Cytotoxic potentials of biologically fabricated platinum nanoparticles from Streptomyces sp. on MCF-7 breast cancer cells
Biosynthesis of novel therapeutic nano-scale materials for biomedical and pharmaceutical applications has been enormously developed, since last decade. Herein, the authors report an ecological way of synthesising the platinum nanoparticles (PtNPs) using Streptomyces sp. for the first time. The produ...
Gespeichert in:
Veröffentlicht in: | IET nanobiotechnology 2017-04, Vol.11 (3), p.241-246 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 246 |
---|---|
container_issue | 3 |
container_start_page | 241 |
container_title | IET nanobiotechnology |
container_volume | 11 |
creator | Baskaran, Balraj Muthukumarasamy, Arulmozhi Chidambaram, Siva Sugumaran, Abimanyu Ramachandran, Krithikadevi Rasu Manimuthu, Thaneswari |
description | Biosynthesis of novel therapeutic nano-scale materials for biomedical and pharmaceutical applications has been enormously developed, since last decade. Herein, the authors report an ecological way of synthesising the platinum nanoparticles (PtNPs) using Streptomyces sp. for the first time. The produced PtNPs exhibited the face centred cubic system. The fourier transform infrared spectrum revealed the existence of amino acids in proteins which serves as an essential reductant for the formation of PtNPs. The spherical morphology of the PtNPs with an average size of 20–50 nm was observed from topographical images of atomic force microscopy and field emission scanning electron microscopy. The X-ray fluorescence spectrum confirms the presence of PtNPs with higher purity. The PtNPs size was further confirmed with transmission electron microscopy analysis and the particles were found to exist in the same size regime. Additionally, PtNPs showed the characteristic surface plasmon resonance peak at 262 nm. Dynamic light scattering studies report that 97.2% of particles were |
doi_str_mv | 10.1049/iet-nbt.2016.0040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8676093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904205235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5881-e4e1b3c75be1e3b94ef6a624d953f9b0e5289c886bfb49efe952b69fed13161f3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSMEon_gA3BBPsIhi-3Eic0Bia66UKnAgUXiZtnOuLhK4tT2QvPtcbRlVSRQTx7Zv_dmxq8oXhC8IrgWbxykctRpRTFpVhjX-FFxTFpGSt6y748PdU2OipMYrzFmjFX8aXFEed02guPjYl7PySd_6wyafIIxOdVH5C3Szvf-yhnV9zOySodcJujQ1Kvkxt2ARjX6SYXkTA8R2eAH9DUFmJIfZpNv4rRCfkSf1puyRTqAigkZNRoIyEDfx2fFE5t7wfO787T4tjnfrj-Wl18-XKzfX5aGcU5KqIHoyrRMA4FKixpsoxpad4JVVmgMjHJhOG-01bUAC4JR3QgLHalIQ2x1Wrzb-047PUBn8o5B9XIKblBhll45-ffL6H7IK_9T8qZtsKiywas7g-BvdhCTHFxcVlAj-F2UROCaYkYr9jDKBeG8ats6o2SPmuBjDGAPExEsl3RlTlfmdOWSrlzSzZqX91c5KP7EmYG3e-CX62F-2FF-PtvSsw3GlJIsfr0XL9i134UxxyIvzrcLdU8zdcunlv9g_z_5b4XJ08A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891883774</pqid></control><display><type>article</type><title>Cytotoxic potentials of biologically fabricated platinum nanoparticles from Streptomyces sp. on MCF-7 breast cancer cells</title><source>Wiley-Blackwell Open Access Titles</source><creator>Baskaran, Balraj ; Muthukumarasamy, Arulmozhi ; Chidambaram, Siva ; Sugumaran, Abimanyu ; Ramachandran, Krithikadevi ; Rasu Manimuthu, Thaneswari</creator><creatorcontrib>Baskaran, Balraj ; Muthukumarasamy, Arulmozhi ; Chidambaram, Siva ; Sugumaran, Abimanyu ; Ramachandran, Krithikadevi ; Rasu Manimuthu, Thaneswari</creatorcontrib><description>Biosynthesis of novel therapeutic nano-scale materials for biomedical and pharmaceutical applications has been enormously developed, since last decade. Herein, the authors report an ecological way of synthesising the platinum nanoparticles (PtNPs) using Streptomyces sp. for the first time. The produced PtNPs exhibited the face centred cubic system. The fourier transform infrared spectrum revealed the existence of amino acids in proteins which serves as an essential reductant for the formation of PtNPs. The spherical morphology of the PtNPs with an average size of 20–50 nm was observed from topographical images of atomic force microscopy and field emission scanning electron microscopy. The X-ray fluorescence spectrum confirms the presence of PtNPs with higher purity. The PtNPs size was further confirmed with transmission electron microscopy analysis and the particles were found to exist in the same size regime. Additionally, PtNPs showed the characteristic surface plasmon resonance peak at 262 nm. Dynamic light scattering studies report that 97.2% of particles were <100 nm, with an average particle diameter of about 45 nm. Furthermore, 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-tetrazolium assay based in vitro cytotoxicity analysis was conducted for the PtNPs, which showed the inhibitory concentration (IC50) at 31.2 µg/ml against Michigan Cancer Foundation-7 breast cancer cells.</description><identifier>ISSN: 1751-8741</identifier><identifier>ISSN: 1751-875X</identifier><identifier>EISSN: 1751-875X</identifier><identifier>DOI: 10.1049/iet-nbt.2016.0040</identifier><identifier>PMID: 28476980</identifier><language>eng</language><publisher>United States: The Institution of Engineering and Technology</publisher><subject>3‐(4, 5‐dimethyl‐2‐thiazolyl)‐2, 5‐diphenyl‐tetrazolium assay ; amino acids ; Antineoplastic Agents - administration & dosage ; Antineoplastic Agents - chemical synthesis ; Apoptosis - drug effects ; atomic force microscopy ; Biological Products - administration & dosage ; Biological Products - chemical synthesis ; biologically fabricated platinum nanoparticles ; biomedical applications ; biomedical materials ; biosynthesis ; Breast ; Cancer ; Cell-Free System ; cellular biophysics ; cytotoxic potentials ; cytotoxicity analysis ; Dose-Response Relationship, Drug ; dynamic light scattering ; Field emission ; field emission scanning electron microscopy ; fluorescence ; Fourier transform infrared spectra ; Fourier transform infrared spectrum ; Green Chemistry Technology - methods ; Humans ; light scattering ; materials preparation ; Materials Testing ; MCF-7 Cells ; MCF‐7 breast cancer cells ; Metal Nanoparticles - administration & dosage ; microorganisms ; nanofabrication ; nanomedicine ; Nanoparticles ; Nanostructure ; Particle physics ; Particle Size ; pharmaceutical applications ; Platinum ; Platinum - administration & dosage ; proteins ; Research Article ; scanning electron microscopy ; spherical morphology ; Streptomyces ; Streptomyces - drug effects ; Streptomyces - physiology ; Streptomyces sp ; surface plasmon resonance ; therapeutic nanoscale materials ; topographical images ; Toxicity ; transmission electron microscopy ; transmission electron microscopy analysis ; Treatment Outcome ; X‐ray fluorescence spectrum</subject><ispartof>IET nanobiotechnology, 2017-04, Vol.11 (3), p.241-246</ispartof><rights>The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5881-e4e1b3c75be1e3b94ef6a624d953f9b0e5289c886bfb49efe952b69fed13161f3</citedby><cites>FETCH-LOGICAL-c5881-e4e1b3c75be1e3b94ef6a624d953f9b0e5289c886bfb49efe952b69fed13161f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8676093/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8676093/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,1412,11543,27905,27906,45555,45556,46033,46457,53772,53774</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-nbt.2016.0040$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28476980$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baskaran, Balraj</creatorcontrib><creatorcontrib>Muthukumarasamy, Arulmozhi</creatorcontrib><creatorcontrib>Chidambaram, Siva</creatorcontrib><creatorcontrib>Sugumaran, Abimanyu</creatorcontrib><creatorcontrib>Ramachandran, Krithikadevi</creatorcontrib><creatorcontrib>Rasu Manimuthu, Thaneswari</creatorcontrib><title>Cytotoxic potentials of biologically fabricated platinum nanoparticles from Streptomyces sp. on MCF-7 breast cancer cells</title><title>IET nanobiotechnology</title><addtitle>IET Nanobiotechnol</addtitle><description>Biosynthesis of novel therapeutic nano-scale materials for biomedical and pharmaceutical applications has been enormously developed, since last decade. Herein, the authors report an ecological way of synthesising the platinum nanoparticles (PtNPs) using Streptomyces sp. for the first time. The produced PtNPs exhibited the face centred cubic system. The fourier transform infrared spectrum revealed the existence of amino acids in proteins which serves as an essential reductant for the formation of PtNPs. The spherical morphology of the PtNPs with an average size of 20–50 nm was observed from topographical images of atomic force microscopy and field emission scanning electron microscopy. The X-ray fluorescence spectrum confirms the presence of PtNPs with higher purity. The PtNPs size was further confirmed with transmission electron microscopy analysis and the particles were found to exist in the same size regime. Additionally, PtNPs showed the characteristic surface plasmon resonance peak at 262 nm. Dynamic light scattering studies report that 97.2% of particles were <100 nm, with an average particle diameter of about 45 nm. Furthermore, 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-tetrazolium assay based in vitro cytotoxicity analysis was conducted for the PtNPs, which showed the inhibitory concentration (IC50) at 31.2 µg/ml against Michigan Cancer Foundation-7 breast cancer cells.</description><subject>3‐(4, 5‐dimethyl‐2‐thiazolyl)‐2, 5‐diphenyl‐tetrazolium assay</subject><subject>amino acids</subject><subject>Antineoplastic Agents - administration & dosage</subject><subject>Antineoplastic Agents - chemical synthesis</subject><subject>Apoptosis - drug effects</subject><subject>atomic force microscopy</subject><subject>Biological Products - administration & dosage</subject><subject>Biological Products - chemical synthesis</subject><subject>biologically fabricated platinum nanoparticles</subject><subject>biomedical applications</subject><subject>biomedical materials</subject><subject>biosynthesis</subject><subject>Breast</subject><subject>Cancer</subject><subject>Cell-Free System</subject><subject>cellular biophysics</subject><subject>cytotoxic potentials</subject><subject>cytotoxicity analysis</subject><subject>Dose-Response Relationship, Drug</subject><subject>dynamic light scattering</subject><subject>Field emission</subject><subject>field emission scanning electron microscopy</subject><subject>fluorescence</subject><subject>Fourier transform infrared spectra</subject><subject>Fourier transform infrared spectrum</subject><subject>Green Chemistry Technology - methods</subject><subject>Humans</subject><subject>light scattering</subject><subject>materials preparation</subject><subject>Materials Testing</subject><subject>MCF-7 Cells</subject><subject>MCF‐7 breast cancer cells</subject><subject>Metal Nanoparticles - administration & dosage</subject><subject>microorganisms</subject><subject>nanofabrication</subject><subject>nanomedicine</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Particle physics</subject><subject>Particle Size</subject><subject>pharmaceutical applications</subject><subject>Platinum</subject><subject>Platinum - administration & dosage</subject><subject>proteins</subject><subject>Research Article</subject><subject>scanning electron microscopy</subject><subject>spherical morphology</subject><subject>Streptomyces</subject><subject>Streptomyces - drug effects</subject><subject>Streptomyces - physiology</subject><subject>Streptomyces sp</subject><subject>surface plasmon resonance</subject><subject>therapeutic nanoscale materials</subject><subject>topographical images</subject><subject>Toxicity</subject><subject>transmission electron microscopy</subject><subject>transmission electron microscopy analysis</subject><subject>Treatment Outcome</subject><subject>X‐ray fluorescence spectrum</subject><issn>1751-8741</issn><issn>1751-875X</issn><issn>1751-875X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxSMEon_gA3BBPsIhi-3Eic0Bia66UKnAgUXiZtnOuLhK4tT2QvPtcbRlVSRQTx7Zv_dmxq8oXhC8IrgWbxykctRpRTFpVhjX-FFxTFpGSt6y748PdU2OipMYrzFmjFX8aXFEed02guPjYl7PySd_6wyafIIxOdVH5C3Szvf-yhnV9zOySodcJujQ1Kvkxt2ARjX6SYXkTA8R2eAH9DUFmJIfZpNv4rRCfkSf1puyRTqAigkZNRoIyEDfx2fFE5t7wfO787T4tjnfrj-Wl18-XKzfX5aGcU5KqIHoyrRMA4FKixpsoxpad4JVVmgMjHJhOG-01bUAC4JR3QgLHalIQ2x1Wrzb-047PUBn8o5B9XIKblBhll45-ffL6H7IK_9T8qZtsKiywas7g-BvdhCTHFxcVlAj-F2UROCaYkYr9jDKBeG8ats6o2SPmuBjDGAPExEsl3RlTlfmdOWSrlzSzZqX91c5KP7EmYG3e-CX62F-2FF-PtvSsw3GlJIsfr0XL9i134UxxyIvzrcLdU8zdcunlv9g_z_5b4XJ08A</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Baskaran, Balraj</creator><creator>Muthukumarasamy, Arulmozhi</creator><creator>Chidambaram, Siva</creator><creator>Sugumaran, Abimanyu</creator><creator>Ramachandran, Krithikadevi</creator><creator>Rasu Manimuthu, Thaneswari</creator><general>The Institution of Engineering and Technology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7SP</scope><scope>7U5</scope><scope>F28</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>201704</creationdate><title>Cytotoxic potentials of biologically fabricated platinum nanoparticles from Streptomyces sp. on MCF-7 breast cancer cells</title><author>Baskaran, Balraj ; Muthukumarasamy, Arulmozhi ; Chidambaram, Siva ; Sugumaran, Abimanyu ; Ramachandran, Krithikadevi ; Rasu Manimuthu, Thaneswari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5881-e4e1b3c75be1e3b94ef6a624d953f9b0e5289c886bfb49efe952b69fed13161f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>3‐(4, 5‐dimethyl‐2‐thiazolyl)‐2, 5‐diphenyl‐tetrazolium assay</topic><topic>amino acids</topic><topic>Antineoplastic Agents - administration & dosage</topic><topic>Antineoplastic Agents - chemical synthesis</topic><topic>Apoptosis - drug effects</topic><topic>atomic force microscopy</topic><topic>Biological Products - administration & dosage</topic><topic>Biological Products - chemical synthesis</topic><topic>biologically fabricated platinum nanoparticles</topic><topic>biomedical applications</topic><topic>biomedical materials</topic><topic>biosynthesis</topic><topic>Breast</topic><topic>Cancer</topic><topic>Cell-Free System</topic><topic>cellular biophysics</topic><topic>cytotoxic potentials</topic><topic>cytotoxicity analysis</topic><topic>Dose-Response Relationship, Drug</topic><topic>dynamic light scattering</topic><topic>Field emission</topic><topic>field emission scanning electron microscopy</topic><topic>fluorescence</topic><topic>Fourier transform infrared spectra</topic><topic>Fourier transform infrared spectrum</topic><topic>Green Chemistry Technology - methods</topic><topic>Humans</topic><topic>light scattering</topic><topic>materials preparation</topic><topic>Materials Testing</topic><topic>MCF-7 Cells</topic><topic>MCF‐7 breast cancer cells</topic><topic>Metal Nanoparticles - administration & dosage</topic><topic>microorganisms</topic><topic>nanofabrication</topic><topic>nanomedicine</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Particle physics</topic><topic>Particle Size</topic><topic>pharmaceutical applications</topic><topic>Platinum</topic><topic>Platinum - administration & dosage</topic><topic>proteins</topic><topic>Research Article</topic><topic>scanning electron microscopy</topic><topic>spherical morphology</topic><topic>Streptomyces</topic><topic>Streptomyces - drug effects</topic><topic>Streptomyces - physiology</topic><topic>Streptomyces sp</topic><topic>surface plasmon resonance</topic><topic>therapeutic nanoscale materials</topic><topic>topographical images</topic><topic>Toxicity</topic><topic>transmission electron microscopy</topic><topic>transmission electron microscopy analysis</topic><topic>Treatment Outcome</topic><topic>X‐ray fluorescence spectrum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baskaran, Balraj</creatorcontrib><creatorcontrib>Muthukumarasamy, Arulmozhi</creatorcontrib><creatorcontrib>Chidambaram, Siva</creatorcontrib><creatorcontrib>Sugumaran, Abimanyu</creatorcontrib><creatorcontrib>Ramachandran, Krithikadevi</creatorcontrib><creatorcontrib>Rasu Manimuthu, Thaneswari</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IET nanobiotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baskaran, Balraj</au><au>Muthukumarasamy, Arulmozhi</au><au>Chidambaram, Siva</au><au>Sugumaran, Abimanyu</au><au>Ramachandran, Krithikadevi</au><au>Rasu Manimuthu, Thaneswari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cytotoxic potentials of biologically fabricated platinum nanoparticles from Streptomyces sp. on MCF-7 breast cancer cells</atitle><jtitle>IET nanobiotechnology</jtitle><addtitle>IET Nanobiotechnol</addtitle><date>2017-04</date><risdate>2017</risdate><volume>11</volume><issue>3</issue><spage>241</spage><epage>246</epage><pages>241-246</pages><issn>1751-8741</issn><issn>1751-875X</issn><eissn>1751-875X</eissn><abstract>Biosynthesis of novel therapeutic nano-scale materials for biomedical and pharmaceutical applications has been enormously developed, since last decade. Herein, the authors report an ecological way of synthesising the platinum nanoparticles (PtNPs) using Streptomyces sp. for the first time. The produced PtNPs exhibited the face centred cubic system. The fourier transform infrared spectrum revealed the existence of amino acids in proteins which serves as an essential reductant for the formation of PtNPs. The spherical morphology of the PtNPs with an average size of 20–50 nm was observed from topographical images of atomic force microscopy and field emission scanning electron microscopy. The X-ray fluorescence spectrum confirms the presence of PtNPs with higher purity. The PtNPs size was further confirmed with transmission electron microscopy analysis and the particles were found to exist in the same size regime. Additionally, PtNPs showed the characteristic surface plasmon resonance peak at 262 nm. Dynamic light scattering studies report that 97.2% of particles were <100 nm, with an average particle diameter of about 45 nm. Furthermore, 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-tetrazolium assay based in vitro cytotoxicity analysis was conducted for the PtNPs, which showed the inhibitory concentration (IC50) at 31.2 µg/ml against Michigan Cancer Foundation-7 breast cancer cells.</abstract><cop>United States</cop><pub>The Institution of Engineering and Technology</pub><pmid>28476980</pmid><doi>10.1049/iet-nbt.2016.0040</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1751-8741 |
ispartof | IET nanobiotechnology, 2017-04, Vol.11 (3), p.241-246 |
issn | 1751-8741 1751-875X 1751-875X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8676093 |
source | Wiley-Blackwell Open Access Titles |
subjects | 3‐(4, 5‐dimethyl‐2‐thiazolyl)‐2, 5‐diphenyl‐tetrazolium assay amino acids Antineoplastic Agents - administration & dosage Antineoplastic Agents - chemical synthesis Apoptosis - drug effects atomic force microscopy Biological Products - administration & dosage Biological Products - chemical synthesis biologically fabricated platinum nanoparticles biomedical applications biomedical materials biosynthesis Breast Cancer Cell-Free System cellular biophysics cytotoxic potentials cytotoxicity analysis Dose-Response Relationship, Drug dynamic light scattering Field emission field emission scanning electron microscopy fluorescence Fourier transform infrared spectra Fourier transform infrared spectrum Green Chemistry Technology - methods Humans light scattering materials preparation Materials Testing MCF-7 Cells MCF‐7 breast cancer cells Metal Nanoparticles - administration & dosage microorganisms nanofabrication nanomedicine Nanoparticles Nanostructure Particle physics Particle Size pharmaceutical applications Platinum Platinum - administration & dosage proteins Research Article scanning electron microscopy spherical morphology Streptomyces Streptomyces - drug effects Streptomyces - physiology Streptomyces sp surface plasmon resonance therapeutic nanoscale materials topographical images Toxicity transmission electron microscopy transmission electron microscopy analysis Treatment Outcome X‐ray fluorescence spectrum |
title | Cytotoxic potentials of biologically fabricated platinum nanoparticles from Streptomyces sp. on MCF-7 breast cancer cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A17%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cytotoxic%20potentials%20of%20biologically%20fabricated%20platinum%20nanoparticles%20from%20Streptomyces%20sp.%20on%20MCF-7%20breast%20cancer%20cells&rft.jtitle=IET%20nanobiotechnology&rft.au=Baskaran,%20Balraj&rft.date=2017-04&rft.volume=11&rft.issue=3&rft.spage=241&rft.epage=246&rft.pages=241-246&rft.issn=1751-8741&rft.eissn=1751-875X&rft_id=info:doi/10.1049/iet-nbt.2016.0040&rft_dat=%3Cproquest_24P%3E1904205235%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891883774&rft_id=info:pmid/28476980&rfr_iscdi=true |