Optimal control of the SIR model with constrained policy, with an application to COVID-19
This article considers the optimal control of the SIR model with both transmission and treatment uncertainty. It follows the model presented in Gatto and Schellhorn (2021). We make four significant improvements on the latter paper. First, we prove the existence of a solution to the model. Second, ou...
Gespeichert in:
Veröffentlicht in: | Mathematical biosciences 2022-02, Vol.344, p.108758-108758, Article 108758 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108758 |
---|---|
container_issue | |
container_start_page | 108758 |
container_title | Mathematical biosciences |
container_volume | 344 |
creator | Ding, Yujia Schellhorn, Henry |
description | This article considers the optimal control of the SIR model with both transmission and treatment uncertainty. It follows the model presented in Gatto and Schellhorn (2021). We make four significant improvements on the latter paper. First, we prove the existence of a solution to the model. Second, our interpretation of the control is more realistic: while in Gatto and Schellhorn (2021) the control α is the proportion of the population that takes a basic dose of treatment, so that α>1 occurs only if some patients take more than a basic dose, in our paper, α is constrained between zero and one, and represents thus the proportion of the population undergoing treatment. Third, we provide a complete solution for the moderate infection regime (with constant treatment). Finally, we give a thorough interpretation of the control in the moderate infection regime, while Gatto and Schellhorn (2021) focused on the interpretation of the low infection regime. Finally, we compare the efficiency of our control to curb the COVID-19 epidemic to other types of control.
•The optimal treatment policy is the same with or without rationing constraints, provided the maximum treatment quantity is not reached.•We provide full formulae for the optimal treatment policy in the moderate infection regime with constant treatment effectiveness.•The optimal policy is showed to yield better results in the COVID-19 pandemic. |
doi_str_mv | 10.1016/j.mbs.2021.108758 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8675184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025556421001565</els_id><sourcerecordid>2638767507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-66f14abddd59cfd241b4e6deb43d3dce1d9275827e7f04af2b36e024cd28a82b3</originalsourceid><addsrcrecordid>eNp9kV-L1DAUxYMo7uzqB_BFAr74YMfcNE1bBEHGVQcWBvwHPoU0uXUytE1NMiv77c3QdVEffAo353cPOTmEPAG2Bgby5WE9dnHNGYc8N3XV3CMraOq2KKEU98mKMV4VVSXFGTmP8cAY1ADyITkrRct5W8sV-babkxv1QI2fUvAD9T1Ne6Sfth_p6C0O9KdL-5MaU9BuQktnPzhz82IR9ET1POcLnZyfaPJ0s_u6fVtA-4g86PUQ8fHteUG-vLv8vPlQXO3ebzdvrgojSkiFlD0I3Vlrq9b0lgvoBEqLnShtaQ2CbXlOxmuseyZ0z7tSIuPCWN7oJk8X5PXiOx-7EfNGzqEHNYccK9wor536W5ncXn3316qRdQWNyAbPbw2C_3HEmNToosFh0BP6Y1RcAmeiFeKEPvsHPfhjmHK8TJVNnR1ZnSlYKBN8jAH7u8cAU6fi1EHl4tSpOLUUl3ee_pnibuN3Uxl4tQCY__LaYVDROJwMWhfQJGW9-4_9L57UqPs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638767507</pqid></control><display><type>article</type><title>Optimal control of the SIR model with constrained policy, with an application to COVID-19</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ding, Yujia ; Schellhorn, Henry</creator><creatorcontrib>Ding, Yujia ; Schellhorn, Henry</creatorcontrib><description>This article considers the optimal control of the SIR model with both transmission and treatment uncertainty. It follows the model presented in Gatto and Schellhorn (2021). We make four significant improvements on the latter paper. First, we prove the existence of a solution to the model. Second, our interpretation of the control is more realistic: while in Gatto and Schellhorn (2021) the control α is the proportion of the population that takes a basic dose of treatment, so that α>1 occurs only if some patients take more than a basic dose, in our paper, α is constrained between zero and one, and represents thus the proportion of the population undergoing treatment. Third, we provide a complete solution for the moderate infection regime (with constant treatment). Finally, we give a thorough interpretation of the control in the moderate infection regime, while Gatto and Schellhorn (2021) focused on the interpretation of the low infection regime. Finally, we compare the efficiency of our control to curb the COVID-19 epidemic to other types of control.
•The optimal treatment policy is the same with or without rationing constraints, provided the maximum treatment quantity is not reached.•We provide full formulae for the optimal treatment policy in the moderate infection regime with constant treatment effectiveness.•The optimal policy is showed to yield better results in the COVID-19 pandemic.</description><identifier>ISSN: 0025-5564</identifier><identifier>EISSN: 1879-3134</identifier><identifier>DOI: 10.1016/j.mbs.2021.108758</identifier><identifier>PMID: 34922976</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Coronaviruses ; COVID-19 ; Disease transmission ; Epidemic models ; Epidemics ; Epidemiological Models ; Epidemiology ; Humans ; Infections ; Mathematical models ; Optimal control ; Original ; Policy ; Population control ; SARS-CoV-2 ; SIR model ; Stochastic optimal control ; Viral diseases</subject><ispartof>Mathematical biosciences, 2022-02, Vol.344, p.108758-108758, Article 108758</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Science Ltd. Feb 2022</rights><rights>2021 Elsevier Inc. All rights reserved. 2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c431t-66f14abddd59cfd241b4e6deb43d3dce1d9275827e7f04af2b36e024cd28a82b3</cites><orcidid>0000-0002-2762-4652 ; 0000-0002-8322-9219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0025556421001565$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34922976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Yujia</creatorcontrib><creatorcontrib>Schellhorn, Henry</creatorcontrib><title>Optimal control of the SIR model with constrained policy, with an application to COVID-19</title><title>Mathematical biosciences</title><addtitle>Math Biosci</addtitle><description>This article considers the optimal control of the SIR model with both transmission and treatment uncertainty. It follows the model presented in Gatto and Schellhorn (2021). We make four significant improvements on the latter paper. First, we prove the existence of a solution to the model. Second, our interpretation of the control is more realistic: while in Gatto and Schellhorn (2021) the control α is the proportion of the population that takes a basic dose of treatment, so that α>1 occurs only if some patients take more than a basic dose, in our paper, α is constrained between zero and one, and represents thus the proportion of the population undergoing treatment. Third, we provide a complete solution for the moderate infection regime (with constant treatment). Finally, we give a thorough interpretation of the control in the moderate infection regime, while Gatto and Schellhorn (2021) focused on the interpretation of the low infection regime. Finally, we compare the efficiency of our control to curb the COVID-19 epidemic to other types of control.
•The optimal treatment policy is the same with or without rationing constraints, provided the maximum treatment quantity is not reached.•We provide full formulae for the optimal treatment policy in the moderate infection regime with constant treatment effectiveness.•The optimal policy is showed to yield better results in the COVID-19 pandemic.</description><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Disease transmission</subject><subject>Epidemic models</subject><subject>Epidemics</subject><subject>Epidemiological Models</subject><subject>Epidemiology</subject><subject>Humans</subject><subject>Infections</subject><subject>Mathematical models</subject><subject>Optimal control</subject><subject>Original</subject><subject>Policy</subject><subject>Population control</subject><subject>SARS-CoV-2</subject><subject>SIR model</subject><subject>Stochastic optimal control</subject><subject>Viral diseases</subject><issn>0025-5564</issn><issn>1879-3134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV-L1DAUxYMo7uzqB_BFAr74YMfcNE1bBEHGVQcWBvwHPoU0uXUytE1NMiv77c3QdVEffAo353cPOTmEPAG2Bgby5WE9dnHNGYc8N3XV3CMraOq2KKEU98mKMV4VVSXFGTmP8cAY1ADyITkrRct5W8sV-babkxv1QI2fUvAD9T1Ne6Sfth_p6C0O9KdL-5MaU9BuQktnPzhz82IR9ET1POcLnZyfaPJ0s_u6fVtA-4g86PUQ8fHteUG-vLv8vPlQXO3ebzdvrgojSkiFlD0I3Vlrq9b0lgvoBEqLnShtaQ2CbXlOxmuseyZ0z7tSIuPCWN7oJk8X5PXiOx-7EfNGzqEHNYccK9wor536W5ncXn3316qRdQWNyAbPbw2C_3HEmNToosFh0BP6Y1RcAmeiFeKEPvsHPfhjmHK8TJVNnR1ZnSlYKBN8jAH7u8cAU6fi1EHl4tSpOLUUl3ee_pnibuN3Uxl4tQCY__LaYVDROJwMWhfQJGW9-4_9L57UqPs</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Ding, Yujia</creator><creator>Schellhorn, Henry</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7SN</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2762-4652</orcidid><orcidid>https://orcid.org/0000-0002-8322-9219</orcidid></search><sort><creationdate>20220201</creationdate><title>Optimal control of the SIR model with constrained policy, with an application to COVID-19</title><author>Ding, Yujia ; Schellhorn, Henry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-66f14abddd59cfd241b4e6deb43d3dce1d9275827e7f04af2b36e024cd28a82b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Disease transmission</topic><topic>Epidemic models</topic><topic>Epidemics</topic><topic>Epidemiological Models</topic><topic>Epidemiology</topic><topic>Humans</topic><topic>Infections</topic><topic>Mathematical models</topic><topic>Optimal control</topic><topic>Original</topic><topic>Policy</topic><topic>Population control</topic><topic>SARS-CoV-2</topic><topic>SIR model</topic><topic>Stochastic optimal control</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Yujia</creatorcontrib><creatorcontrib>Schellhorn, Henry</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ecology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Mathematical biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Yujia</au><au>Schellhorn, Henry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal control of the SIR model with constrained policy, with an application to COVID-19</atitle><jtitle>Mathematical biosciences</jtitle><addtitle>Math Biosci</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>344</volume><spage>108758</spage><epage>108758</epage><pages>108758-108758</pages><artnum>108758</artnum><issn>0025-5564</issn><eissn>1879-3134</eissn><abstract>This article considers the optimal control of the SIR model with both transmission and treatment uncertainty. It follows the model presented in Gatto and Schellhorn (2021). We make four significant improvements on the latter paper. First, we prove the existence of a solution to the model. Second, our interpretation of the control is more realistic: while in Gatto and Schellhorn (2021) the control α is the proportion of the population that takes a basic dose of treatment, so that α>1 occurs only if some patients take more than a basic dose, in our paper, α is constrained between zero and one, and represents thus the proportion of the population undergoing treatment. Third, we provide a complete solution for the moderate infection regime (with constant treatment). Finally, we give a thorough interpretation of the control in the moderate infection regime, while Gatto and Schellhorn (2021) focused on the interpretation of the low infection regime. Finally, we compare the efficiency of our control to curb the COVID-19 epidemic to other types of control.
•The optimal treatment policy is the same with or without rationing constraints, provided the maximum treatment quantity is not reached.•We provide full formulae for the optimal treatment policy in the moderate infection regime with constant treatment effectiveness.•The optimal policy is showed to yield better results in the COVID-19 pandemic.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34922976</pmid><doi>10.1016/j.mbs.2021.108758</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2762-4652</orcidid><orcidid>https://orcid.org/0000-0002-8322-9219</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5564 |
ispartof | Mathematical biosciences, 2022-02, Vol.344, p.108758-108758, Article 108758 |
issn | 0025-5564 1879-3134 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8675184 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Coronaviruses COVID-19 Disease transmission Epidemic models Epidemics Epidemiological Models Epidemiology Humans Infections Mathematical models Optimal control Original Policy Population control SARS-CoV-2 SIR model Stochastic optimal control Viral diseases |
title | Optimal control of the SIR model with constrained policy, with an application to COVID-19 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A42%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20control%20of%20the%20SIR%20model%20with%20constrained%20policy,%20with%20an%20application%20to%20COVID-19&rft.jtitle=Mathematical%20biosciences&rft.au=Ding,%20Yujia&rft.date=2022-02-01&rft.volume=344&rft.spage=108758&rft.epage=108758&rft.pages=108758-108758&rft.artnum=108758&rft.issn=0025-5564&rft.eissn=1879-3134&rft_id=info:doi/10.1016/j.mbs.2021.108758&rft_dat=%3Cproquest_pubme%3E2638767507%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638767507&rft_id=info:pmid/34922976&rft_els_id=S0025556421001565&rfr_iscdi=true |