3D Multi-Track and Multi-Layer Epitaxy Grain Growth Simulations of Selective Laser Melting
An integrated simulation framework consisting of the 3D finite element method and 3D cellular automaton method is presented for simulating the multi-track and multi-layer selective laser melting (SLM) process. The framework takes account of all the major multi-physics phenomena in the SLM process, i...
Gespeichert in:
Veröffentlicht in: | Materials 2021-11, Vol.14 (23), p.7346 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 7346 |
container_title | Materials |
container_volume | 14 |
creator | Dezfoli, Amir Reza Ansari Lo, Yu-Lung Raza, M Mohsin |
description | An integrated simulation framework consisting of the 3D finite element method and 3D cellular automaton method is presented for simulating the multi-track and multi-layer selective laser melting (SLM) process. The framework takes account of all the major multi-physics phenomena in the SLM process, including the initial grain structure, the growth kinetics, the laser scanning strategy, the laser-powder and laser-matter interactions, the melt flow, and the powder-to-liquid-to-solid transformations. The feasibility of the proposed framework is demonstrated by simulating the evolution of the epitaxy grain structure of Inconel 718 (IN718) during a 15-layer SLM process performed using a bi-directional 67° rotation scanning strategy and various SLM process parameters. The simulation results are found to be in good agreement with the experimental observations obtained in the present study and in the literature. In particular, a strong (001) texture is observed in the final component, which indicates that the grains with a preferred orientation win the competitive epitaxy grain growth process. In addition, the size and shape of the IN718 grains are governed primarily by the cooling rate, where the cooling rate is determined in turn by the SLM parameters and the build height. Overall, the results show that the proposed framework provides an accurate approach for predicting the final microstructures of SLM components, and therefore, it can play an important role in optimizing the SLM processing parameters in such a way as to produce components with the desired mechanical properties. |
doi_str_mv | 10.3390/ma14237346 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8658249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608534961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-b947be4ffc7adda394ec15bc94dadef8e649f712fe329920c536f1e2a880fe1b3</originalsourceid><addsrcrecordid>eNpdkc1O3TAQhS1UBIiy6QNUkdhUldLasePYG6SKAkW6qAvophtr4ozBNIlv7YT2vj0GLr-z8Izl7xyNdQj5wOgXzjX9OgATFW-4kBtkh2ktS6aFePdi3iZ7KV3TXJwzVektss2FUnVN6x3ym38vzuZ-8uVFBPungLFb3xewwlgcLf0E_1fFSQQ_5jP8m66Kcz_MPUw-jKkIrjjHHu3kb7BYQMqaM8z68fI92XTQJ9xb913y6_jo4vBHufh5cnr4bVFaQeVUtlo0LQrnbANdB1wLtKxurRYddOgUSqFdwyqHvNK6orbm0jGsQCnqkLV8lxw8-C7ndsDO4jhF6M0y-gHiygTw5vXL6K_MZbgxStaqEjobfFobxPB3xjSZwSeLfQ8jhjmZSlJVc6Ely-j-G_Q6zHHM37unGG-opJn6_EDZGFKK6J6WYdTcpWaeU8vwx5frP6GPGfFbKW2S2g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608137060</pqid></control><display><type>article</type><title>3D Multi-Track and Multi-Layer Epitaxy Grain Growth Simulations of Selective Laser Melting</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Dezfoli, Amir Reza Ansari ; Lo, Yu-Lung ; Raza, M Mohsin</creator><creatorcontrib>Dezfoli, Amir Reza Ansari ; Lo, Yu-Lung ; Raza, M Mohsin</creatorcontrib><description>An integrated simulation framework consisting of the 3D finite element method and 3D cellular automaton method is presented for simulating the multi-track and multi-layer selective laser melting (SLM) process. The framework takes account of all the major multi-physics phenomena in the SLM process, including the initial grain structure, the growth kinetics, the laser scanning strategy, the laser-powder and laser-matter interactions, the melt flow, and the powder-to-liquid-to-solid transformations. The feasibility of the proposed framework is demonstrated by simulating the evolution of the epitaxy grain structure of Inconel 718 (IN718) during a 15-layer SLM process performed using a bi-directional 67° rotation scanning strategy and various SLM process parameters. The simulation results are found to be in good agreement with the experimental observations obtained in the present study and in the literature. In particular, a strong (001) texture is observed in the final component, which indicates that the grains with a preferred orientation win the competitive epitaxy grain growth process. In addition, the size and shape of the IN718 grains are governed primarily by the cooling rate, where the cooling rate is determined in turn by the SLM parameters and the build height. Overall, the results show that the proposed framework provides an accurate approach for predicting the final microstructures of SLM components, and therefore, it can play an important role in optimizing the SLM processing parameters in such a way as to produce components with the desired mechanical properties.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14237346</identifier><identifier>PMID: 34885505</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alloys ; Cellular automata ; Cooling rate ; Epitaxial growth ; Finite element method ; Grain growth ; Grain structure ; Growth models ; Laser applications ; Laser beam melting ; Lasers ; Mechanical properties ; Microstructure ; Multilayers ; Nickel base alloys ; Process parameters ; Scanning ; Simulation ; Strategy ; Superalloys</subject><ispartof>Materials, 2021-11, Vol.14 (23), p.7346</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-b947be4ffc7adda394ec15bc94dadef8e649f712fe329920c536f1e2a880fe1b3</citedby><cites>FETCH-LOGICAL-c406t-b947be4ffc7adda394ec15bc94dadef8e649f712fe329920c536f1e2a880fe1b3</cites><orcidid>0000-0003-1712-7369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658249/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658249/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34885505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dezfoli, Amir Reza Ansari</creatorcontrib><creatorcontrib>Lo, Yu-Lung</creatorcontrib><creatorcontrib>Raza, M Mohsin</creatorcontrib><title>3D Multi-Track and Multi-Layer Epitaxy Grain Growth Simulations of Selective Laser Melting</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>An integrated simulation framework consisting of the 3D finite element method and 3D cellular automaton method is presented for simulating the multi-track and multi-layer selective laser melting (SLM) process. The framework takes account of all the major multi-physics phenomena in the SLM process, including the initial grain structure, the growth kinetics, the laser scanning strategy, the laser-powder and laser-matter interactions, the melt flow, and the powder-to-liquid-to-solid transformations. The feasibility of the proposed framework is demonstrated by simulating the evolution of the epitaxy grain structure of Inconel 718 (IN718) during a 15-layer SLM process performed using a bi-directional 67° rotation scanning strategy and various SLM process parameters. The simulation results are found to be in good agreement with the experimental observations obtained in the present study and in the literature. In particular, a strong (001) texture is observed in the final component, which indicates that the grains with a preferred orientation win the competitive epitaxy grain growth process. In addition, the size and shape of the IN718 grains are governed primarily by the cooling rate, where the cooling rate is determined in turn by the SLM parameters and the build height. Overall, the results show that the proposed framework provides an accurate approach for predicting the final microstructures of SLM components, and therefore, it can play an important role in optimizing the SLM processing parameters in such a way as to produce components with the desired mechanical properties.</description><subject>Alloys</subject><subject>Cellular automata</subject><subject>Cooling rate</subject><subject>Epitaxial growth</subject><subject>Finite element method</subject><subject>Grain growth</subject><subject>Grain structure</subject><subject>Growth models</subject><subject>Laser applications</subject><subject>Laser beam melting</subject><subject>Lasers</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Multilayers</subject><subject>Nickel base alloys</subject><subject>Process parameters</subject><subject>Scanning</subject><subject>Simulation</subject><subject>Strategy</subject><subject>Superalloys</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkc1O3TAQhS1UBIiy6QNUkdhUldLasePYG6SKAkW6qAvophtr4ozBNIlv7YT2vj0GLr-z8Izl7xyNdQj5wOgXzjX9OgATFW-4kBtkh2ktS6aFePdi3iZ7KV3TXJwzVektss2FUnVN6x3ym38vzuZ-8uVFBPungLFb3xewwlgcLf0E_1fFSQQ_5jP8m66Kcz_MPUw-jKkIrjjHHu3kb7BYQMqaM8z68fI92XTQJ9xb913y6_jo4vBHufh5cnr4bVFaQeVUtlo0LQrnbANdB1wLtKxurRYddOgUSqFdwyqHvNK6orbm0jGsQCnqkLV8lxw8-C7ndsDO4jhF6M0y-gHiygTw5vXL6K_MZbgxStaqEjobfFobxPB3xjSZwSeLfQ8jhjmZSlJVc6Ely-j-G_Q6zHHM37unGG-opJn6_EDZGFKK6J6WYdTcpWaeU8vwx5frP6GPGfFbKW2S2g</recordid><startdate>20211130</startdate><enddate>20211130</enddate><creator>Dezfoli, Amir Reza Ansari</creator><creator>Lo, Yu-Lung</creator><creator>Raza, M Mohsin</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1712-7369</orcidid></search><sort><creationdate>20211130</creationdate><title>3D Multi-Track and Multi-Layer Epitaxy Grain Growth Simulations of Selective Laser Melting</title><author>Dezfoli, Amir Reza Ansari ; Lo, Yu-Lung ; Raza, M Mohsin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-b947be4ffc7adda394ec15bc94dadef8e649f712fe329920c536f1e2a880fe1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloys</topic><topic>Cellular automata</topic><topic>Cooling rate</topic><topic>Epitaxial growth</topic><topic>Finite element method</topic><topic>Grain growth</topic><topic>Grain structure</topic><topic>Growth models</topic><topic>Laser applications</topic><topic>Laser beam melting</topic><topic>Lasers</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Multilayers</topic><topic>Nickel base alloys</topic><topic>Process parameters</topic><topic>Scanning</topic><topic>Simulation</topic><topic>Strategy</topic><topic>Superalloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dezfoli, Amir Reza Ansari</creatorcontrib><creatorcontrib>Lo, Yu-Lung</creatorcontrib><creatorcontrib>Raza, M Mohsin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dezfoli, Amir Reza Ansari</au><au>Lo, Yu-Lung</au><au>Raza, M Mohsin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Multi-Track and Multi-Layer Epitaxy Grain Growth Simulations of Selective Laser Melting</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2021-11-30</date><risdate>2021</risdate><volume>14</volume><issue>23</issue><spage>7346</spage><pages>7346-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>An integrated simulation framework consisting of the 3D finite element method and 3D cellular automaton method is presented for simulating the multi-track and multi-layer selective laser melting (SLM) process. The framework takes account of all the major multi-physics phenomena in the SLM process, including the initial grain structure, the growth kinetics, the laser scanning strategy, the laser-powder and laser-matter interactions, the melt flow, and the powder-to-liquid-to-solid transformations. The feasibility of the proposed framework is demonstrated by simulating the evolution of the epitaxy grain structure of Inconel 718 (IN718) during a 15-layer SLM process performed using a bi-directional 67° rotation scanning strategy and various SLM process parameters. The simulation results are found to be in good agreement with the experimental observations obtained in the present study and in the literature. In particular, a strong (001) texture is observed in the final component, which indicates that the grains with a preferred orientation win the competitive epitaxy grain growth process. In addition, the size and shape of the IN718 grains are governed primarily by the cooling rate, where the cooling rate is determined in turn by the SLM parameters and the build height. Overall, the results show that the proposed framework provides an accurate approach for predicting the final microstructures of SLM components, and therefore, it can play an important role in optimizing the SLM processing parameters in such a way as to produce components with the desired mechanical properties.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34885505</pmid><doi>10.3390/ma14237346</doi><orcidid>https://orcid.org/0000-0003-1712-7369</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2021-11, Vol.14 (23), p.7346 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8658249 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Alloys Cellular automata Cooling rate Epitaxial growth Finite element method Grain growth Grain structure Growth models Laser applications Laser beam melting Lasers Mechanical properties Microstructure Multilayers Nickel base alloys Process parameters Scanning Simulation Strategy Superalloys |
title | 3D Multi-Track and Multi-Layer Epitaxy Grain Growth Simulations of Selective Laser Melting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A12%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Multi-Track%20and%20Multi-Layer%20Epitaxy%20Grain%20Growth%20Simulations%20of%20Selective%20Laser%20Melting&rft.jtitle=Materials&rft.au=Dezfoli,%20Amir%20Reza%20Ansari&rft.date=2021-11-30&rft.volume=14&rft.issue=23&rft.spage=7346&rft.pages=7346-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14237346&rft_dat=%3Cproquest_pubme%3E2608534961%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608137060&rft_id=info:pmid/34885505&rfr_iscdi=true |