Enhancing Top-Down Proteomics of Brain Tissue with FAIMS
Proteomic investigations of Alzheimer’s and Parkinson’s disease have provided valuable insights into neurodegenerative disorders. Thus far, these investigations have largely been restricted to bottom-up approaches, hindering the degree to which one can characterize a protein’s “intact” state. Top-do...
Gespeichert in:
Veröffentlicht in: | Journal of proteome research 2021-05, Vol.20 (5), p.2780-2795 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2795 |
---|---|
container_issue | 5 |
container_start_page | 2780 |
container_title | Journal of proteome research |
container_volume | 20 |
creator | Fulcher, James M Makaju, Aman Moore, Ronald J Zhou, Mowei Bennett, David A De Jager, Philip L Qian, Wei-Jun Paša-Tolić, Ljiljana Petyuk, Vladislav A |
description | Proteomic investigations of Alzheimer’s and Parkinson’s disease have provided valuable insights into neurodegenerative disorders. Thus far, these investigations have largely been restricted to bottom-up approaches, hindering the degree to which one can characterize a protein’s “intact” state. Top-down proteomics (TDP) overcomes this limitation; however, it is typically limited to observing only the most abundant proteoforms and of a relatively small size. Therefore, fractionation techniques are commonly used to reduce sample complexity. Here, we investigate gas-phase fractionation through high-field asymmetric waveform ion mobility spectrometry (FAIMS) within TDP. Utilizing a high complexity sample derived from Alzheimer’s disease (AD) brain tissue, we describe how the addition of FAIMS to TDP can robustly improve the depth of proteome coverage. For example, implementation of FAIMS with external compensation voltage (CV) stepping at −50, −40, and −30 CV could more than double the mean number of non-redundant proteoforms, genes, and proteome sequence coverage compared to without FAIMS. We also found that FAIMS can influence the transmission of proteoforms and their charge envelopes based on their size. Importantly, FAIMS enabled the identification of intact amyloid beta (Aβ) proteoforms, including the aggregation-prone Aβ1–42 variant which is strongly linked to AD. Raw data and associated files have been deposited to the ProteomeXchange Consortium via the MassIVE data repository with data set identifier PXD023607. |
doi_str_mv | 10.1021/acs.jproteome.1c00049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8672206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2514595237</sourcerecordid><originalsourceid>FETCH-LOGICAL-a480t-c3d4dc9f4ca267a241b972176cd7f1d8341643e151aaceda000a2db6d4ad3df33</originalsourceid><addsrcrecordid>eNqFkc1uGyEUhVGUqvnrIyQaZdXNuFx-BmYTKXGdxFKqRqq7RhiYGMsGF2Zq9e0zydhWu-oKJM754PIhdAl4BJjAF23yaLlJsXVx7UZgMMasPkKnwCkvaY3F8X4va3qCznJeYgxcYPoRnVAqeSWBnCI5CQsdjA8vxSxuyq9xG4rngepNLmJT3CXtQzHzOXeu2Pp2UdzfTr_9uEAfGr3K7tNuPUc_7yez8WP59P1hOr59KjWTuC0NtcyaumFGk0powmBeCwKiMlY0YCVlUDHqgIPWxlndj6GJnVeWaUttQ-k5uhm4m26-dta40Ca9Upvk1zr9UVF79e9J8Av1En8rWQlCcNUDrgdAzK1X2fjWmYWJITjTKhBSUCz70OfdLSn-6lxu1dpn41YrHVzssiIcGK85oaKP8iFqUsw5uebwFsDqTY3q1aiDGrVT0_eu_h7k0Nq76AMwBN77sUuh_9f_QF8BQMOe8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2514595237</pqid></control><display><type>article</type><title>Enhancing Top-Down Proteomics of Brain Tissue with FAIMS</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Fulcher, James M ; Makaju, Aman ; Moore, Ronald J ; Zhou, Mowei ; Bennett, David A ; De Jager, Philip L ; Qian, Wei-Jun ; Paša-Tolić, Ljiljana ; Petyuk, Vladislav A</creator><creatorcontrib>Fulcher, James M ; Makaju, Aman ; Moore, Ronald J ; Zhou, Mowei ; Bennett, David A ; De Jager, Philip L ; Qian, Wei-Jun ; Paša-Tolić, Ljiljana ; Petyuk, Vladislav A ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Proteomic investigations of Alzheimer’s and Parkinson’s disease have provided valuable insights into neurodegenerative disorders. Thus far, these investigations have largely been restricted to bottom-up approaches, hindering the degree to which one can characterize a protein’s “intact” state. Top-down proteomics (TDP) overcomes this limitation; however, it is typically limited to observing only the most abundant proteoforms and of a relatively small size. Therefore, fractionation techniques are commonly used to reduce sample complexity. Here, we investigate gas-phase fractionation through high-field asymmetric waveform ion mobility spectrometry (FAIMS) within TDP. Utilizing a high complexity sample derived from Alzheimer’s disease (AD) brain tissue, we describe how the addition of FAIMS to TDP can robustly improve the depth of proteome coverage. For example, implementation of FAIMS with external compensation voltage (CV) stepping at −50, −40, and −30 CV could more than double the mean number of non-redundant proteoforms, genes, and proteome sequence coverage compared to without FAIMS. We also found that FAIMS can influence the transmission of proteoforms and their charge envelopes based on their size. Importantly, FAIMS enabled the identification of intact amyloid beta (Aβ) proteoforms, including the aggregation-prone Aβ1–42 variant which is strongly linked to AD. Raw data and associated files have been deposited to the ProteomeXchange Consortium via the MassIVE data repository with data set identifier PXD023607.</description><identifier>ISSN: 1535-3893</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/acs.jproteome.1c00049</identifier><identifier>PMID: 33856812</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Alzheimer’s ; Amyloid beta-Peptides ; BASIC BIOLOGICAL SCIENCES ; Brain ; Brain Chemistry ; brain tissue ; differential mobility spectrometry ; FAIMS ; ion mobility ; Ion Mobility Spectrometry ; Proteome ; Proteomics ; top-down proteomics</subject><ispartof>Journal of proteome research, 2021-05, Vol.20 (5), p.2780-2795</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a480t-c3d4dc9f4ca267a241b972176cd7f1d8341643e151aaceda000a2db6d4ad3df33</citedby><cites>FETCH-LOGICAL-a480t-c3d4dc9f4ca267a241b972176cd7f1d8341643e151aaceda000a2db6d4ad3df33</cites><orcidid>0000-0003-3575-3224 ; 0000-0002-5393-2827 ; 0000-0003-4076-151X ; 0000-0003-2806-2855 ; 0000-0001-9033-3623 ; 000000034076151X ; 0000000335753224 ; 0000000253932827 ; 0000000190333623 ; 0000000328062855</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jproteome.1c00049$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jproteome.1c00049$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33856812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1787308$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fulcher, James M</creatorcontrib><creatorcontrib>Makaju, Aman</creatorcontrib><creatorcontrib>Moore, Ronald J</creatorcontrib><creatorcontrib>Zhou, Mowei</creatorcontrib><creatorcontrib>Bennett, David A</creatorcontrib><creatorcontrib>De Jager, Philip L</creatorcontrib><creatorcontrib>Qian, Wei-Jun</creatorcontrib><creatorcontrib>Paša-Tolić, Ljiljana</creatorcontrib><creatorcontrib>Petyuk, Vladislav A</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Enhancing Top-Down Proteomics of Brain Tissue with FAIMS</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>Proteomic investigations of Alzheimer’s and Parkinson’s disease have provided valuable insights into neurodegenerative disorders. Thus far, these investigations have largely been restricted to bottom-up approaches, hindering the degree to which one can characterize a protein’s “intact” state. Top-down proteomics (TDP) overcomes this limitation; however, it is typically limited to observing only the most abundant proteoforms and of a relatively small size. Therefore, fractionation techniques are commonly used to reduce sample complexity. Here, we investigate gas-phase fractionation through high-field asymmetric waveform ion mobility spectrometry (FAIMS) within TDP. Utilizing a high complexity sample derived from Alzheimer’s disease (AD) brain tissue, we describe how the addition of FAIMS to TDP can robustly improve the depth of proteome coverage. For example, implementation of FAIMS with external compensation voltage (CV) stepping at −50, −40, and −30 CV could more than double the mean number of non-redundant proteoforms, genes, and proteome sequence coverage compared to without FAIMS. We also found that FAIMS can influence the transmission of proteoforms and their charge envelopes based on their size. Importantly, FAIMS enabled the identification of intact amyloid beta (Aβ) proteoforms, including the aggregation-prone Aβ1–42 variant which is strongly linked to AD. Raw data and associated files have been deposited to the ProteomeXchange Consortium via the MassIVE data repository with data set identifier PXD023607.</description><subject>Alzheimer’s</subject><subject>Amyloid beta-Peptides</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Brain</subject><subject>Brain Chemistry</subject><subject>brain tissue</subject><subject>differential mobility spectrometry</subject><subject>FAIMS</subject><subject>ion mobility</subject><subject>Ion Mobility Spectrometry</subject><subject>Proteome</subject><subject>Proteomics</subject><subject>top-down proteomics</subject><issn>1535-3893</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1uGyEUhVGUqvnrIyQaZdXNuFx-BmYTKXGdxFKqRqq7RhiYGMsGF2Zq9e0zydhWu-oKJM754PIhdAl4BJjAF23yaLlJsXVx7UZgMMasPkKnwCkvaY3F8X4va3qCznJeYgxcYPoRnVAqeSWBnCI5CQsdjA8vxSxuyq9xG4rngepNLmJT3CXtQzHzOXeu2Pp2UdzfTr_9uEAfGr3K7tNuPUc_7yez8WP59P1hOr59KjWTuC0NtcyaumFGk0powmBeCwKiMlY0YCVlUDHqgIPWxlndj6GJnVeWaUttQ-k5uhm4m26-dta40Ca9Upvk1zr9UVF79e9J8Av1En8rWQlCcNUDrgdAzK1X2fjWmYWJITjTKhBSUCz70OfdLSn-6lxu1dpn41YrHVzssiIcGK85oaKP8iFqUsw5uebwFsDqTY3q1aiDGrVT0_eu_h7k0Nq76AMwBN77sUuh_9f_QF8BQMOe8g</recordid><startdate>20210507</startdate><enddate>20210507</enddate><creator>Fulcher, James M</creator><creator>Makaju, Aman</creator><creator>Moore, Ronald J</creator><creator>Zhou, Mowei</creator><creator>Bennett, David A</creator><creator>De Jager, Philip L</creator><creator>Qian, Wei-Jun</creator><creator>Paša-Tolić, Ljiljana</creator><creator>Petyuk, Vladislav A</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3575-3224</orcidid><orcidid>https://orcid.org/0000-0002-5393-2827</orcidid><orcidid>https://orcid.org/0000-0003-4076-151X</orcidid><orcidid>https://orcid.org/0000-0003-2806-2855</orcidid><orcidid>https://orcid.org/0000-0001-9033-3623</orcidid><orcidid>https://orcid.org/000000034076151X</orcidid><orcidid>https://orcid.org/0000000335753224</orcidid><orcidid>https://orcid.org/0000000253932827</orcidid><orcidid>https://orcid.org/0000000190333623</orcidid><orcidid>https://orcid.org/0000000328062855</orcidid></search><sort><creationdate>20210507</creationdate><title>Enhancing Top-Down Proteomics of Brain Tissue with FAIMS</title><author>Fulcher, James M ; Makaju, Aman ; Moore, Ronald J ; Zhou, Mowei ; Bennett, David A ; De Jager, Philip L ; Qian, Wei-Jun ; Paša-Tolić, Ljiljana ; Petyuk, Vladislav A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a480t-c3d4dc9f4ca267a241b972176cd7f1d8341643e151aaceda000a2db6d4ad3df33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alzheimer’s</topic><topic>Amyloid beta-Peptides</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Brain</topic><topic>Brain Chemistry</topic><topic>brain tissue</topic><topic>differential mobility spectrometry</topic><topic>FAIMS</topic><topic>ion mobility</topic><topic>Ion Mobility Spectrometry</topic><topic>Proteome</topic><topic>Proteomics</topic><topic>top-down proteomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fulcher, James M</creatorcontrib><creatorcontrib>Makaju, Aman</creatorcontrib><creatorcontrib>Moore, Ronald J</creatorcontrib><creatorcontrib>Zhou, Mowei</creatorcontrib><creatorcontrib>Bennett, David A</creatorcontrib><creatorcontrib>De Jager, Philip L</creatorcontrib><creatorcontrib>Qian, Wei-Jun</creatorcontrib><creatorcontrib>Paša-Tolić, Ljiljana</creatorcontrib><creatorcontrib>Petyuk, Vladislav A</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fulcher, James M</au><au>Makaju, Aman</au><au>Moore, Ronald J</au><au>Zhou, Mowei</au><au>Bennett, David A</au><au>De Jager, Philip L</au><au>Qian, Wei-Jun</au><au>Paša-Tolić, Ljiljana</au><au>Petyuk, Vladislav A</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Top-Down Proteomics of Brain Tissue with FAIMS</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2021-05-07</date><risdate>2021</risdate><volume>20</volume><issue>5</issue><spage>2780</spage><epage>2795</epage><pages>2780-2795</pages><issn>1535-3893</issn><eissn>1535-3907</eissn><abstract>Proteomic investigations of Alzheimer’s and Parkinson’s disease have provided valuable insights into neurodegenerative disorders. Thus far, these investigations have largely been restricted to bottom-up approaches, hindering the degree to which one can characterize a protein’s “intact” state. Top-down proteomics (TDP) overcomes this limitation; however, it is typically limited to observing only the most abundant proteoforms and of a relatively small size. Therefore, fractionation techniques are commonly used to reduce sample complexity. Here, we investigate gas-phase fractionation through high-field asymmetric waveform ion mobility spectrometry (FAIMS) within TDP. Utilizing a high complexity sample derived from Alzheimer’s disease (AD) brain tissue, we describe how the addition of FAIMS to TDP can robustly improve the depth of proteome coverage. For example, implementation of FAIMS with external compensation voltage (CV) stepping at −50, −40, and −30 CV could more than double the mean number of non-redundant proteoforms, genes, and proteome sequence coverage compared to without FAIMS. We also found that FAIMS can influence the transmission of proteoforms and their charge envelopes based on their size. Importantly, FAIMS enabled the identification of intact amyloid beta (Aβ) proteoforms, including the aggregation-prone Aβ1–42 variant which is strongly linked to AD. Raw data and associated files have been deposited to the ProteomeXchange Consortium via the MassIVE data repository with data set identifier PXD023607.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33856812</pmid><doi>10.1021/acs.jproteome.1c00049</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3575-3224</orcidid><orcidid>https://orcid.org/0000-0002-5393-2827</orcidid><orcidid>https://orcid.org/0000-0003-4076-151X</orcidid><orcidid>https://orcid.org/0000-0003-2806-2855</orcidid><orcidid>https://orcid.org/0000-0001-9033-3623</orcidid><orcidid>https://orcid.org/000000034076151X</orcidid><orcidid>https://orcid.org/0000000335753224</orcidid><orcidid>https://orcid.org/0000000253932827</orcidid><orcidid>https://orcid.org/0000000190333623</orcidid><orcidid>https://orcid.org/0000000328062855</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-3893 |
ispartof | Journal of proteome research, 2021-05, Vol.20 (5), p.2780-2795 |
issn | 1535-3893 1535-3907 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8672206 |
source | MEDLINE; American Chemical Society Journals |
subjects | Alzheimer’s Amyloid beta-Peptides BASIC BIOLOGICAL SCIENCES Brain Brain Chemistry brain tissue differential mobility spectrometry FAIMS ion mobility Ion Mobility Spectrometry Proteome Proteomics top-down proteomics |
title | Enhancing Top-Down Proteomics of Brain Tissue with FAIMS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A57%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Top-Down%20Proteomics%20of%20Brain%20Tissue%20with%20FAIMS&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Fulcher,%20James%20M&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2021-05-07&rft.volume=20&rft.issue=5&rft.spage=2780&rft.epage=2795&rft.pages=2780-2795&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/acs.jproteome.1c00049&rft_dat=%3Cproquest_pubme%3E2514595237%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2514595237&rft_id=info:pmid/33856812&rfr_iscdi=true |