Optimizing the geometry of aerodynamic lens injectors for single‐particle coherent diffractive imaging of gold nanoparticles

Single‐particle X‐ray diffractive imaging (SPI) of small (bio‐)nanoparticles (NPs) requires optimized injectors to collect sufficient diffraction patterns to allow for the reconstruction of the NP structure with high resolution. Typically, aerodynamic lens‐stack injectors are used for NP injection....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography 2021-12, Vol.54 (6), p.1730-1737
Hauptverfasser: Worbs, Lena, Roth, Nils, Lübke, Jannik, Estillore, Armando D., Xavier, P. Lourdu, Samanta, Amit K., Küpper, Jochen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1737
container_issue 6
container_start_page 1730
container_title Journal of applied crystallography
container_volume 54
creator Worbs, Lena
Roth, Nils
Lübke, Jannik
Estillore, Armando D.
Xavier, P. Lourdu
Samanta, Amit K.
Küpper, Jochen
description Single‐particle X‐ray diffractive imaging (SPI) of small (bio‐)nanoparticles (NPs) requires optimized injectors to collect sufficient diffraction patterns to allow for the reconstruction of the NP structure with high resolution. Typically, aerodynamic lens‐stack injectors are used for NP injection. However, current injectors were developed for larger NPs (>100 nm), and their ability to generate high‐density NP beams suffers with decreasing NP size. Here, an aerodynamic lens‐stack injector with variable geometry and a geometry‐optimization procedure are presented. The optimization for 50 nm gold‐NP (AuNP) injection using a numerical‐simulation infrastructure capable of calculating the carrier‐gas flow and the particle trajectories through the injector is also introduced. The simulations were experimentally validated using spherical AuNPs and sucrose NPs. In addition, the optimized injector was compared with the standard‐installation `Uppsala injector' for AuNPs. Results for these heavy particles showed a shift in the particle‐beam focus position rather than a change in beam size, which results in a lower gas background for the optimized injector. Optimized aerodynamic lens‐stack injectors will allow one to increase NP beam density, reduce the gas background, discover the limits of current injectors and contribute to structure determination of small NPs using SPI. An optimization procedure of an aerodynamic lens injector with variable geometry is presented. The simulation results are validated by performing experiments on gold and sucrose nanoparticles. This work is envisioned to be an important step towards high‐resolution single‐particle imaging.
doi_str_mv 10.1107/S1600576721009973
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8662975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2615302773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4773-4138a7d3edfaee3f55fdb20063272e67eb15dd3afe92cec65ba520e0ef6e827f3</originalsourceid><addsrcrecordid>eNqFkc9qVDEUxoMotlYfwI0E3LiZmj-TZO5GkKH-KYVCreuQSU7uZMhNxuROy7gQH8Fn9EnMMG2pdeEq4Zzf9_EdPoReUnJMKVFvv1BJiFBSMUpI1yn-CB3uRpPd7PG9_wF6VuuKENpQ9hQd8GknuZLiEP04X49hCN9D6vG4BNxDHmAsW5w9NlCy2yYzBIsjpIpDWoEdc6nY54Jr00T4_fPX2pQx2AjY5iUUSCN2wfti7BiuAIfB9Dv3Ztjn6HAyKd8q6nP0xJtY4cXNe4S-fji5nH-anJ1__Dx_fzaxU6X4ZEr5zCjHwXkDwL0Q3i0YIZIzxUAqWFDhHDceOmbBSrEwghEg4CXMmPL8CL3b-643iwGcbSGLiXpdWrqy1dkE_fcmhaXu85WeSck6JZrBmxuDkr9toI56CNVCjCZB3lTNJBWcsBa2oa8foKu8Kamd1ygiO0oVZY2ie8qWXGsBfxeGEr1rV__TbtO8un_FneK2zgZ0e-A6RNj-31Gfzi_Y5YkgM87_AMpstT0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2606911712</pqid></control><display><type>article</type><title>Optimizing the geometry of aerodynamic lens injectors for single‐particle coherent diffractive imaging of gold nanoparticles</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Alma/SFX Local Collection</source><creator>Worbs, Lena ; Roth, Nils ; Lübke, Jannik ; Estillore, Armando D. ; Xavier, P. Lourdu ; Samanta, Amit K. ; Küpper, Jochen</creator><creatorcontrib>Worbs, Lena ; Roth, Nils ; Lübke, Jannik ; Estillore, Armando D. ; Xavier, P. Lourdu ; Samanta, Amit K. ; Küpper, Jochen</creatorcontrib><description>Single‐particle X‐ray diffractive imaging (SPI) of small (bio‐)nanoparticles (NPs) requires optimized injectors to collect sufficient diffraction patterns to allow for the reconstruction of the NP structure with high resolution. Typically, aerodynamic lens‐stack injectors are used for NP injection. However, current injectors were developed for larger NPs (&gt;100 nm), and their ability to generate high‐density NP beams suffers with decreasing NP size. Here, an aerodynamic lens‐stack injector with variable geometry and a geometry‐optimization procedure are presented. The optimization for 50 nm gold‐NP (AuNP) injection using a numerical‐simulation infrastructure capable of calculating the carrier‐gas flow and the particle trajectories through the injector is also introduced. The simulations were experimentally validated using spherical AuNPs and sucrose NPs. In addition, the optimized injector was compared with the standard‐installation `Uppsala injector' for AuNPs. Results for these heavy particles showed a shift in the particle‐beam focus position rather than a change in beam size, which results in a lower gas background for the optimized injector. Optimized aerodynamic lens‐stack injectors will allow one to increase NP beam density, reduce the gas background, discover the limits of current injectors and contribute to structure determination of small NPs using SPI. An optimization procedure of an aerodynamic lens injector with variable geometry is presented. The simulation results are validated by performing experiments on gold and sucrose nanoparticles. This work is envisioned to be an important step towards high‐resolution single‐particle imaging.</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S1600576721009973</identifier><identifier>PMID: 34963765</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>coherent diffractive imaging ; Density ; Diffraction patterns ; Gas flow ; Geometry ; Gold ; high‐density beams ; Injection ; Injectors ; Lenses ; Mathematical models ; Nanoparticles ; numerical simulations ; Optimization ; Particle trajectories ; Research Papers ; sample delivery ; single particles ; Sucrose ; XFELs ; X‐ray free‐electron lasers</subject><ispartof>Journal of applied crystallography, 2021-12, Vol.54 (6), p.1730-1737</ispartof><rights>2021 Lena Worbs et al. published by IUCr Journals.</rights><rights>Lena Worbs et al. 2021.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Lena Worbs et al. 2021 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4773-4138a7d3edfaee3f55fdb20063272e67eb15dd3afe92cec65ba520e0ef6e827f3</citedby><cites>FETCH-LOGICAL-c4773-4138a7d3edfaee3f55fdb20063272e67eb15dd3afe92cec65ba520e0ef6e827f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS1600576721009973$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS1600576721009973$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34963765$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Worbs, Lena</creatorcontrib><creatorcontrib>Roth, Nils</creatorcontrib><creatorcontrib>Lübke, Jannik</creatorcontrib><creatorcontrib>Estillore, Armando D.</creatorcontrib><creatorcontrib>Xavier, P. Lourdu</creatorcontrib><creatorcontrib>Samanta, Amit K.</creatorcontrib><creatorcontrib>Küpper, Jochen</creatorcontrib><title>Optimizing the geometry of aerodynamic lens injectors for single‐particle coherent diffractive imaging of gold nanoparticles</title><title>Journal of applied crystallography</title><addtitle>J Appl Crystallogr</addtitle><description>Single‐particle X‐ray diffractive imaging (SPI) of small (bio‐)nanoparticles (NPs) requires optimized injectors to collect sufficient diffraction patterns to allow for the reconstruction of the NP structure with high resolution. Typically, aerodynamic lens‐stack injectors are used for NP injection. However, current injectors were developed for larger NPs (&gt;100 nm), and their ability to generate high‐density NP beams suffers with decreasing NP size. Here, an aerodynamic lens‐stack injector with variable geometry and a geometry‐optimization procedure are presented. The optimization for 50 nm gold‐NP (AuNP) injection using a numerical‐simulation infrastructure capable of calculating the carrier‐gas flow and the particle trajectories through the injector is also introduced. The simulations were experimentally validated using spherical AuNPs and sucrose NPs. In addition, the optimized injector was compared with the standard‐installation `Uppsala injector' for AuNPs. Results for these heavy particles showed a shift in the particle‐beam focus position rather than a change in beam size, which results in a lower gas background for the optimized injector. Optimized aerodynamic lens‐stack injectors will allow one to increase NP beam density, reduce the gas background, discover the limits of current injectors and contribute to structure determination of small NPs using SPI. An optimization procedure of an aerodynamic lens injector with variable geometry is presented. The simulation results are validated by performing experiments on gold and sucrose nanoparticles. This work is envisioned to be an important step towards high‐resolution single‐particle imaging.</description><subject>coherent diffractive imaging</subject><subject>Density</subject><subject>Diffraction patterns</subject><subject>Gas flow</subject><subject>Geometry</subject><subject>Gold</subject><subject>high‐density beams</subject><subject>Injection</subject><subject>Injectors</subject><subject>Lenses</subject><subject>Mathematical models</subject><subject>Nanoparticles</subject><subject>numerical simulations</subject><subject>Optimization</subject><subject>Particle trajectories</subject><subject>Research Papers</subject><subject>sample delivery</subject><subject>single particles</subject><subject>Sucrose</subject><subject>XFELs</subject><subject>X‐ray free‐electron lasers</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkc9qVDEUxoMotlYfwI0E3LiZmj-TZO5GkKH-KYVCreuQSU7uZMhNxuROy7gQH8Fn9EnMMG2pdeEq4Zzf9_EdPoReUnJMKVFvv1BJiFBSMUpI1yn-CB3uRpPd7PG9_wF6VuuKENpQ9hQd8GknuZLiEP04X49hCN9D6vG4BNxDHmAsW5w9NlCy2yYzBIsjpIpDWoEdc6nY54Jr00T4_fPX2pQx2AjY5iUUSCN2wfti7BiuAIfB9Dv3Ztjn6HAyKd8q6nP0xJtY4cXNe4S-fji5nH-anJ1__Dx_fzaxU6X4ZEr5zCjHwXkDwL0Q3i0YIZIzxUAqWFDhHDceOmbBSrEwghEg4CXMmPL8CL3b-643iwGcbSGLiXpdWrqy1dkE_fcmhaXu85WeSck6JZrBmxuDkr9toI56CNVCjCZB3lTNJBWcsBa2oa8foKu8Kamd1ygiO0oVZY2ie8qWXGsBfxeGEr1rV__TbtO8un_FneK2zgZ0e-A6RNj-31Gfzi_Y5YkgM87_AMpstT0</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Worbs, Lena</creator><creator>Roth, Nils</creator><creator>Lübke, Jannik</creator><creator>Estillore, Armando D.</creator><creator>Xavier, P. Lourdu</creator><creator>Samanta, Amit K.</creator><creator>Küpper, Jochen</creator><general>International Union of Crystallography</general><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202112</creationdate><title>Optimizing the geometry of aerodynamic lens injectors for single‐particle coherent diffractive imaging of gold nanoparticles</title><author>Worbs, Lena ; Roth, Nils ; Lübke, Jannik ; Estillore, Armando D. ; Xavier, P. Lourdu ; Samanta, Amit K. ; Küpper, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4773-4138a7d3edfaee3f55fdb20063272e67eb15dd3afe92cec65ba520e0ef6e827f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>coherent diffractive imaging</topic><topic>Density</topic><topic>Diffraction patterns</topic><topic>Gas flow</topic><topic>Geometry</topic><topic>Gold</topic><topic>high‐density beams</topic><topic>Injection</topic><topic>Injectors</topic><topic>Lenses</topic><topic>Mathematical models</topic><topic>Nanoparticles</topic><topic>numerical simulations</topic><topic>Optimization</topic><topic>Particle trajectories</topic><topic>Research Papers</topic><topic>sample delivery</topic><topic>single particles</topic><topic>Sucrose</topic><topic>XFELs</topic><topic>X‐ray free‐electron lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Worbs, Lena</creatorcontrib><creatorcontrib>Roth, Nils</creatorcontrib><creatorcontrib>Lübke, Jannik</creatorcontrib><creatorcontrib>Estillore, Armando D.</creatorcontrib><creatorcontrib>Xavier, P. Lourdu</creatorcontrib><creatorcontrib>Samanta, Amit K.</creatorcontrib><creatorcontrib>Küpper, Jochen</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Worbs, Lena</au><au>Roth, Nils</au><au>Lübke, Jannik</au><au>Estillore, Armando D.</au><au>Xavier, P. Lourdu</au><au>Samanta, Amit K.</au><au>Küpper, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing the geometry of aerodynamic lens injectors for single‐particle coherent diffractive imaging of gold nanoparticles</atitle><jtitle>Journal of applied crystallography</jtitle><addtitle>J Appl Crystallogr</addtitle><date>2021-12</date><risdate>2021</risdate><volume>54</volume><issue>6</issue><spage>1730</spage><epage>1737</epage><pages>1730-1737</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><abstract>Single‐particle X‐ray diffractive imaging (SPI) of small (bio‐)nanoparticles (NPs) requires optimized injectors to collect sufficient diffraction patterns to allow for the reconstruction of the NP structure with high resolution. Typically, aerodynamic lens‐stack injectors are used for NP injection. However, current injectors were developed for larger NPs (&gt;100 nm), and their ability to generate high‐density NP beams suffers with decreasing NP size. Here, an aerodynamic lens‐stack injector with variable geometry and a geometry‐optimization procedure are presented. The optimization for 50 nm gold‐NP (AuNP) injection using a numerical‐simulation infrastructure capable of calculating the carrier‐gas flow and the particle trajectories through the injector is also introduced. The simulations were experimentally validated using spherical AuNPs and sucrose NPs. In addition, the optimized injector was compared with the standard‐installation `Uppsala injector' for AuNPs. Results for these heavy particles showed a shift in the particle‐beam focus position rather than a change in beam size, which results in a lower gas background for the optimized injector. Optimized aerodynamic lens‐stack injectors will allow one to increase NP beam density, reduce the gas background, discover the limits of current injectors and contribute to structure determination of small NPs using SPI. An optimization procedure of an aerodynamic lens injector with variable geometry is presented. The simulation results are validated by performing experiments on gold and sucrose nanoparticles. This work is envisioned to be an important step towards high‐resolution single‐particle imaging.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>34963765</pmid><doi>10.1107/S1600576721009973</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1600-5767
ispartof Journal of applied crystallography, 2021-12, Vol.54 (6), p.1730-1737
issn 1600-5767
0021-8898
1600-5767
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8662975
source Wiley Online Library - AutoHoldings Journals; Alma/SFX Local Collection
subjects coherent diffractive imaging
Density
Diffraction patterns
Gas flow
Geometry
Gold
high‐density beams
Injection
Injectors
Lenses
Mathematical models
Nanoparticles
numerical simulations
Optimization
Particle trajectories
Research Papers
sample delivery
single particles
Sucrose
XFELs
X‐ray free‐electron lasers
title Optimizing the geometry of aerodynamic lens injectors for single‐particle coherent diffractive imaging of gold nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20the%20geometry%20of%20aerodynamic%20lens%20injectors%20for%20single%E2%80%90particle%20coherent%20diffractive%20imaging%20of%20gold%20nanoparticles&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Worbs,%20Lena&rft.date=2021-12&rft.volume=54&rft.issue=6&rft.spage=1730&rft.epage=1737&rft.pages=1730-1737&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/10.1107/S1600576721009973&rft_dat=%3Cproquest_pubme%3E2615302773%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2606911712&rft_id=info:pmid/34963765&rfr_iscdi=true