Microstructures of HfOx Films Prepared via Atomic Layer Deposition Using La(NO3)3·6H2O Oxidants

Hafnium oxide (HfOx) films have a wide range of applications in solid-state devices, including metal–oxide–semiconductor field-effect transistors (MOSFETs). The growth of HfOx films from the metal precursor tetrakis(ethylmethylamino) hafnium with La(NO3)3·6H2O solution (LNS) as an oxidant was invest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-12, Vol.14 (23), p.7478
Hauptverfasser: Kim, Seon Yong, Jung, Yong Chan, Seong, Sejong, Lee, Taehoon, Park, In-Sung, Ahn, Jinho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 7478
container_title Materials
container_volume 14
creator Kim, Seon Yong
Jung, Yong Chan
Seong, Sejong
Lee, Taehoon
Park, In-Sung
Ahn, Jinho
description Hafnium oxide (HfOx) films have a wide range of applications in solid-state devices, including metal–oxide–semiconductor field-effect transistors (MOSFETs). The growth of HfOx films from the metal precursor tetrakis(ethylmethylamino) hafnium with La(NO3)3·6H2O solution (LNS) as an oxidant was investigated. The atomic layer deposition (ALD) conditions were optimized, and the chemical state, surface morphology, and microstructure of the prepared films were characterized. Furthermore, to better understand the effects of LNS on the deposition process, HfOx films deposited using a conventional oxidant (H2O) were also prepared. The ALD process using LNS was observed to be self-limiting, with an ALD temperature window of 200–350 °C and a growth rate of 1.6 Å per cycle, two times faster than that with H2O. HfOx films deposited using the LNS oxidant had smaller crystallites than those deposited using H2O, as well as more suboxides or defects because of the higher number of grain boundaries. In addition, there was a difference in the preferred orientations of the HfOx films deposited using LNS and H2O, and consequently, a difference in surface energy. Finally, a film growth model based on the surface energy difference was proposed to explain the observed growth rate and crystallite size trends.
doi_str_mv 10.3390/ma14237478
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8659129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608140272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1958-a0cf70ae26b273e39af94532afff637ae7724669978ab02ce171c8641a6991683</originalsourceid><addsrcrecordid>eNpVUctOwzAQtBAIKuiFL7DEBZAKfsWPC1JVHkUqhAM9Gze1i1ETBztB9Mu482WkKuKxl13NjmZWOwAcYnRGqULnpcGMUMGE3AI9rBQfYMXY9p95D_RTekFdUYolUbtgjzIpM05JDzzd-SKG1MS2aNpoEwwOjl3-Dq_9skzwIdraRDuHb97AYRNKX8CJWdkIL20dkm98qOA0-WrRwcf3OT2hnx98THKYv_u5qZp0AHacWSbb_-77YHp99TgaDyb5ze1oOBkUWGVyYFDhBDKW8BkR1FJlnGIZJcY5x6kwVgjCOFdKSDNDpLBY4EJyhk2HYS7pPrjY6NbtrLTzwlZNNEtdR1-auNLBeP1_U_lnvQhvWvJMYaI6gaNvgRheW5sa_RLaWHU3a8KRxAwRQTrW6Ya1_lqK1v04YKTXgejfQOgX4qp7kw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608140272</pqid></control><display><type>article</type><title>Microstructures of HfOx Films Prepared via Atomic Layer Deposition Using La(NO3)3·6H2O Oxidants</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kim, Seon Yong ; Jung, Yong Chan ; Seong, Sejong ; Lee, Taehoon ; Park, In-Sung ; Ahn, Jinho</creator><creatorcontrib>Kim, Seon Yong ; Jung, Yong Chan ; Seong, Sejong ; Lee, Taehoon ; Park, In-Sung ; Ahn, Jinho</creatorcontrib><description>Hafnium oxide (HfOx) films have a wide range of applications in solid-state devices, including metal–oxide–semiconductor field-effect transistors (MOSFETs). The growth of HfOx films from the metal precursor tetrakis(ethylmethylamino) hafnium with La(NO3)3·6H2O solution (LNS) as an oxidant was investigated. The atomic layer deposition (ALD) conditions were optimized, and the chemical state, surface morphology, and microstructure of the prepared films were characterized. Furthermore, to better understand the effects of LNS on the deposition process, HfOx films deposited using a conventional oxidant (H2O) were also prepared. The ALD process using LNS was observed to be self-limiting, with an ALD temperature window of 200–350 °C and a growth rate of 1.6 Å per cycle, two times faster than that with H2O. HfOx films deposited using the LNS oxidant had smaller crystallites than those deposited using H2O, as well as more suboxides or defects because of the higher number of grain boundaries. In addition, there was a difference in the preferred orientations of the HfOx films deposited using LNS and H2O, and consequently, a difference in surface energy. Finally, a film growth model based on the surface energy difference was proposed to explain the observed growth rate and crystallite size trends.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14237478</identifier><identifier>PMID: 34885632</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Atomic layer epitaxy ; Crystal defects ; Crystallites ; Dielectric properties ; Field effect transistors ; Film growth ; Grain boundaries ; Hafnium oxide ; Metal oxide semiconductors ; Metal oxides ; Microscopy ; Microstructure ; Morphology ; MOSFETs ; Oxidizing agents ; Semiconductor devices ; Solid state devices ; Surface energy ; Thin films</subject><ispartof>Materials, 2021-12, Vol.14 (23), p.7478</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1958-a0cf70ae26b273e39af94532afff637ae7724669978ab02ce171c8641a6991683</citedby><cites>FETCH-LOGICAL-c1958-a0cf70ae26b273e39af94532afff637ae7724669978ab02ce171c8641a6991683</cites><orcidid>0000-0002-2205-9551 ; 0000-0002-1532-7976 ; 0000-0001-8271-5998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659129/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659129/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids></links><search><creatorcontrib>Kim, Seon Yong</creatorcontrib><creatorcontrib>Jung, Yong Chan</creatorcontrib><creatorcontrib>Seong, Sejong</creatorcontrib><creatorcontrib>Lee, Taehoon</creatorcontrib><creatorcontrib>Park, In-Sung</creatorcontrib><creatorcontrib>Ahn, Jinho</creatorcontrib><title>Microstructures of HfOx Films Prepared via Atomic Layer Deposition Using La(NO3)3·6H2O Oxidants</title><title>Materials</title><description>Hafnium oxide (HfOx) films have a wide range of applications in solid-state devices, including metal–oxide–semiconductor field-effect transistors (MOSFETs). The growth of HfOx films from the metal precursor tetrakis(ethylmethylamino) hafnium with La(NO3)3·6H2O solution (LNS) as an oxidant was investigated. The atomic layer deposition (ALD) conditions were optimized, and the chemical state, surface morphology, and microstructure of the prepared films were characterized. Furthermore, to better understand the effects of LNS on the deposition process, HfOx films deposited using a conventional oxidant (H2O) were also prepared. The ALD process using LNS was observed to be self-limiting, with an ALD temperature window of 200–350 °C and a growth rate of 1.6 Å per cycle, two times faster than that with H2O. HfOx films deposited using the LNS oxidant had smaller crystallites than those deposited using H2O, as well as more suboxides or defects because of the higher number of grain boundaries. In addition, there was a difference in the preferred orientations of the HfOx films deposited using LNS and H2O, and consequently, a difference in surface energy. Finally, a film growth model based on the surface energy difference was proposed to explain the observed growth rate and crystallite size trends.</description><subject>Atomic layer epitaxy</subject><subject>Crystal defects</subject><subject>Crystallites</subject><subject>Dielectric properties</subject><subject>Field effect transistors</subject><subject>Film growth</subject><subject>Grain boundaries</subject><subject>Hafnium oxide</subject><subject>Metal oxide semiconductors</subject><subject>Metal oxides</subject><subject>Microscopy</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>MOSFETs</subject><subject>Oxidizing agents</subject><subject>Semiconductor devices</subject><subject>Solid state devices</subject><subject>Surface energy</subject><subject>Thin films</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVUctOwzAQtBAIKuiFL7DEBZAKfsWPC1JVHkUqhAM9Gze1i1ETBztB9Mu482WkKuKxl13NjmZWOwAcYnRGqULnpcGMUMGE3AI9rBQfYMXY9p95D_RTekFdUYolUbtgjzIpM05JDzzd-SKG1MS2aNpoEwwOjl3-Dq_9skzwIdraRDuHb97AYRNKX8CJWdkIL20dkm98qOA0-WrRwcf3OT2hnx98THKYv_u5qZp0AHacWSbb_-77YHp99TgaDyb5ze1oOBkUWGVyYFDhBDKW8BkR1FJlnGIZJcY5x6kwVgjCOFdKSDNDpLBY4EJyhk2HYS7pPrjY6NbtrLTzwlZNNEtdR1-auNLBeP1_U_lnvQhvWvJMYaI6gaNvgRheW5sa_RLaWHU3a8KRxAwRQTrW6Ya1_lqK1v04YKTXgejfQOgX4qp7kw</recordid><startdate>20211206</startdate><enddate>20211206</enddate><creator>Kim, Seon Yong</creator><creator>Jung, Yong Chan</creator><creator>Seong, Sejong</creator><creator>Lee, Taehoon</creator><creator>Park, In-Sung</creator><creator>Ahn, Jinho</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2205-9551</orcidid><orcidid>https://orcid.org/0000-0002-1532-7976</orcidid><orcidid>https://orcid.org/0000-0001-8271-5998</orcidid></search><sort><creationdate>20211206</creationdate><title>Microstructures of HfOx Films Prepared via Atomic Layer Deposition Using La(NO3)3·6H2O Oxidants</title><author>Kim, Seon Yong ; Jung, Yong Chan ; Seong, Sejong ; Lee, Taehoon ; Park, In-Sung ; Ahn, Jinho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1958-a0cf70ae26b273e39af94532afff637ae7724669978ab02ce171c8641a6991683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic layer epitaxy</topic><topic>Crystal defects</topic><topic>Crystallites</topic><topic>Dielectric properties</topic><topic>Field effect transistors</topic><topic>Film growth</topic><topic>Grain boundaries</topic><topic>Hafnium oxide</topic><topic>Metal oxide semiconductors</topic><topic>Metal oxides</topic><topic>Microscopy</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>MOSFETs</topic><topic>Oxidizing agents</topic><topic>Semiconductor devices</topic><topic>Solid state devices</topic><topic>Surface energy</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Seon Yong</creatorcontrib><creatorcontrib>Jung, Yong Chan</creatorcontrib><creatorcontrib>Seong, Sejong</creatorcontrib><creatorcontrib>Lee, Taehoon</creatorcontrib><creatorcontrib>Park, In-Sung</creatorcontrib><creatorcontrib>Ahn, Jinho</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Seon Yong</au><au>Jung, Yong Chan</au><au>Seong, Sejong</au><au>Lee, Taehoon</au><au>Park, In-Sung</au><au>Ahn, Jinho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructures of HfOx Films Prepared via Atomic Layer Deposition Using La(NO3)3·6H2O Oxidants</atitle><jtitle>Materials</jtitle><date>2021-12-06</date><risdate>2021</risdate><volume>14</volume><issue>23</issue><spage>7478</spage><pages>7478-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Hafnium oxide (HfOx) films have a wide range of applications in solid-state devices, including metal–oxide–semiconductor field-effect transistors (MOSFETs). The growth of HfOx films from the metal precursor tetrakis(ethylmethylamino) hafnium with La(NO3)3·6H2O solution (LNS) as an oxidant was investigated. The atomic layer deposition (ALD) conditions were optimized, and the chemical state, surface morphology, and microstructure of the prepared films were characterized. Furthermore, to better understand the effects of LNS on the deposition process, HfOx films deposited using a conventional oxidant (H2O) were also prepared. The ALD process using LNS was observed to be self-limiting, with an ALD temperature window of 200–350 °C and a growth rate of 1.6 Å per cycle, two times faster than that with H2O. HfOx films deposited using the LNS oxidant had smaller crystallites than those deposited using H2O, as well as more suboxides or defects because of the higher number of grain boundaries. In addition, there was a difference in the preferred orientations of the HfOx films deposited using LNS and H2O, and consequently, a difference in surface energy. Finally, a film growth model based on the surface energy difference was proposed to explain the observed growth rate and crystallite size trends.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34885632</pmid><doi>10.3390/ma14237478</doi><orcidid>https://orcid.org/0000-0002-2205-9551</orcidid><orcidid>https://orcid.org/0000-0002-1532-7976</orcidid><orcidid>https://orcid.org/0000-0001-8271-5998</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-12, Vol.14 (23), p.7478
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8659129
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Atomic layer epitaxy
Crystal defects
Crystallites
Dielectric properties
Field effect transistors
Film growth
Grain boundaries
Hafnium oxide
Metal oxide semiconductors
Metal oxides
Microscopy
Microstructure
Morphology
MOSFETs
Oxidizing agents
Semiconductor devices
Solid state devices
Surface energy
Thin films
title Microstructures of HfOx Films Prepared via Atomic Layer Deposition Using La(NO3)3·6H2O Oxidants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A54%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructures%20of%20HfOx%20Films%20Prepared%20via%20Atomic%20Layer%20Deposition%20Using%20La(NO3)3%C2%B76H2O%20Oxidants&rft.jtitle=Materials&rft.au=Kim,%20Seon%20Yong&rft.date=2021-12-06&rft.volume=14&rft.issue=23&rft.spage=7478&rft.pages=7478-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14237478&rft_dat=%3Cproquest_pubme%3E2608140272%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608140272&rft_id=info:pmid/34885632&rfr_iscdi=true