Enhancing Top-Down Proteomics of Brain Tissue with FAIMS

Proteomic investigations of Alzheimer’s and Parkinson’s disease have provided valuable insights into neurodegenerative disorders. Thus far, these investigations have largely been restricted to bottom-up approaches, hindering the degree to which one can characterize a protein’s “intact” state. Top-do...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of proteome research 2021-05, Vol.20 (5), p.2780-2795
Hauptverfasser: Fulcher, James M, Makaju, Aman, Moore, Ronald J, Zhou, Mowei, Bennett, David A, De Jager, Philip L, Qian, Wei-Jun, Paša-Tolić, Ljiljana, Petyuk, Vladislav A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2795
container_issue 5
container_start_page 2780
container_title Journal of proteome research
container_volume 20
creator Fulcher, James M
Makaju, Aman
Moore, Ronald J
Zhou, Mowei
Bennett, David A
De Jager, Philip L
Qian, Wei-Jun
Paša-Tolić, Ljiljana
Petyuk, Vladislav A
description Proteomic investigations of Alzheimer’s and Parkinson’s disease have provided valuable insights into neurodegenerative disorders. Thus far, these investigations have largely been restricted to bottom-up approaches, hindering the degree to which one can characterize a protein’s “intact” state. Top-down proteomics (TDP) overcomes this limitation; however, it is typically limited to observing only the most abundant proteoforms and of a relatively small size. Therefore, fractionation techniques are commonly used to reduce sample complexity. Here, we investigate gas-phase fractionation through high-field asymmetric waveform ion mobility spectrometry (FAIMS) within TDP. Utilizing a high complexity sample derived from Alzheimer’s disease (AD) brain tissue, we describe how the addition of FAIMS to TDP can robustly improve the depth of proteome coverage. For example, implementation of FAIMS with external compensation voltage (CV) stepping at −50, −40, and −30 CV could more than double the mean number of non-redundant proteoforms, genes, and proteome sequence coverage compared to without FAIMS. We also found that FAIMS can influence the transmission of proteoforms and their charge envelopes based on their size. Importantly, FAIMS enabled the identification of intact amyloid beta (Aβ) proteoforms, including the aggregation-prone Aβ1–42 variant which is strongly linked to AD. Raw data and associated files have been deposited to the ProteomeXchange Consortium via the MassIVE data repository with data set identifier PXD023607.
doi_str_mv 10.1021/acs.jproteome.1c00049
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8672206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2514595237</sourcerecordid><originalsourceid>FETCH-LOGICAL-a480t-c3d4dc9f4ca267a241b972176cd7f1d8341643e151aaceda000a2db6d4ad3df33</originalsourceid><addsrcrecordid>eNqFkc1uGyEUhVGUqvnrIyQaZdXNuFx-BmYTKXGdxFKqRqq7RhiYGMsGF2Zq9e0zydhWu-oKJM754PIhdAl4BJjAF23yaLlJsXVx7UZgMMasPkKnwCkvaY3F8X4va3qCznJeYgxcYPoRnVAqeSWBnCI5CQsdjA8vxSxuyq9xG4rngepNLmJT3CXtQzHzOXeu2Pp2UdzfTr_9uEAfGr3K7tNuPUc_7yez8WP59P1hOr59KjWTuC0NtcyaumFGk0powmBeCwKiMlY0YCVlUDHqgIPWxlndj6GJnVeWaUttQ-k5uhm4m26-dta40Ca9Upvk1zr9UVF79e9J8Av1En8rWQlCcNUDrgdAzK1X2fjWmYWJITjTKhBSUCz70OfdLSn-6lxu1dpn41YrHVzssiIcGK85oaKP8iFqUsw5uebwFsDqTY3q1aiDGrVT0_eu_h7k0Nq76AMwBN77sUuh_9f_QF8BQMOe8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2514595237</pqid></control><display><type>article</type><title>Enhancing Top-Down Proteomics of Brain Tissue with FAIMS</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Fulcher, James M ; Makaju, Aman ; Moore, Ronald J ; Zhou, Mowei ; Bennett, David A ; De Jager, Philip L ; Qian, Wei-Jun ; Paša-Tolić, Ljiljana ; Petyuk, Vladislav A</creator><creatorcontrib>Fulcher, James M ; Makaju, Aman ; Moore, Ronald J ; Zhou, Mowei ; Bennett, David A ; De Jager, Philip L ; Qian, Wei-Jun ; Paša-Tolić, Ljiljana ; Petyuk, Vladislav A ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Proteomic investigations of Alzheimer’s and Parkinson’s disease have provided valuable insights into neurodegenerative disorders. Thus far, these investigations have largely been restricted to bottom-up approaches, hindering the degree to which one can characterize a protein’s “intact” state. Top-down proteomics (TDP) overcomes this limitation; however, it is typically limited to observing only the most abundant proteoforms and of a relatively small size. Therefore, fractionation techniques are commonly used to reduce sample complexity. Here, we investigate gas-phase fractionation through high-field asymmetric waveform ion mobility spectrometry (FAIMS) within TDP. Utilizing a high complexity sample derived from Alzheimer’s disease (AD) brain tissue, we describe how the addition of FAIMS to TDP can robustly improve the depth of proteome coverage. For example, implementation of FAIMS with external compensation voltage (CV) stepping at −50, −40, and −30 CV could more than double the mean number of non-redundant proteoforms, genes, and proteome sequence coverage compared to without FAIMS. We also found that FAIMS can influence the transmission of proteoforms and their charge envelopes based on their size. Importantly, FAIMS enabled the identification of intact amyloid beta (Aβ) proteoforms, including the aggregation-prone Aβ1–42 variant which is strongly linked to AD. Raw data and associated files have been deposited to the ProteomeXchange Consortium via the MassIVE data repository with data set identifier PXD023607.</description><identifier>ISSN: 1535-3893</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/acs.jproteome.1c00049</identifier><identifier>PMID: 33856812</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Alzheimer’s ; Amyloid beta-Peptides ; BASIC BIOLOGICAL SCIENCES ; Brain ; Brain Chemistry ; brain tissue ; differential mobility spectrometry ; FAIMS ; ion mobility ; Ion Mobility Spectrometry ; Proteome ; Proteomics ; top-down proteomics</subject><ispartof>Journal of proteome research, 2021-05, Vol.20 (5), p.2780-2795</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a480t-c3d4dc9f4ca267a241b972176cd7f1d8341643e151aaceda000a2db6d4ad3df33</citedby><cites>FETCH-LOGICAL-a480t-c3d4dc9f4ca267a241b972176cd7f1d8341643e151aaceda000a2db6d4ad3df33</cites><orcidid>0000-0003-3575-3224 ; 0000-0002-5393-2827 ; 0000-0003-4076-151X ; 0000-0003-2806-2855 ; 0000-0001-9033-3623 ; 000000034076151X ; 0000000335753224 ; 0000000253932827 ; 0000000190333623 ; 0000000328062855</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jproteome.1c00049$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jproteome.1c00049$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33856812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1787308$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fulcher, James M</creatorcontrib><creatorcontrib>Makaju, Aman</creatorcontrib><creatorcontrib>Moore, Ronald J</creatorcontrib><creatorcontrib>Zhou, Mowei</creatorcontrib><creatorcontrib>Bennett, David A</creatorcontrib><creatorcontrib>De Jager, Philip L</creatorcontrib><creatorcontrib>Qian, Wei-Jun</creatorcontrib><creatorcontrib>Paša-Tolić, Ljiljana</creatorcontrib><creatorcontrib>Petyuk, Vladislav A</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Enhancing Top-Down Proteomics of Brain Tissue with FAIMS</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>Proteomic investigations of Alzheimer’s and Parkinson’s disease have provided valuable insights into neurodegenerative disorders. Thus far, these investigations have largely been restricted to bottom-up approaches, hindering the degree to which one can characterize a protein’s “intact” state. Top-down proteomics (TDP) overcomes this limitation; however, it is typically limited to observing only the most abundant proteoforms and of a relatively small size. Therefore, fractionation techniques are commonly used to reduce sample complexity. Here, we investigate gas-phase fractionation through high-field asymmetric waveform ion mobility spectrometry (FAIMS) within TDP. Utilizing a high complexity sample derived from Alzheimer’s disease (AD) brain tissue, we describe how the addition of FAIMS to TDP can robustly improve the depth of proteome coverage. For example, implementation of FAIMS with external compensation voltage (CV) stepping at −50, −40, and −30 CV could more than double the mean number of non-redundant proteoforms, genes, and proteome sequence coverage compared to without FAIMS. We also found that FAIMS can influence the transmission of proteoforms and their charge envelopes based on their size. Importantly, FAIMS enabled the identification of intact amyloid beta (Aβ) proteoforms, including the aggregation-prone Aβ1–42 variant which is strongly linked to AD. Raw data and associated files have been deposited to the ProteomeXchange Consortium via the MassIVE data repository with data set identifier PXD023607.</description><subject>Alzheimer’s</subject><subject>Amyloid beta-Peptides</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Brain</subject><subject>Brain Chemistry</subject><subject>brain tissue</subject><subject>differential mobility spectrometry</subject><subject>FAIMS</subject><subject>ion mobility</subject><subject>Ion Mobility Spectrometry</subject><subject>Proteome</subject><subject>Proteomics</subject><subject>top-down proteomics</subject><issn>1535-3893</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1uGyEUhVGUqvnrIyQaZdXNuFx-BmYTKXGdxFKqRqq7RhiYGMsGF2Zq9e0zydhWu-oKJM754PIhdAl4BJjAF23yaLlJsXVx7UZgMMasPkKnwCkvaY3F8X4va3qCznJeYgxcYPoRnVAqeSWBnCI5CQsdjA8vxSxuyq9xG4rngepNLmJT3CXtQzHzOXeu2Pp2UdzfTr_9uEAfGr3K7tNuPUc_7yez8WP59P1hOr59KjWTuC0NtcyaumFGk0powmBeCwKiMlY0YCVlUDHqgIPWxlndj6GJnVeWaUttQ-k5uhm4m26-dta40Ca9Upvk1zr9UVF79e9J8Av1En8rWQlCcNUDrgdAzK1X2fjWmYWJITjTKhBSUCz70OfdLSn-6lxu1dpn41YrHVzssiIcGK85oaKP8iFqUsw5uebwFsDqTY3q1aiDGrVT0_eu_h7k0Nq76AMwBN77sUuh_9f_QF8BQMOe8g</recordid><startdate>20210507</startdate><enddate>20210507</enddate><creator>Fulcher, James M</creator><creator>Makaju, Aman</creator><creator>Moore, Ronald J</creator><creator>Zhou, Mowei</creator><creator>Bennett, David A</creator><creator>De Jager, Philip L</creator><creator>Qian, Wei-Jun</creator><creator>Paša-Tolić, Ljiljana</creator><creator>Petyuk, Vladislav A</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3575-3224</orcidid><orcidid>https://orcid.org/0000-0002-5393-2827</orcidid><orcidid>https://orcid.org/0000-0003-4076-151X</orcidid><orcidid>https://orcid.org/0000-0003-2806-2855</orcidid><orcidid>https://orcid.org/0000-0001-9033-3623</orcidid><orcidid>https://orcid.org/000000034076151X</orcidid><orcidid>https://orcid.org/0000000335753224</orcidid><orcidid>https://orcid.org/0000000253932827</orcidid><orcidid>https://orcid.org/0000000190333623</orcidid><orcidid>https://orcid.org/0000000328062855</orcidid></search><sort><creationdate>20210507</creationdate><title>Enhancing Top-Down Proteomics of Brain Tissue with FAIMS</title><author>Fulcher, James M ; Makaju, Aman ; Moore, Ronald J ; Zhou, Mowei ; Bennett, David A ; De Jager, Philip L ; Qian, Wei-Jun ; Paša-Tolić, Ljiljana ; Petyuk, Vladislav A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a480t-c3d4dc9f4ca267a241b972176cd7f1d8341643e151aaceda000a2db6d4ad3df33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alzheimer’s</topic><topic>Amyloid beta-Peptides</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Brain</topic><topic>Brain Chemistry</topic><topic>brain tissue</topic><topic>differential mobility spectrometry</topic><topic>FAIMS</topic><topic>ion mobility</topic><topic>Ion Mobility Spectrometry</topic><topic>Proteome</topic><topic>Proteomics</topic><topic>top-down proteomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fulcher, James M</creatorcontrib><creatorcontrib>Makaju, Aman</creatorcontrib><creatorcontrib>Moore, Ronald J</creatorcontrib><creatorcontrib>Zhou, Mowei</creatorcontrib><creatorcontrib>Bennett, David A</creatorcontrib><creatorcontrib>De Jager, Philip L</creatorcontrib><creatorcontrib>Qian, Wei-Jun</creatorcontrib><creatorcontrib>Paša-Tolić, Ljiljana</creatorcontrib><creatorcontrib>Petyuk, Vladislav A</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fulcher, James M</au><au>Makaju, Aman</au><au>Moore, Ronald J</au><au>Zhou, Mowei</au><au>Bennett, David A</au><au>De Jager, Philip L</au><au>Qian, Wei-Jun</au><au>Paša-Tolić, Ljiljana</au><au>Petyuk, Vladislav A</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Top-Down Proteomics of Brain Tissue with FAIMS</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2021-05-07</date><risdate>2021</risdate><volume>20</volume><issue>5</issue><spage>2780</spage><epage>2795</epage><pages>2780-2795</pages><issn>1535-3893</issn><eissn>1535-3907</eissn><abstract>Proteomic investigations of Alzheimer’s and Parkinson’s disease have provided valuable insights into neurodegenerative disorders. Thus far, these investigations have largely been restricted to bottom-up approaches, hindering the degree to which one can characterize a protein’s “intact” state. Top-down proteomics (TDP) overcomes this limitation; however, it is typically limited to observing only the most abundant proteoforms and of a relatively small size. Therefore, fractionation techniques are commonly used to reduce sample complexity. Here, we investigate gas-phase fractionation through high-field asymmetric waveform ion mobility spectrometry (FAIMS) within TDP. Utilizing a high complexity sample derived from Alzheimer’s disease (AD) brain tissue, we describe how the addition of FAIMS to TDP can robustly improve the depth of proteome coverage. For example, implementation of FAIMS with external compensation voltage (CV) stepping at −50, −40, and −30 CV could more than double the mean number of non-redundant proteoforms, genes, and proteome sequence coverage compared to without FAIMS. We also found that FAIMS can influence the transmission of proteoforms and their charge envelopes based on their size. Importantly, FAIMS enabled the identification of intact amyloid beta (Aβ) proteoforms, including the aggregation-prone Aβ1–42 variant which is strongly linked to AD. Raw data and associated files have been deposited to the ProteomeXchange Consortium via the MassIVE data repository with data set identifier PXD023607.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33856812</pmid><doi>10.1021/acs.jproteome.1c00049</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3575-3224</orcidid><orcidid>https://orcid.org/0000-0002-5393-2827</orcidid><orcidid>https://orcid.org/0000-0003-4076-151X</orcidid><orcidid>https://orcid.org/0000-0003-2806-2855</orcidid><orcidid>https://orcid.org/0000-0001-9033-3623</orcidid><orcidid>https://orcid.org/000000034076151X</orcidid><orcidid>https://orcid.org/0000000335753224</orcidid><orcidid>https://orcid.org/0000000253932827</orcidid><orcidid>https://orcid.org/0000000190333623</orcidid><orcidid>https://orcid.org/0000000328062855</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-3893
ispartof Journal of proteome research, 2021-05, Vol.20 (5), p.2780-2795
issn 1535-3893
1535-3907
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8672206
source MEDLINE; American Chemical Society Journals
subjects Alzheimer’s
Amyloid beta-Peptides
BASIC BIOLOGICAL SCIENCES
Brain
Brain Chemistry
brain tissue
differential mobility spectrometry
FAIMS
ion mobility
Ion Mobility Spectrometry
Proteome
Proteomics
top-down proteomics
title Enhancing Top-Down Proteomics of Brain Tissue with FAIMS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A57%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Top-Down%20Proteomics%20of%20Brain%20Tissue%20with%20FAIMS&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Fulcher,%20James%20M&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2021-05-07&rft.volume=20&rft.issue=5&rft.spage=2780&rft.epage=2795&rft.pages=2780-2795&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/acs.jproteome.1c00049&rft_dat=%3Cproquest_pubme%3E2514595237%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2514595237&rft_id=info:pmid/33856812&rfr_iscdi=true