Visible Light Trapping against Charge Recombination in FeOx–TiO2 Photonic Crystal Photocatalysts

Tailoring metal oxide photocatalysts in the form of heterostructured photonic crystals has spurred particular interest as an advanced route to simultaneously improve harnessing of solar light and charge separation relying on the combined effect of light trapping by macroporous periodic structures an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-11, Vol.14 (23), p.7117
Hauptverfasser: Pylarinou, Martha, Toumazatou, Alexia, Sakellis, Elias, Xenogiannopoulou, Evangelia, Gardelis, Spiros, Boukos, Nikos, Dimoulas, Athanasios, Likodimos, Vlassis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 7117
container_title Materials
container_volume 14
creator Pylarinou, Martha
Toumazatou, Alexia
Sakellis, Elias
Xenogiannopoulou, Evangelia
Gardelis, Spiros
Boukos, Nikos
Dimoulas, Athanasios
Likodimos, Vlassis
description Tailoring metal oxide photocatalysts in the form of heterostructured photonic crystals has spurred particular interest as an advanced route to simultaneously improve harnessing of solar light and charge separation relying on the combined effect of light trapping by macroporous periodic structures and compositional materials’ modifications. In this work, surface deposition of FeOx nanoclusters on TiO2 photonic crystals is investigated to explore the interplay of slow-photon amplification, visible light absorption, and charge separation in FeOx–TiO2 photocatalytic films. Photonic bandgap engineered TiO2 inverse opals deposited by the convective evaporation-induced co-assembly method were surface modified by successive chemisorption-calcination cycles using Fe(III) acetylacetonate, which allowed the controlled variation of FeOx loading on the photonic films. Low amounts of FeOx nanoclusters on the TiO2 inverse opals resulted in diameter-selective improvements of photocatalytic performance on salicylic acid degradation and photocurrent density under visible light, surpassing similarly modified P25 films. The observed enhancement was related to the combination of optimal light trapping and charge separation induced by the FeOx–TiO2 interfacial coupling. However, an increase of the FeOx loading resulted in severe performance deterioration, particularly prominent under UV-Vis light, attributed to persistent surface recombination via diverse defect d-states.
doi_str_mv 10.3390/ma14237117
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8658129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608533734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-74b26edbc1756e44f634cb2b658340840907dd7cf089b16a3eaba09821e48f0c3</originalsourceid><addsrcrecordid>eNpdkc1KAzEQx4MotqgXnyDgRYRqvnY3uQhSrAqFilSvIUmz28huUpOt2Jvv4Bv6JG6t-DWX-frxnxkGgEOMTikV6KxRmBFaYFxsgT4WIh9gwdj2r7gHDlJ6RJ1RijkRu6BHGecZKXAf6AeXnK4tHLtq3sJpVIuF8xVUlXI-tXA4V7Gy8M6a0GjnVeuCh87DkZ28vL--Td2EwNt5aIN3Bg7jKrWq3hSM6sIuT_tgp1R1sgdffg_cjy6nw-vBeHJ1M7wYDwzltB0UTJPczrTBRZZbxsqcMqOJzjNOGeIMCVTMZoUpERca54papRUSnGDLeIkM3QPnG93FUjd2Zqxvo6rlIrpGxZUMysm_He_msgrPkncjMBGdwPGXQAxPS5ta2bhkbF0rb8MySZIjnlFaUNahR__Qx7CMvjvvk8LdttmaOtlQJoaUoi2_l8FIrr8nf75HPwDYh4xX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608140954</pqid></control><display><type>article</type><title>Visible Light Trapping against Charge Recombination in FeOx–TiO2 Photonic Crystal Photocatalysts</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Pylarinou, Martha ; Toumazatou, Alexia ; Sakellis, Elias ; Xenogiannopoulou, Evangelia ; Gardelis, Spiros ; Boukos, Nikos ; Dimoulas, Athanasios ; Likodimos, Vlassis</creator><creatorcontrib>Pylarinou, Martha ; Toumazatou, Alexia ; Sakellis, Elias ; Xenogiannopoulou, Evangelia ; Gardelis, Spiros ; Boukos, Nikos ; Dimoulas, Athanasios ; Likodimos, Vlassis</creatorcontrib><description>Tailoring metal oxide photocatalysts in the form of heterostructured photonic crystals has spurred particular interest as an advanced route to simultaneously improve harnessing of solar light and charge separation relying on the combined effect of light trapping by macroporous periodic structures and compositional materials’ modifications. In this work, surface deposition of FeOx nanoclusters on TiO2 photonic crystals is investigated to explore the interplay of slow-photon amplification, visible light absorption, and charge separation in FeOx–TiO2 photocatalytic films. Photonic bandgap engineered TiO2 inverse opals deposited by the convective evaporation-induced co-assembly method were surface modified by successive chemisorption-calcination cycles using Fe(III) acetylacetonate, which allowed the controlled variation of FeOx loading on the photonic films. Low amounts of FeOx nanoclusters on the TiO2 inverse opals resulted in diameter-selective improvements of photocatalytic performance on salicylic acid degradation and photocurrent density under visible light, surpassing similarly modified P25 films. The observed enhancement was related to the combination of optimal light trapping and charge separation induced by the FeOx–TiO2 interfacial coupling. However, an increase of the FeOx loading resulted in severe performance deterioration, particularly prominent under UV-Vis light, attributed to persistent surface recombination via diverse defect d-states.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14237117</identifier><identifier>PMID: 34885271</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Chemisorption ; Decomposition ; Electromagnetic absorption ; Glass substrates ; Graphene ; Investigations ; Lasers ; Light ; Metal oxides ; Nanoclusters ; Nanomaterials ; Nanoparticles ; Performance degradation ; Periodic structures ; Photocatalysis ; Photocatalysts ; Photoelectric effect ; Photonic band gaps ; Photonic crystals ; Salicylic acid ; Separation ; Solvents ; Spectrum analysis ; Spheres ; Titanium dioxide ; Trapping</subject><ispartof>Materials, 2021-11, Vol.14 (23), p.7117</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-74b26edbc1756e44f634cb2b658340840907dd7cf089b16a3eaba09821e48f0c3</citedby><cites>FETCH-LOGICAL-c383t-74b26edbc1756e44f634cb2b658340840907dd7cf089b16a3eaba09821e48f0c3</cites><orcidid>0000-0002-4296-8373 ; 0000-0001-7542-0649 ; 0000-0001-8340-8025 ; 0000-0002-2361-3382 ; 0000-0002-0102-769X ; 0000-0001-6335-4306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658129/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658129/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Pylarinou, Martha</creatorcontrib><creatorcontrib>Toumazatou, Alexia</creatorcontrib><creatorcontrib>Sakellis, Elias</creatorcontrib><creatorcontrib>Xenogiannopoulou, Evangelia</creatorcontrib><creatorcontrib>Gardelis, Spiros</creatorcontrib><creatorcontrib>Boukos, Nikos</creatorcontrib><creatorcontrib>Dimoulas, Athanasios</creatorcontrib><creatorcontrib>Likodimos, Vlassis</creatorcontrib><title>Visible Light Trapping against Charge Recombination in FeOx–TiO2 Photonic Crystal Photocatalysts</title><title>Materials</title><description>Tailoring metal oxide photocatalysts in the form of heterostructured photonic crystals has spurred particular interest as an advanced route to simultaneously improve harnessing of solar light and charge separation relying on the combined effect of light trapping by macroporous periodic structures and compositional materials’ modifications. In this work, surface deposition of FeOx nanoclusters on TiO2 photonic crystals is investigated to explore the interplay of slow-photon amplification, visible light absorption, and charge separation in FeOx–TiO2 photocatalytic films. Photonic bandgap engineered TiO2 inverse opals deposited by the convective evaporation-induced co-assembly method were surface modified by successive chemisorption-calcination cycles using Fe(III) acetylacetonate, which allowed the controlled variation of FeOx loading on the photonic films. Low amounts of FeOx nanoclusters on the TiO2 inverse opals resulted in diameter-selective improvements of photocatalytic performance on salicylic acid degradation and photocurrent density under visible light, surpassing similarly modified P25 films. The observed enhancement was related to the combination of optimal light trapping and charge separation induced by the FeOx–TiO2 interfacial coupling. However, an increase of the FeOx loading resulted in severe performance deterioration, particularly prominent under UV-Vis light, attributed to persistent surface recombination via diverse defect d-states.</description><subject>Chemisorption</subject><subject>Decomposition</subject><subject>Electromagnetic absorption</subject><subject>Glass substrates</subject><subject>Graphene</subject><subject>Investigations</subject><subject>Lasers</subject><subject>Light</subject><subject>Metal oxides</subject><subject>Nanoclusters</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Performance degradation</subject><subject>Periodic structures</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Photoelectric effect</subject><subject>Photonic band gaps</subject><subject>Photonic crystals</subject><subject>Salicylic acid</subject><subject>Separation</subject><subject>Solvents</subject><subject>Spectrum analysis</subject><subject>Spheres</subject><subject>Titanium dioxide</subject><subject>Trapping</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkc1KAzEQx4MotqgXnyDgRYRqvnY3uQhSrAqFilSvIUmz28huUpOt2Jvv4Bv6JG6t-DWX-frxnxkGgEOMTikV6KxRmBFaYFxsgT4WIh9gwdj2r7gHDlJ6RJ1RijkRu6BHGecZKXAf6AeXnK4tHLtq3sJpVIuF8xVUlXI-tXA4V7Gy8M6a0GjnVeuCh87DkZ28vL--Td2EwNt5aIN3Bg7jKrWq3hSM6sIuT_tgp1R1sgdffg_cjy6nw-vBeHJ1M7wYDwzltB0UTJPczrTBRZZbxsqcMqOJzjNOGeIMCVTMZoUpERca54papRUSnGDLeIkM3QPnG93FUjd2Zqxvo6rlIrpGxZUMysm_He_msgrPkncjMBGdwPGXQAxPS5ta2bhkbF0rb8MySZIjnlFaUNahR__Qx7CMvjvvk8LdttmaOtlQJoaUoi2_l8FIrr8nf75HPwDYh4xX</recordid><startdate>20211123</startdate><enddate>20211123</enddate><creator>Pylarinou, Martha</creator><creator>Toumazatou, Alexia</creator><creator>Sakellis, Elias</creator><creator>Xenogiannopoulou, Evangelia</creator><creator>Gardelis, Spiros</creator><creator>Boukos, Nikos</creator><creator>Dimoulas, Athanasios</creator><creator>Likodimos, Vlassis</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4296-8373</orcidid><orcidid>https://orcid.org/0000-0001-7542-0649</orcidid><orcidid>https://orcid.org/0000-0001-8340-8025</orcidid><orcidid>https://orcid.org/0000-0002-2361-3382</orcidid><orcidid>https://orcid.org/0000-0002-0102-769X</orcidid><orcidid>https://orcid.org/0000-0001-6335-4306</orcidid></search><sort><creationdate>20211123</creationdate><title>Visible Light Trapping against Charge Recombination in FeOx–TiO2 Photonic Crystal Photocatalysts</title><author>Pylarinou, Martha ; Toumazatou, Alexia ; Sakellis, Elias ; Xenogiannopoulou, Evangelia ; Gardelis, Spiros ; Boukos, Nikos ; Dimoulas, Athanasios ; Likodimos, Vlassis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-74b26edbc1756e44f634cb2b658340840907dd7cf089b16a3eaba09821e48f0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemisorption</topic><topic>Decomposition</topic><topic>Electromagnetic absorption</topic><topic>Glass substrates</topic><topic>Graphene</topic><topic>Investigations</topic><topic>Lasers</topic><topic>Light</topic><topic>Metal oxides</topic><topic>Nanoclusters</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Performance degradation</topic><topic>Periodic structures</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Photoelectric effect</topic><topic>Photonic band gaps</topic><topic>Photonic crystals</topic><topic>Salicylic acid</topic><topic>Separation</topic><topic>Solvents</topic><topic>Spectrum analysis</topic><topic>Spheres</topic><topic>Titanium dioxide</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pylarinou, Martha</creatorcontrib><creatorcontrib>Toumazatou, Alexia</creatorcontrib><creatorcontrib>Sakellis, Elias</creatorcontrib><creatorcontrib>Xenogiannopoulou, Evangelia</creatorcontrib><creatorcontrib>Gardelis, Spiros</creatorcontrib><creatorcontrib>Boukos, Nikos</creatorcontrib><creatorcontrib>Dimoulas, Athanasios</creatorcontrib><creatorcontrib>Likodimos, Vlassis</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pylarinou, Martha</au><au>Toumazatou, Alexia</au><au>Sakellis, Elias</au><au>Xenogiannopoulou, Evangelia</au><au>Gardelis, Spiros</au><au>Boukos, Nikos</au><au>Dimoulas, Athanasios</au><au>Likodimos, Vlassis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visible Light Trapping against Charge Recombination in FeOx–TiO2 Photonic Crystal Photocatalysts</atitle><jtitle>Materials</jtitle><date>2021-11-23</date><risdate>2021</risdate><volume>14</volume><issue>23</issue><spage>7117</spage><pages>7117-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Tailoring metal oxide photocatalysts in the form of heterostructured photonic crystals has spurred particular interest as an advanced route to simultaneously improve harnessing of solar light and charge separation relying on the combined effect of light trapping by macroporous periodic structures and compositional materials’ modifications. In this work, surface deposition of FeOx nanoclusters on TiO2 photonic crystals is investigated to explore the interplay of slow-photon amplification, visible light absorption, and charge separation in FeOx–TiO2 photocatalytic films. Photonic bandgap engineered TiO2 inverse opals deposited by the convective evaporation-induced co-assembly method were surface modified by successive chemisorption-calcination cycles using Fe(III) acetylacetonate, which allowed the controlled variation of FeOx loading on the photonic films. Low amounts of FeOx nanoclusters on the TiO2 inverse opals resulted in diameter-selective improvements of photocatalytic performance on salicylic acid degradation and photocurrent density under visible light, surpassing similarly modified P25 films. The observed enhancement was related to the combination of optimal light trapping and charge separation induced by the FeOx–TiO2 interfacial coupling. However, an increase of the FeOx loading resulted in severe performance deterioration, particularly prominent under UV-Vis light, attributed to persistent surface recombination via diverse defect d-states.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34885271</pmid><doi>10.3390/ma14237117</doi><orcidid>https://orcid.org/0000-0002-4296-8373</orcidid><orcidid>https://orcid.org/0000-0001-7542-0649</orcidid><orcidid>https://orcid.org/0000-0001-8340-8025</orcidid><orcidid>https://orcid.org/0000-0002-2361-3382</orcidid><orcidid>https://orcid.org/0000-0002-0102-769X</orcidid><orcidid>https://orcid.org/0000-0001-6335-4306</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-11, Vol.14 (23), p.7117
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8658129
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Chemisorption
Decomposition
Electromagnetic absorption
Glass substrates
Graphene
Investigations
Lasers
Light
Metal oxides
Nanoclusters
Nanomaterials
Nanoparticles
Performance degradation
Periodic structures
Photocatalysis
Photocatalysts
Photoelectric effect
Photonic band gaps
Photonic crystals
Salicylic acid
Separation
Solvents
Spectrum analysis
Spheres
Titanium dioxide
Trapping
title Visible Light Trapping against Charge Recombination in FeOx–TiO2 Photonic Crystal Photocatalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A45%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visible%20Light%20Trapping%20against%20Charge%20Recombination%20in%20FeOx%E2%80%93TiO2%20Photonic%20Crystal%20Photocatalysts&rft.jtitle=Materials&rft.au=Pylarinou,%20Martha&rft.date=2021-11-23&rft.volume=14&rft.issue=23&rft.spage=7117&rft.pages=7117-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14237117&rft_dat=%3Cproquest_pubme%3E2608533734%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608140954&rft_id=info:pmid/34885271&rfr_iscdi=true