Microstructures of HfOx Films Prepared via Atomic Layer Deposition Using La(NO3)3·6H2O Oxidants
Hafnium oxide (HfOx) films have a wide range of applications in solid-state devices, including metal–oxide–semiconductor field-effect transistors (MOSFETs). The growth of HfOx films from the metal precursor tetrakis(ethylmethylamino) hafnium with La(NO3)3·6H2O solution (LNS) as an oxidant was invest...
Gespeichert in:
Veröffentlicht in: | Materials 2021-12, Vol.14 (23), p.7478 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 7478 |
container_title | Materials |
container_volume | 14 |
creator | Kim, Seon Yong Jung, Yong Chan Seong, Sejong Lee, Taehoon Park, In-Sung Ahn, Jinho |
description | Hafnium oxide (HfOx) films have a wide range of applications in solid-state devices, including metal–oxide–semiconductor field-effect transistors (MOSFETs). The growth of HfOx films from the metal precursor tetrakis(ethylmethylamino) hafnium with La(NO3)3·6H2O solution (LNS) as an oxidant was investigated. The atomic layer deposition (ALD) conditions were optimized, and the chemical state, surface morphology, and microstructure of the prepared films were characterized. Furthermore, to better understand the effects of LNS on the deposition process, HfOx films deposited using a conventional oxidant (H2O) were also prepared. The ALD process using LNS was observed to be self-limiting, with an ALD temperature window of 200–350 °C and a growth rate of 1.6 Å per cycle, two times faster than that with H2O. HfOx films deposited using the LNS oxidant had smaller crystallites than those deposited using H2O, as well as more suboxides or defects because of the higher number of grain boundaries. In addition, there was a difference in the preferred orientations of the HfOx films deposited using LNS and H2O, and consequently, a difference in surface energy. Finally, a film growth model based on the surface energy difference was proposed to explain the observed growth rate and crystallite size trends. |
doi_str_mv | 10.3390/ma14237478 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8659129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608140272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1958-a0cf70ae26b273e39af94532afff637ae7724669978ab02ce171c8641a6991683</originalsourceid><addsrcrecordid>eNpVUctOwzAQtBAIKuiFL7DEBZAKfsWPC1JVHkUqhAM9Gze1i1ETBztB9Mu482WkKuKxl13NjmZWOwAcYnRGqULnpcGMUMGE3AI9rBQfYMXY9p95D_RTekFdUYolUbtgjzIpM05JDzzd-SKG1MS2aNpoEwwOjl3-Dq_9skzwIdraRDuHb97AYRNKX8CJWdkIL20dkm98qOA0-WrRwcf3OT2hnx98THKYv_u5qZp0AHacWSbb_-77YHp99TgaDyb5ze1oOBkUWGVyYFDhBDKW8BkR1FJlnGIZJcY5x6kwVgjCOFdKSDNDpLBY4EJyhk2HYS7pPrjY6NbtrLTzwlZNNEtdR1-auNLBeP1_U_lnvQhvWvJMYaI6gaNvgRheW5sa_RLaWHU3a8KRxAwRQTrW6Ya1_lqK1v04YKTXgejfQOgX4qp7kw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608140272</pqid></control><display><type>article</type><title>Microstructures of HfOx Films Prepared via Atomic Layer Deposition Using La(NO3)3·6H2O Oxidants</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kim, Seon Yong ; Jung, Yong Chan ; Seong, Sejong ; Lee, Taehoon ; Park, In-Sung ; Ahn, Jinho</creator><creatorcontrib>Kim, Seon Yong ; Jung, Yong Chan ; Seong, Sejong ; Lee, Taehoon ; Park, In-Sung ; Ahn, Jinho</creatorcontrib><description>Hafnium oxide (HfOx) films have a wide range of applications in solid-state devices, including metal–oxide–semiconductor field-effect transistors (MOSFETs). The growth of HfOx films from the metal precursor tetrakis(ethylmethylamino) hafnium with La(NO3)3·6H2O solution (LNS) as an oxidant was investigated. The atomic layer deposition (ALD) conditions were optimized, and the chemical state, surface morphology, and microstructure of the prepared films were characterized. Furthermore, to better understand the effects of LNS on the deposition process, HfOx films deposited using a conventional oxidant (H2O) were also prepared. The ALD process using LNS was observed to be self-limiting, with an ALD temperature window of 200–350 °C and a growth rate of 1.6 Å per cycle, two times faster than that with H2O. HfOx films deposited using the LNS oxidant had smaller crystallites than those deposited using H2O, as well as more suboxides or defects because of the higher number of grain boundaries. In addition, there was a difference in the preferred orientations of the HfOx films deposited using LNS and H2O, and consequently, a difference in surface energy. Finally, a film growth model based on the surface energy difference was proposed to explain the observed growth rate and crystallite size trends.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14237478</identifier><identifier>PMID: 34885632</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Atomic layer epitaxy ; Crystal defects ; Crystallites ; Dielectric properties ; Field effect transistors ; Film growth ; Grain boundaries ; Hafnium oxide ; Metal oxide semiconductors ; Metal oxides ; Microscopy ; Microstructure ; Morphology ; MOSFETs ; Oxidizing agents ; Semiconductor devices ; Solid state devices ; Surface energy ; Thin films</subject><ispartof>Materials, 2021-12, Vol.14 (23), p.7478</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1958-a0cf70ae26b273e39af94532afff637ae7724669978ab02ce171c8641a6991683</citedby><cites>FETCH-LOGICAL-c1958-a0cf70ae26b273e39af94532afff637ae7724669978ab02ce171c8641a6991683</cites><orcidid>0000-0002-2205-9551 ; 0000-0002-1532-7976 ; 0000-0001-8271-5998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659129/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659129/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids></links><search><creatorcontrib>Kim, Seon Yong</creatorcontrib><creatorcontrib>Jung, Yong Chan</creatorcontrib><creatorcontrib>Seong, Sejong</creatorcontrib><creatorcontrib>Lee, Taehoon</creatorcontrib><creatorcontrib>Park, In-Sung</creatorcontrib><creatorcontrib>Ahn, Jinho</creatorcontrib><title>Microstructures of HfOx Films Prepared via Atomic Layer Deposition Using La(NO3)3·6H2O Oxidants</title><title>Materials</title><description>Hafnium oxide (HfOx) films have a wide range of applications in solid-state devices, including metal–oxide–semiconductor field-effect transistors (MOSFETs). The growth of HfOx films from the metal precursor tetrakis(ethylmethylamino) hafnium with La(NO3)3·6H2O solution (LNS) as an oxidant was investigated. The atomic layer deposition (ALD) conditions were optimized, and the chemical state, surface morphology, and microstructure of the prepared films were characterized. Furthermore, to better understand the effects of LNS on the deposition process, HfOx films deposited using a conventional oxidant (H2O) were also prepared. The ALD process using LNS was observed to be self-limiting, with an ALD temperature window of 200–350 °C and a growth rate of 1.6 Å per cycle, two times faster than that with H2O. HfOx films deposited using the LNS oxidant had smaller crystallites than those deposited using H2O, as well as more suboxides or defects because of the higher number of grain boundaries. In addition, there was a difference in the preferred orientations of the HfOx films deposited using LNS and H2O, and consequently, a difference in surface energy. Finally, a film growth model based on the surface energy difference was proposed to explain the observed growth rate and crystallite size trends.</description><subject>Atomic layer epitaxy</subject><subject>Crystal defects</subject><subject>Crystallites</subject><subject>Dielectric properties</subject><subject>Field effect transistors</subject><subject>Film growth</subject><subject>Grain boundaries</subject><subject>Hafnium oxide</subject><subject>Metal oxide semiconductors</subject><subject>Metal oxides</subject><subject>Microscopy</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>MOSFETs</subject><subject>Oxidizing agents</subject><subject>Semiconductor devices</subject><subject>Solid state devices</subject><subject>Surface energy</subject><subject>Thin films</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVUctOwzAQtBAIKuiFL7DEBZAKfsWPC1JVHkUqhAM9Gze1i1ETBztB9Mu482WkKuKxl13NjmZWOwAcYnRGqULnpcGMUMGE3AI9rBQfYMXY9p95D_RTekFdUYolUbtgjzIpM05JDzzd-SKG1MS2aNpoEwwOjl3-Dq_9skzwIdraRDuHb97AYRNKX8CJWdkIL20dkm98qOA0-WrRwcf3OT2hnx98THKYv_u5qZp0AHacWSbb_-77YHp99TgaDyb5ze1oOBkUWGVyYFDhBDKW8BkR1FJlnGIZJcY5x6kwVgjCOFdKSDNDpLBY4EJyhk2HYS7pPrjY6NbtrLTzwlZNNEtdR1-auNLBeP1_U_lnvQhvWvJMYaI6gaNvgRheW5sa_RLaWHU3a8KRxAwRQTrW6Ya1_lqK1v04YKTXgejfQOgX4qp7kw</recordid><startdate>20211206</startdate><enddate>20211206</enddate><creator>Kim, Seon Yong</creator><creator>Jung, Yong Chan</creator><creator>Seong, Sejong</creator><creator>Lee, Taehoon</creator><creator>Park, In-Sung</creator><creator>Ahn, Jinho</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2205-9551</orcidid><orcidid>https://orcid.org/0000-0002-1532-7976</orcidid><orcidid>https://orcid.org/0000-0001-8271-5998</orcidid></search><sort><creationdate>20211206</creationdate><title>Microstructures of HfOx Films Prepared via Atomic Layer Deposition Using La(NO3)3·6H2O Oxidants</title><author>Kim, Seon Yong ; Jung, Yong Chan ; Seong, Sejong ; Lee, Taehoon ; Park, In-Sung ; Ahn, Jinho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1958-a0cf70ae26b273e39af94532afff637ae7724669978ab02ce171c8641a6991683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic layer epitaxy</topic><topic>Crystal defects</topic><topic>Crystallites</topic><topic>Dielectric properties</topic><topic>Field effect transistors</topic><topic>Film growth</topic><topic>Grain boundaries</topic><topic>Hafnium oxide</topic><topic>Metal oxide semiconductors</topic><topic>Metal oxides</topic><topic>Microscopy</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>MOSFETs</topic><topic>Oxidizing agents</topic><topic>Semiconductor devices</topic><topic>Solid state devices</topic><topic>Surface energy</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Seon Yong</creatorcontrib><creatorcontrib>Jung, Yong Chan</creatorcontrib><creatorcontrib>Seong, Sejong</creatorcontrib><creatorcontrib>Lee, Taehoon</creatorcontrib><creatorcontrib>Park, In-Sung</creatorcontrib><creatorcontrib>Ahn, Jinho</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Seon Yong</au><au>Jung, Yong Chan</au><au>Seong, Sejong</au><au>Lee, Taehoon</au><au>Park, In-Sung</au><au>Ahn, Jinho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructures of HfOx Films Prepared via Atomic Layer Deposition Using La(NO3)3·6H2O Oxidants</atitle><jtitle>Materials</jtitle><date>2021-12-06</date><risdate>2021</risdate><volume>14</volume><issue>23</issue><spage>7478</spage><pages>7478-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Hafnium oxide (HfOx) films have a wide range of applications in solid-state devices, including metal–oxide–semiconductor field-effect transistors (MOSFETs). The growth of HfOx films from the metal precursor tetrakis(ethylmethylamino) hafnium with La(NO3)3·6H2O solution (LNS) as an oxidant was investigated. The atomic layer deposition (ALD) conditions were optimized, and the chemical state, surface morphology, and microstructure of the prepared films were characterized. Furthermore, to better understand the effects of LNS on the deposition process, HfOx films deposited using a conventional oxidant (H2O) were also prepared. The ALD process using LNS was observed to be self-limiting, with an ALD temperature window of 200–350 °C and a growth rate of 1.6 Å per cycle, two times faster than that with H2O. HfOx films deposited using the LNS oxidant had smaller crystallites than those deposited using H2O, as well as more suboxides or defects because of the higher number of grain boundaries. In addition, there was a difference in the preferred orientations of the HfOx films deposited using LNS and H2O, and consequently, a difference in surface energy. Finally, a film growth model based on the surface energy difference was proposed to explain the observed growth rate and crystallite size trends.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34885632</pmid><doi>10.3390/ma14237478</doi><orcidid>https://orcid.org/0000-0002-2205-9551</orcidid><orcidid>https://orcid.org/0000-0002-1532-7976</orcidid><orcidid>https://orcid.org/0000-0001-8271-5998</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2021-12, Vol.14 (23), p.7478 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8659129 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Atomic layer epitaxy Crystal defects Crystallites Dielectric properties Field effect transistors Film growth Grain boundaries Hafnium oxide Metal oxide semiconductors Metal oxides Microscopy Microstructure Morphology MOSFETs Oxidizing agents Semiconductor devices Solid state devices Surface energy Thin films |
title | Microstructures of HfOx Films Prepared via Atomic Layer Deposition Using La(NO3)3·6H2O Oxidants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A54%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructures%20of%20HfOx%20Films%20Prepared%20via%20Atomic%20Layer%20Deposition%20Using%20La(NO3)3%C2%B76H2O%20Oxidants&rft.jtitle=Materials&rft.au=Kim,%20Seon%20Yong&rft.date=2021-12-06&rft.volume=14&rft.issue=23&rft.spage=7478&rft.pages=7478-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14237478&rft_dat=%3Cproquest_pubme%3E2608140272%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608140272&rft_id=info:pmid/34885632&rfr_iscdi=true |