Optimal control of the SIR model with constrained policy, with an application to COVID-19

This article considers the optimal control of the SIR model with both transmission and treatment uncertainty. It follows the model presented in Gatto and Schellhorn (2021). We make four significant improvements on the latter paper. First, we prove the existence of a solution to the model. Second, ou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical biosciences 2022-02, Vol.344, p.108758-108758, Article 108758
Hauptverfasser: Ding, Yujia, Schellhorn, Henry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108758
container_issue
container_start_page 108758
container_title Mathematical biosciences
container_volume 344
creator Ding, Yujia
Schellhorn, Henry
description This article considers the optimal control of the SIR model with both transmission and treatment uncertainty. It follows the model presented in Gatto and Schellhorn (2021). We make four significant improvements on the latter paper. First, we prove the existence of a solution to the model. Second, our interpretation of the control is more realistic: while in Gatto and Schellhorn (2021) the control α is the proportion of the population that takes a basic dose of treatment, so that α>1 occurs only if some patients take more than a basic dose, in our paper, α is constrained between zero and one, and represents thus the proportion of the population undergoing treatment. Third, we provide a complete solution for the moderate infection regime (with constant treatment). Finally, we give a thorough interpretation of the control in the moderate infection regime, while Gatto and Schellhorn (2021) focused on the interpretation of the low infection regime. Finally, we compare the efficiency of our control to curb the COVID-19 epidemic to other types of control. •The optimal treatment policy is the same with or without rationing constraints, provided the maximum treatment quantity is not reached.•We provide full formulae for the optimal treatment policy in the moderate infection regime with constant treatment effectiveness.•The optimal policy is showed to yield better results in the COVID-19 pandemic.
doi_str_mv 10.1016/j.mbs.2021.108758
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8675184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025556421001565</els_id><sourcerecordid>2638767507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-66f14abddd59cfd241b4e6deb43d3dce1d9275827e7f04af2b36e024cd28a82b3</originalsourceid><addsrcrecordid>eNp9kV-L1DAUxYMo7uzqB_BFAr74YMfcNE1bBEHGVQcWBvwHPoU0uXUytE1NMiv77c3QdVEffAo353cPOTmEPAG2Bgby5WE9dnHNGYc8N3XV3CMraOq2KKEU98mKMV4VVSXFGTmP8cAY1ADyITkrRct5W8sV-babkxv1QI2fUvAD9T1Ne6Sfth_p6C0O9KdL-5MaU9BuQktnPzhz82IR9ET1POcLnZyfaPJ0s_u6fVtA-4g86PUQ8fHteUG-vLv8vPlQXO3ebzdvrgojSkiFlD0I3Vlrq9b0lgvoBEqLnShtaQ2CbXlOxmuseyZ0z7tSIuPCWN7oJk8X5PXiOx-7EfNGzqEHNYccK9wor536W5ncXn3316qRdQWNyAbPbw2C_3HEmNToosFh0BP6Y1RcAmeiFeKEPvsHPfhjmHK8TJVNnR1ZnSlYKBN8jAH7u8cAU6fi1EHl4tSpOLUUl3ee_pnibuN3Uxl4tQCY__LaYVDROJwMWhfQJGW9-4_9L57UqPs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638767507</pqid></control><display><type>article</type><title>Optimal control of the SIR model with constrained policy, with an application to COVID-19</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ding, Yujia ; Schellhorn, Henry</creator><creatorcontrib>Ding, Yujia ; Schellhorn, Henry</creatorcontrib><description>This article considers the optimal control of the SIR model with both transmission and treatment uncertainty. It follows the model presented in Gatto and Schellhorn (2021). We make four significant improvements on the latter paper. First, we prove the existence of a solution to the model. Second, our interpretation of the control is more realistic: while in Gatto and Schellhorn (2021) the control α is the proportion of the population that takes a basic dose of treatment, so that α&gt;1 occurs only if some patients take more than a basic dose, in our paper, α is constrained between zero and one, and represents thus the proportion of the population undergoing treatment. Third, we provide a complete solution for the moderate infection regime (with constant treatment). Finally, we give a thorough interpretation of the control in the moderate infection regime, while Gatto and Schellhorn (2021) focused on the interpretation of the low infection regime. Finally, we compare the efficiency of our control to curb the COVID-19 epidemic to other types of control. •The optimal treatment policy is the same with or without rationing constraints, provided the maximum treatment quantity is not reached.•We provide full formulae for the optimal treatment policy in the moderate infection regime with constant treatment effectiveness.•The optimal policy is showed to yield better results in the COVID-19 pandemic.</description><identifier>ISSN: 0025-5564</identifier><identifier>EISSN: 1879-3134</identifier><identifier>DOI: 10.1016/j.mbs.2021.108758</identifier><identifier>PMID: 34922976</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Coronaviruses ; COVID-19 ; Disease transmission ; Epidemic models ; Epidemics ; Epidemiological Models ; Epidemiology ; Humans ; Infections ; Mathematical models ; Optimal control ; Original ; Policy ; Population control ; SARS-CoV-2 ; SIR model ; Stochastic optimal control ; Viral diseases</subject><ispartof>Mathematical biosciences, 2022-02, Vol.344, p.108758-108758, Article 108758</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Science Ltd. Feb 2022</rights><rights>2021 Elsevier Inc. All rights reserved. 2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c431t-66f14abddd59cfd241b4e6deb43d3dce1d9275827e7f04af2b36e024cd28a82b3</cites><orcidid>0000-0002-2762-4652 ; 0000-0002-8322-9219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0025556421001565$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34922976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Yujia</creatorcontrib><creatorcontrib>Schellhorn, Henry</creatorcontrib><title>Optimal control of the SIR model with constrained policy, with an application to COVID-19</title><title>Mathematical biosciences</title><addtitle>Math Biosci</addtitle><description>This article considers the optimal control of the SIR model with both transmission and treatment uncertainty. It follows the model presented in Gatto and Schellhorn (2021). We make four significant improvements on the latter paper. First, we prove the existence of a solution to the model. Second, our interpretation of the control is more realistic: while in Gatto and Schellhorn (2021) the control α is the proportion of the population that takes a basic dose of treatment, so that α&gt;1 occurs only if some patients take more than a basic dose, in our paper, α is constrained between zero and one, and represents thus the proportion of the population undergoing treatment. Third, we provide a complete solution for the moderate infection regime (with constant treatment). Finally, we give a thorough interpretation of the control in the moderate infection regime, while Gatto and Schellhorn (2021) focused on the interpretation of the low infection regime. Finally, we compare the efficiency of our control to curb the COVID-19 epidemic to other types of control. •The optimal treatment policy is the same with or without rationing constraints, provided the maximum treatment quantity is not reached.•We provide full formulae for the optimal treatment policy in the moderate infection regime with constant treatment effectiveness.•The optimal policy is showed to yield better results in the COVID-19 pandemic.</description><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Disease transmission</subject><subject>Epidemic models</subject><subject>Epidemics</subject><subject>Epidemiological Models</subject><subject>Epidemiology</subject><subject>Humans</subject><subject>Infections</subject><subject>Mathematical models</subject><subject>Optimal control</subject><subject>Original</subject><subject>Policy</subject><subject>Population control</subject><subject>SARS-CoV-2</subject><subject>SIR model</subject><subject>Stochastic optimal control</subject><subject>Viral diseases</subject><issn>0025-5564</issn><issn>1879-3134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV-L1DAUxYMo7uzqB_BFAr74YMfcNE1bBEHGVQcWBvwHPoU0uXUytE1NMiv77c3QdVEffAo353cPOTmEPAG2Bgby5WE9dnHNGYc8N3XV3CMraOq2KKEU98mKMV4VVSXFGTmP8cAY1ADyITkrRct5W8sV-babkxv1QI2fUvAD9T1Ne6Sfth_p6C0O9KdL-5MaU9BuQktnPzhz82IR9ET1POcLnZyfaPJ0s_u6fVtA-4g86PUQ8fHteUG-vLv8vPlQXO3ebzdvrgojSkiFlD0I3Vlrq9b0lgvoBEqLnShtaQ2CbXlOxmuseyZ0z7tSIuPCWN7oJk8X5PXiOx-7EfNGzqEHNYccK9wor536W5ncXn3316qRdQWNyAbPbw2C_3HEmNToosFh0BP6Y1RcAmeiFeKEPvsHPfhjmHK8TJVNnR1ZnSlYKBN8jAH7u8cAU6fi1EHl4tSpOLUUl3ee_pnibuN3Uxl4tQCY__LaYVDROJwMWhfQJGW9-4_9L57UqPs</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Ding, Yujia</creator><creator>Schellhorn, Henry</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7SN</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2762-4652</orcidid><orcidid>https://orcid.org/0000-0002-8322-9219</orcidid></search><sort><creationdate>20220201</creationdate><title>Optimal control of the SIR model with constrained policy, with an application to COVID-19</title><author>Ding, Yujia ; Schellhorn, Henry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-66f14abddd59cfd241b4e6deb43d3dce1d9275827e7f04af2b36e024cd28a82b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Disease transmission</topic><topic>Epidemic models</topic><topic>Epidemics</topic><topic>Epidemiological Models</topic><topic>Epidemiology</topic><topic>Humans</topic><topic>Infections</topic><topic>Mathematical models</topic><topic>Optimal control</topic><topic>Original</topic><topic>Policy</topic><topic>Population control</topic><topic>SARS-CoV-2</topic><topic>SIR model</topic><topic>Stochastic optimal control</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Yujia</creatorcontrib><creatorcontrib>Schellhorn, Henry</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ecology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Mathematical biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Yujia</au><au>Schellhorn, Henry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal control of the SIR model with constrained policy, with an application to COVID-19</atitle><jtitle>Mathematical biosciences</jtitle><addtitle>Math Biosci</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>344</volume><spage>108758</spage><epage>108758</epage><pages>108758-108758</pages><artnum>108758</artnum><issn>0025-5564</issn><eissn>1879-3134</eissn><abstract>This article considers the optimal control of the SIR model with both transmission and treatment uncertainty. It follows the model presented in Gatto and Schellhorn (2021). We make four significant improvements on the latter paper. First, we prove the existence of a solution to the model. Second, our interpretation of the control is more realistic: while in Gatto and Schellhorn (2021) the control α is the proportion of the population that takes a basic dose of treatment, so that α&gt;1 occurs only if some patients take more than a basic dose, in our paper, α is constrained between zero and one, and represents thus the proportion of the population undergoing treatment. Third, we provide a complete solution for the moderate infection regime (with constant treatment). Finally, we give a thorough interpretation of the control in the moderate infection regime, while Gatto and Schellhorn (2021) focused on the interpretation of the low infection regime. Finally, we compare the efficiency of our control to curb the COVID-19 epidemic to other types of control. •The optimal treatment policy is the same with or without rationing constraints, provided the maximum treatment quantity is not reached.•We provide full formulae for the optimal treatment policy in the moderate infection regime with constant treatment effectiveness.•The optimal policy is showed to yield better results in the COVID-19 pandemic.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34922976</pmid><doi>10.1016/j.mbs.2021.108758</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2762-4652</orcidid><orcidid>https://orcid.org/0000-0002-8322-9219</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5564
ispartof Mathematical biosciences, 2022-02, Vol.344, p.108758-108758, Article 108758
issn 0025-5564
1879-3134
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8675184
source MEDLINE; Elsevier ScienceDirect Journals
subjects Coronaviruses
COVID-19
Disease transmission
Epidemic models
Epidemics
Epidemiological Models
Epidemiology
Humans
Infections
Mathematical models
Optimal control
Original
Policy
Population control
SARS-CoV-2
SIR model
Stochastic optimal control
Viral diseases
title Optimal control of the SIR model with constrained policy, with an application to COVID-19
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A42%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20control%20of%20the%20SIR%20model%20with%20constrained%20policy,%20with%20an%20application%20to%20COVID-19&rft.jtitle=Mathematical%20biosciences&rft.au=Ding,%20Yujia&rft.date=2022-02-01&rft.volume=344&rft.spage=108758&rft.epage=108758&rft.pages=108758-108758&rft.artnum=108758&rft.issn=0025-5564&rft.eissn=1879-3134&rft_id=info:doi/10.1016/j.mbs.2021.108758&rft_dat=%3Cproquest_pubme%3E2638767507%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638767507&rft_id=info:pmid/34922976&rft_els_id=S0025556421001565&rfr_iscdi=true