfV0hZzi4ZmCblIaxJsrZnPRl42xVoc4KaGFKKMD7LUCKPDsqdPDkojw5KMsjiYCl7_3eLz0W_LfszA5RF7R1EmYwDb8CWRZssbXD_V_gJOb-0GQ</recordid><startdate>20211215</startdate><enddate>20211215</enddate><creator>Aditi</creator><creator>Downing, Susanna M.</creator><creator>Schreiner, Patrick A.</creator><creator>Kwak, Young Don</creator><creator>Li, Yang</creator><creator>Shaw, Timothy I.</creator><creator>Russell, Helen R.</creator><creator>McKinnon, Peter J.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0485-3778</orcidid><orcidid>https://orcid.org/0000-0001-5391-2642</orcidid></search><sort><creationdate>20211215</creationdate><title>Genome instability independent of type I interferon signaling drives neuropathology caused by impaired ribonucleotide excision repair</title><author>Aditi ; Downing, Susanna M. ; Schreiner, Patrick A. ; Kwak, Young Don ; Li, Yang ; Shaw, Timothy I. ; Russell, Helen R. ; McKinnon, Peter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-67f18a37da36b07351f3c672e353f60d3023282b3533bcdbcc8d5f423cfbf6023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aicardi-Goutières syndrome</topic><topic>ATM</topic><topic>Cerebellum</topic><topic>cGAS/STING</topic><topic>DNA damage</topic><topic>DNA Repair</topic><topic>Genomic Instability</topic><topic>Humans</topic><topic>Interferon Type I</topic><topic>Microglia</topic><topic>Neurodegeneration</topic><topic>Neurodevelopment</topic><topic>Neuroinflammation</topic><topic>Ribonuclease H - genetics</topic><topic>Ribonuclease H - metabolism</topic><topic>Ribonucleotides</topic><topic>RNaseH2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aditi</creatorcontrib><creatorcontrib>Downing, Susanna M.</creatorcontrib><creatorcontrib>Schreiner, Patrick A.</creatorcontrib><creatorcontrib>Kwak, Young Don</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Shaw, Timothy I.</creatorcontrib><creatorcontrib>Russell, Helen R.</creatorcontrib><creatorcontrib>McKinnon, Peter J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aditi</au><au>Downing, Susanna M.</au><au>Schreiner, Patrick A.</au><au>Kwak, Young Don</au><au>Li, Yang</au><au>Shaw, Timothy I.</au><au>Russell, Helen R.</au><au>McKinnon, Peter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome instability independent of type I interferon signaling drives neuropathology caused by impaired ribonucleotide excision repair</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2021-12-15</date><risdate>2021</risdate><volume>109</volume><issue>24</issue><spage>3962</spage><epage>3979.e6</epage><pages>3962-3979.e6</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Aicardi-Goutières syndrome (AGS) is a monogenic type I interferonopathy characterized by neurodevelopmental defects and upregulation of type I interferon signaling and neuroinflammation. Mutations in genes that function in nucleic acid metabolism, including RNASEH2, are linked to AGS. Ribonuclease H2 (RNASEH2) is a genome surveillance factor critical for DNA integrity by removing ribonucleotides incorporated into replicating DNA. Here we show that RNASEH2 is necessary for neurogenesis and to avoid activation of interferon-responsive genes and neuroinflammation. Cerebellar defects after RNASEH2B inactivation are rescued by p53 but not cGAS deletion, suggesting that DNA damage signaling, not neuroinflammation, accounts for neuropathology. Coincident inactivation of Atm and Rnaseh2 further affected cerebellar development causing ataxia, which was dependent upon aberrant activation of non-homologous end-joining (NHEJ). The loss of ATM also markedly exacerbates cGAS-dependent type I interferon signaling. Thus, DNA damage-dependent signaling rather than type I interferon signaling underlies neurodegeneration in this class of neurodevelopmental/neuroinflammatory disease.
•RNASEH2 is necessary for neurogenesis and prevention of neuroinflammation•ATM suppresses the neural impact of Rnaseh2 inactivation•Neuropathology from disabled RNASEH2B is rescued by p53 but not cGAS inactivation
Mutations in RNASEH2 are linked to Aicardi-Goutières syndrome. Aditi et al. show that RNASEH2 is necessary for neurogenesis and to avoid activation of interferon-responsive genes. These defects are rescued by p53 but not cGAS inactivation, suggesting that DNA damage signaling, not neuroinflammation, accounts for neuropathology in this class of disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34655526</pmid><doi>10.1016/j.neuron.2021.09.040</doi><orcidid>https://orcid.org/0000-0002-0485-3778</orcidid><orcidid>https://orcid.org/0000-0001-5391-2642</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2021-12, Vol.109 (24), p.3962-3979.e6 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8686690 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Aicardi-Goutières syndrome ATM Cerebellum cGAS/STING DNA damage DNA Repair Genomic Instability Humans Interferon Type I Microglia Neurodegeneration Neurodevelopment Neuroinflammation Ribonuclease H - genetics Ribonuclease H - metabolism Ribonucleotides RNaseH2 |
title | Genome instability independent of type I interferon signaling drives neuropathology caused by impaired ribonucleotide excision repair |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%20instability%20independent%20of%20type%20I%20interferon%20signaling%20drives%20neuropathology%20caused%20by%20impaired%20ribonucleotide%20excision%20repair&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Aditi&rft.date=2021-12-15&rft.volume=109&rft.issue=24&rft.spage=3962&rft.epage=3979.e6&rft.pages=3962-3979.e6&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2021.09.040&rft_dat=%3Cproquest_pubme%3E2582809357%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582809357&rft_id=info:pmid/34655526&rft_els_id=S0896627321007133&rfr_iscdi=true |