Geometric frustration in the myosin superlattice of vertebrate muscle

Geometric frustration results from an incompatibility between minimum energy arrangements and the geometry of a system, and gives rise to interesting and novel phenomena. Here, we report geometric frustration in a native biological macromolecular system---vertebrate muscle. We analyse the disorder i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Society interface 2021-12, Vol.18 (185), p.20210585-20210585
Hauptverfasser: Millane, Rick P, Wojtas, David H, Hong Yoon, Chun, Blakeley, Nicholas D, Bones, Philip J, Goyal, Abhishek, Squire, John M, Luther, Pradeep K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20210585
container_issue 185
container_start_page 20210585
container_title Journal of the Royal Society interface
container_volume 18
creator Millane, Rick P
Wojtas, David H
Hong Yoon, Chun
Blakeley, Nicholas D
Bones, Philip J
Goyal, Abhishek
Squire, John M
Luther, Pradeep K
description Geometric frustration results from an incompatibility between minimum energy arrangements and the geometry of a system, and gives rise to interesting and novel phenomena. Here, we report geometric frustration in a native biological macromolecular system---vertebrate muscle. We analyse the disorder in the myosin filament rotations in the myofibrils of vertebrate striated (skeletal and cardiac) muscle, as seen in thin-section electron micrographs, and show that the distribution of rotations corresponds to an archetypical geometrically frustrated system---the triangular Ising antiferromagnet. Spatial correlations are evident out to at least six lattice spacings. The results demonstrate that geometric frustration can drive the development of structure in complex biological systems, and may have implications for the nature of the actin--myosin interactions involved in muscle contraction. Identification of the distribution of myosin filament rotations with an Ising model allows the extensive results on the latter to be applied to this system. It shows how local interactions (between adjacent myosin filaments) can determine long-range order and, conversely, how observations of long-range order (such as patterns seen in electron micrographs) can be used to estimate the energetics of these local interactions. Furthermore, since diffraction by a disordered system is a function of the second-order statistics, the derived correlations allow more accurate diffraction calculations, which can aid in interpretation of X-ray diffraction data from muscle specimens for structural analysis.
doi_str_mv 10.1098/rsif.2021.0585
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8672065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610414113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-de7c1b3ec4d00d9a9f263f3d5762c8c202adf88aa0e2224e6092b9b15883df853</originalsourceid><addsrcrecordid>eNpVkc9LwzAUx4Mobk6vHqV48rKZH02aXgQZcwoDL3oOafrqIm0zk3Sw_96WzTFPefA-75v3-CB0S_CM4Fw--mCrGcWUzDCX_AyNSZbSKReCnp_UI3QVwjfGLGOcX6IRS3PMcyHGaLEE10D01iSV70L0OlrXJrZN4hqSZudCX4ZuA77WMVoDiauSLfgIRY_2RBdMDdfootJ1gJvDO0GfL4uP-et09b58mz-vpoYLGqclZIYUDExaYlzmOq-oYBUreSaokaY_Q5eVlFpjoJSmIHBOi7wgXErWNziboKd97qYrGigNtP3Ctdp422i_U05b9b_T2rX6clslRUaxGALu9wEuRKuCsRHM2ri2BRMVkYLLnPXQw-EX7346CFE1Nhioa92C64KiguCUpIQM6GyPGu9C8FAddyFYDYLUIEgNgtQgqB-4O73giP8ZYb9eto4m</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610414113</pqid></control><display><type>article</type><title>Geometric frustration in the myosin superlattice of vertebrate muscle</title><source>MEDLINE</source><source>PubMed Central</source><creator>Millane, Rick P ; Wojtas, David H ; Hong Yoon, Chun ; Blakeley, Nicholas D ; Bones, Philip J ; Goyal, Abhishek ; Squire, John M ; Luther, Pradeep K</creator><creatorcontrib>Millane, Rick P ; Wojtas, David H ; Hong Yoon, Chun ; Blakeley, Nicholas D ; Bones, Philip J ; Goyal, Abhishek ; Squire, John M ; Luther, Pradeep K ; SLAC National Accelerator Lab., Menlo Park, CA (United States) ; Univ. of Canterbury, Christchurch (New Zealand)</creatorcontrib><description>Geometric frustration results from an incompatibility between minimum energy arrangements and the geometry of a system, and gives rise to interesting and novel phenomena. Here, we report geometric frustration in a native biological macromolecular system---vertebrate muscle. We analyse the disorder in the myosin filament rotations in the myofibrils of vertebrate striated (skeletal and cardiac) muscle, as seen in thin-section electron micrographs, and show that the distribution of rotations corresponds to an archetypical geometrically frustrated system---the triangular Ising antiferromagnet. Spatial correlations are evident out to at least six lattice spacings. The results demonstrate that geometric frustration can drive the development of structure in complex biological systems, and may have implications for the nature of the actin--myosin interactions involved in muscle contraction. Identification of the distribution of myosin filament rotations with an Ising model allows the extensive results on the latter to be applied to this system. It shows how local interactions (between adjacent myosin filaments) can determine long-range order and, conversely, how observations of long-range order (such as patterns seen in electron micrographs) can be used to estimate the energetics of these local interactions. Furthermore, since diffraction by a disordered system is a function of the second-order statistics, the derived correlations allow more accurate diffraction calculations, which can aid in interpretation of X-ray diffraction data from muscle specimens for structural analysis.</description><identifier>ISSN: 1742-5662</identifier><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2021.0585</identifier><identifier>PMID: 34905966</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Animals ; antiferromagnet ; BASIC BIOLOGICAL SCIENCES ; Frustration ; geometric frustration ; Life Sciences–Physics interface ; lsing model ; Microscopy, Electron ; Muscle Contraction ; Muscles ; myosin ; Myosins ; vertebrate muscle ; Vertebrates ; X-Ray Diffraction</subject><ispartof>Journal of the Royal Society interface, 2021-12, Vol.18 (185), p.20210585-20210585</ispartof><rights>2021 The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-de7c1b3ec4d00d9a9f263f3d5762c8c202adf88aa0e2224e6092b9b15883df853</citedby><cites>FETCH-LOGICAL-c562t-de7c1b3ec4d00d9a9f263f3d5762c8c202adf88aa0e2224e6092b9b15883df853</cites><orcidid>0000-0003-2226-5774 ; 0000000322265774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672065/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672065/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34905966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1865893$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Millane, Rick P</creatorcontrib><creatorcontrib>Wojtas, David H</creatorcontrib><creatorcontrib>Hong Yoon, Chun</creatorcontrib><creatorcontrib>Blakeley, Nicholas D</creatorcontrib><creatorcontrib>Bones, Philip J</creatorcontrib><creatorcontrib>Goyal, Abhishek</creatorcontrib><creatorcontrib>Squire, John M</creatorcontrib><creatorcontrib>Luther, Pradeep K</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Univ. of Canterbury, Christchurch (New Zealand)</creatorcontrib><title>Geometric frustration in the myosin superlattice of vertebrate muscle</title><title>Journal of the Royal Society interface</title><addtitle>J R Soc Interface</addtitle><description>Geometric frustration results from an incompatibility between minimum energy arrangements and the geometry of a system, and gives rise to interesting and novel phenomena. Here, we report geometric frustration in a native biological macromolecular system---vertebrate muscle. We analyse the disorder in the myosin filament rotations in the myofibrils of vertebrate striated (skeletal and cardiac) muscle, as seen in thin-section electron micrographs, and show that the distribution of rotations corresponds to an archetypical geometrically frustrated system---the triangular Ising antiferromagnet. Spatial correlations are evident out to at least six lattice spacings. The results demonstrate that geometric frustration can drive the development of structure in complex biological systems, and may have implications for the nature of the actin--myosin interactions involved in muscle contraction. Identification of the distribution of myosin filament rotations with an Ising model allows the extensive results on the latter to be applied to this system. It shows how local interactions (between adjacent myosin filaments) can determine long-range order and, conversely, how observations of long-range order (such as patterns seen in electron micrographs) can be used to estimate the energetics of these local interactions. Furthermore, since diffraction by a disordered system is a function of the second-order statistics, the derived correlations allow more accurate diffraction calculations, which can aid in interpretation of X-ray diffraction data from muscle specimens for structural analysis.</description><subject>Animals</subject><subject>antiferromagnet</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Frustration</subject><subject>geometric frustration</subject><subject>Life Sciences–Physics interface</subject><subject>lsing model</subject><subject>Microscopy, Electron</subject><subject>Muscle Contraction</subject><subject>Muscles</subject><subject>myosin</subject><subject>Myosins</subject><subject>vertebrate muscle</subject><subject>Vertebrates</subject><subject>X-Ray Diffraction</subject><issn>1742-5662</issn><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc9LwzAUx4Mobk6vHqV48rKZH02aXgQZcwoDL3oOafrqIm0zk3Sw_96WzTFPefA-75v3-CB0S_CM4Fw--mCrGcWUzDCX_AyNSZbSKReCnp_UI3QVwjfGLGOcX6IRS3PMcyHGaLEE10D01iSV70L0OlrXJrZN4hqSZudCX4ZuA77WMVoDiauSLfgIRY_2RBdMDdfootJ1gJvDO0GfL4uP-et09b58mz-vpoYLGqclZIYUDExaYlzmOq-oYBUreSaokaY_Q5eVlFpjoJSmIHBOi7wgXErWNziboKd97qYrGigNtP3Ctdp422i_U05b9b_T2rX6clslRUaxGALu9wEuRKuCsRHM2ri2BRMVkYLLnPXQw-EX7346CFE1Nhioa92C64KiguCUpIQM6GyPGu9C8FAddyFYDYLUIEgNgtQgqB-4O73giP8ZYb9eto4m</recordid><startdate>20211215</startdate><enddate>20211215</enddate><creator>Millane, Rick P</creator><creator>Wojtas, David H</creator><creator>Hong Yoon, Chun</creator><creator>Blakeley, Nicholas D</creator><creator>Bones, Philip J</creator><creator>Goyal, Abhishek</creator><creator>Squire, John M</creator><creator>Luther, Pradeep K</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2226-5774</orcidid><orcidid>https://orcid.org/0000000322265774</orcidid></search><sort><creationdate>20211215</creationdate><title>Geometric frustration in the myosin superlattice of vertebrate muscle</title><author>Millane, Rick P ; Wojtas, David H ; Hong Yoon, Chun ; Blakeley, Nicholas D ; Bones, Philip J ; Goyal, Abhishek ; Squire, John M ; Luther, Pradeep K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-de7c1b3ec4d00d9a9f263f3d5762c8c202adf88aa0e2224e6092b9b15883df853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>antiferromagnet</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Frustration</topic><topic>geometric frustration</topic><topic>Life Sciences–Physics interface</topic><topic>lsing model</topic><topic>Microscopy, Electron</topic><topic>Muscle Contraction</topic><topic>Muscles</topic><topic>myosin</topic><topic>Myosins</topic><topic>vertebrate muscle</topic><topic>Vertebrates</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Millane, Rick P</creatorcontrib><creatorcontrib>Wojtas, David H</creatorcontrib><creatorcontrib>Hong Yoon, Chun</creatorcontrib><creatorcontrib>Blakeley, Nicholas D</creatorcontrib><creatorcontrib>Bones, Philip J</creatorcontrib><creatorcontrib>Goyal, Abhishek</creatorcontrib><creatorcontrib>Squire, John M</creatorcontrib><creatorcontrib>Luther, Pradeep K</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Univ. of Canterbury, Christchurch (New Zealand)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Millane, Rick P</au><au>Wojtas, David H</au><au>Hong Yoon, Chun</au><au>Blakeley, Nicholas D</au><au>Bones, Philip J</au><au>Goyal, Abhishek</au><au>Squire, John M</au><au>Luther, Pradeep K</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><aucorp>Univ. of Canterbury, Christchurch (New Zealand)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric frustration in the myosin superlattice of vertebrate muscle</atitle><jtitle>Journal of the Royal Society interface</jtitle><addtitle>J R Soc Interface</addtitle><date>2021-12-15</date><risdate>2021</risdate><volume>18</volume><issue>185</issue><spage>20210585</spage><epage>20210585</epage><pages>20210585-20210585</pages><issn>1742-5662</issn><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>Geometric frustration results from an incompatibility between minimum energy arrangements and the geometry of a system, and gives rise to interesting and novel phenomena. Here, we report geometric frustration in a native biological macromolecular system---vertebrate muscle. We analyse the disorder in the myosin filament rotations in the myofibrils of vertebrate striated (skeletal and cardiac) muscle, as seen in thin-section electron micrographs, and show that the distribution of rotations corresponds to an archetypical geometrically frustrated system---the triangular Ising antiferromagnet. Spatial correlations are evident out to at least six lattice spacings. The results demonstrate that geometric frustration can drive the development of structure in complex biological systems, and may have implications for the nature of the actin--myosin interactions involved in muscle contraction. Identification of the distribution of myosin filament rotations with an Ising model allows the extensive results on the latter to be applied to this system. It shows how local interactions (between adjacent myosin filaments) can determine long-range order and, conversely, how observations of long-range order (such as patterns seen in electron micrographs) can be used to estimate the energetics of these local interactions. Furthermore, since diffraction by a disordered system is a function of the second-order statistics, the derived correlations allow more accurate diffraction calculations, which can aid in interpretation of X-ray diffraction data from muscle specimens for structural analysis.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>34905966</pmid><doi>10.1098/rsif.2021.0585</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2226-5774</orcidid><orcidid>https://orcid.org/0000000322265774</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5662
ispartof Journal of the Royal Society interface, 2021-12, Vol.18 (185), p.20210585-20210585
issn 1742-5662
1742-5689
1742-5662
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8672065
source MEDLINE; PubMed Central
subjects Animals
antiferromagnet
BASIC BIOLOGICAL SCIENCES
Frustration
geometric frustration
Life Sciences–Physics interface
lsing model
Microscopy, Electron
Muscle Contraction
Muscles
myosin
Myosins
vertebrate muscle
Vertebrates
X-Ray Diffraction
title Geometric frustration in the myosin superlattice of vertebrate muscle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20frustration%20in%20the%20myosin%20superlattice%20of%20vertebrate%20muscle&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Millane,%20Rick%20P&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2021-12-15&rft.volume=18&rft.issue=185&rft.spage=20210585&rft.epage=20210585&rft.pages=20210585-20210585&rft.issn=1742-5662&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2021.0585&rft_dat=%3Cproquest_pubme%3E2610414113%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610414113&rft_id=info:pmid/34905966&rfr_iscdi=true