Reclassifying stroke lesion anatomy
Cognitive and behavioural outcomes in stroke reflect the interaction between two complex anatomically-distributed patterns: the functional organization of the brain and the structural distribution of ischaemic injury. Conventional outcome models—for individual prediction or population-level inferenc...
Gespeichert in:
Veröffentlicht in: | Cortex 2021-12, Vol.145, p.1-12 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Cortex |
container_volume | 145 |
creator | Bonkhoff, Anna K. Xu, Tianbo Nelson, Amy Gray, Robert Jha, Ashwani Cardoso, Jorge Ourselin, Sebastien Rees, Geraint Jäger, Hans Rolf Nachev, Parashkev |
description | Cognitive and behavioural outcomes in stroke reflect the interaction between two complex anatomically-distributed patterns: the functional organization of the brain and the structural distribution of ischaemic injury. Conventional outcome models—for individual prediction or population-level inference—commonly ignore this complexity, discarding anatomical variation beyond simple characteristics such as lesion volume. This sets a hard limit on the maximum fidelity such models can achieve. High-dimensional methods can overcome this problem, but only at prohibitively large data scales. Drawing on one of the largest published collections of anatomically-registered imaging of acute stroke—N = 1333—here we use non-linear dimensionality reduction to derive a succinct latent representation of the anatomical patterns of ischaemic injury, agglomerated into 21 distinct intuitive categories. We compare the maximal predictive performance it enables against both simpler low-dimensional and more complex high-dimensional representations, employing multiple empirically-informed ground truth models of distributed structure–outcome relationships. We show our representation sets a substantially higher ceiling on predictive fidelity than conventional low-dimensional approaches, but lower than that achievable within a high-dimensional framework. Where descriptive simplicity is a necessity, such as within clinical care or research trials of modest size, the representation we propose arguably offers a favourable compromise of compactness and fidelity. |
doi_str_mv | 10.1016/j.cortex.2021.09.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8650827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010945221003087</els_id><sourcerecordid>2584432537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-572ed004d07f84152f0993b985f7088a500da4c06b620eedcf9ba4d8230d13a33</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWqv_QKTgxs2MN6-ZZCOI-IKCILoOaeZOTZ1ONJmK_fdOaX1tXN3Fueecez9CjijkFGhxNstdiB1-5AwYzUHnAOUWGVBd8kxRYNtkAEAh00KyPbKf0gyAgZJyl-xxUZScaTogJw_oGpuSr5e-nY5SF8MLjhpMPrQj29ouzJcHZKe2TcLDzRySp-urx8vbbHx_c3d5Mc6cKHiXyZJhBSAqKGslqGQ1aM0nWsm6BKWsBKiscFBMCgaIlav1xIpKMQ4V5ZbzITlf574uJvNex7aLtjGv0c9tXJpgvfmrtP7ZTMO7UYUExco-4HQTEMPbAlNn5j45bBrbYlgkw6QSgjPJV6tivepiSCli_V1Dwaz4mplZ8zUrvga06fn2tuPfJ36bvoD-_IA9qHeP0STnsXVY-YiuM1Xw_zd8Am__jgA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584432537</pqid></control><display><type>article</type><title>Reclassifying stroke lesion anatomy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Bonkhoff, Anna K. ; Xu, Tianbo ; Nelson, Amy ; Gray, Robert ; Jha, Ashwani ; Cardoso, Jorge ; Ourselin, Sebastien ; Rees, Geraint ; Jäger, Hans Rolf ; Nachev, Parashkev</creator><creatorcontrib>Bonkhoff, Anna K. ; Xu, Tianbo ; Nelson, Amy ; Gray, Robert ; Jha, Ashwani ; Cardoso, Jorge ; Ourselin, Sebastien ; Rees, Geraint ; Jäger, Hans Rolf ; Nachev, Parashkev</creatorcontrib><description>Cognitive and behavioural outcomes in stroke reflect the interaction between two complex anatomically-distributed patterns: the functional organization of the brain and the structural distribution of ischaemic injury. Conventional outcome models—for individual prediction or population-level inference—commonly ignore this complexity, discarding anatomical variation beyond simple characteristics such as lesion volume. This sets a hard limit on the maximum fidelity such models can achieve. High-dimensional methods can overcome this problem, but only at prohibitively large data scales. Drawing on one of the largest published collections of anatomically-registered imaging of acute stroke—N = 1333—here we use non-linear dimensionality reduction to derive a succinct latent representation of the anatomical patterns of ischaemic injury, agglomerated into 21 distinct intuitive categories. We compare the maximal predictive performance it enables against both simpler low-dimensional and more complex high-dimensional representations, employing multiple empirically-informed ground truth models of distributed structure–outcome relationships. We show our representation sets a substantially higher ceiling on predictive fidelity than conventional low-dimensional approaches, but lower than that achievable within a high-dimensional framework. Where descriptive simplicity is a necessity, such as within clinical care or research trials of modest size, the representation we propose arguably offers a favourable compromise of compactness and fidelity.</description><identifier>ISSN: 0010-9452</identifier><identifier>EISSN: 1973-8102</identifier><identifier>DOI: 10.1016/j.cortex.2021.09.007</identifier><identifier>PMID: 34673291</identifier><language>eng</language><publisher>Italy: Elsevier Ltd</publisher><subject>Brain - diagnostic imaging ; Brain imaging ; Brain Mapping ; Clinical Neuroanatomy ; Dimensionality reduction ; Humans ; Lesion anatomy ; Lesion–deficit prediction ; Stroke ; Stroke - diagnostic imaging</subject><ispartof>Cortex, 2021-12, Vol.145, p.1-12</ispartof><rights>2021 The Author(s)</rights><rights>Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved.</rights><rights>2021 The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-572ed004d07f84152f0993b985f7088a500da4c06b620eedcf9ba4d8230d13a33</citedby><cites>FETCH-LOGICAL-c463t-572ed004d07f84152f0993b985f7088a500da4c06b620eedcf9ba4d8230d13a33</cites><orcidid>0000-0002-2718-4423 ; 0000-0002-6403-4184 ; 0000-0002-9623-7007 ; 0000-0002-5927-1089 ; 0000-0003-2835-6837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cortex.2021.09.007$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34673291$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonkhoff, Anna K.</creatorcontrib><creatorcontrib>Xu, Tianbo</creatorcontrib><creatorcontrib>Nelson, Amy</creatorcontrib><creatorcontrib>Gray, Robert</creatorcontrib><creatorcontrib>Jha, Ashwani</creatorcontrib><creatorcontrib>Cardoso, Jorge</creatorcontrib><creatorcontrib>Ourselin, Sebastien</creatorcontrib><creatorcontrib>Rees, Geraint</creatorcontrib><creatorcontrib>Jäger, Hans Rolf</creatorcontrib><creatorcontrib>Nachev, Parashkev</creatorcontrib><title>Reclassifying stroke lesion anatomy</title><title>Cortex</title><addtitle>Cortex</addtitle><description>Cognitive and behavioural outcomes in stroke reflect the interaction between two complex anatomically-distributed patterns: the functional organization of the brain and the structural distribution of ischaemic injury. Conventional outcome models—for individual prediction or population-level inference—commonly ignore this complexity, discarding anatomical variation beyond simple characteristics such as lesion volume. This sets a hard limit on the maximum fidelity such models can achieve. High-dimensional methods can overcome this problem, but only at prohibitively large data scales. Drawing on one of the largest published collections of anatomically-registered imaging of acute stroke—N = 1333—here we use non-linear dimensionality reduction to derive a succinct latent representation of the anatomical patterns of ischaemic injury, agglomerated into 21 distinct intuitive categories. We compare the maximal predictive performance it enables against both simpler low-dimensional and more complex high-dimensional representations, employing multiple empirically-informed ground truth models of distributed structure–outcome relationships. We show our representation sets a substantially higher ceiling on predictive fidelity than conventional low-dimensional approaches, but lower than that achievable within a high-dimensional framework. Where descriptive simplicity is a necessity, such as within clinical care or research trials of modest size, the representation we propose arguably offers a favourable compromise of compactness and fidelity.</description><subject>Brain - diagnostic imaging</subject><subject>Brain imaging</subject><subject>Brain Mapping</subject><subject>Clinical Neuroanatomy</subject><subject>Dimensionality reduction</subject><subject>Humans</subject><subject>Lesion anatomy</subject><subject>Lesion–deficit prediction</subject><subject>Stroke</subject><subject>Stroke - diagnostic imaging</subject><issn>0010-9452</issn><issn>1973-8102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLAzEUhYMoWqv_QKTgxs2MN6-ZZCOI-IKCILoOaeZOTZ1ONJmK_fdOaX1tXN3Fueecez9CjijkFGhxNstdiB1-5AwYzUHnAOUWGVBd8kxRYNtkAEAh00KyPbKf0gyAgZJyl-xxUZScaTogJw_oGpuSr5e-nY5SF8MLjhpMPrQj29ouzJcHZKe2TcLDzRySp-urx8vbbHx_c3d5Mc6cKHiXyZJhBSAqKGslqGQ1aM0nWsm6BKWsBKiscFBMCgaIlav1xIpKMQ4V5ZbzITlf574uJvNex7aLtjGv0c9tXJpgvfmrtP7ZTMO7UYUExco-4HQTEMPbAlNn5j45bBrbYlgkw6QSgjPJV6tivepiSCli_V1Dwaz4mplZ8zUrvga06fn2tuPfJ36bvoD-_IA9qHeP0STnsXVY-YiuM1Xw_zd8Am__jgA</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Bonkhoff, Anna K.</creator><creator>Xu, Tianbo</creator><creator>Nelson, Amy</creator><creator>Gray, Robert</creator><creator>Jha, Ashwani</creator><creator>Cardoso, Jorge</creator><creator>Ourselin, Sebastien</creator><creator>Rees, Geraint</creator><creator>Jäger, Hans Rolf</creator><creator>Nachev, Parashkev</creator><general>Elsevier Ltd</general><general>Masson</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2718-4423</orcidid><orcidid>https://orcid.org/0000-0002-6403-4184</orcidid><orcidid>https://orcid.org/0000-0002-9623-7007</orcidid><orcidid>https://orcid.org/0000-0002-5927-1089</orcidid><orcidid>https://orcid.org/0000-0003-2835-6837</orcidid></search><sort><creationdate>202112</creationdate><title>Reclassifying stroke lesion anatomy</title><author>Bonkhoff, Anna K. ; Xu, Tianbo ; Nelson, Amy ; Gray, Robert ; Jha, Ashwani ; Cardoso, Jorge ; Ourselin, Sebastien ; Rees, Geraint ; Jäger, Hans Rolf ; Nachev, Parashkev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-572ed004d07f84152f0993b985f7088a500da4c06b620eedcf9ba4d8230d13a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brain - diagnostic imaging</topic><topic>Brain imaging</topic><topic>Brain Mapping</topic><topic>Clinical Neuroanatomy</topic><topic>Dimensionality reduction</topic><topic>Humans</topic><topic>Lesion anatomy</topic><topic>Lesion–deficit prediction</topic><topic>Stroke</topic><topic>Stroke - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonkhoff, Anna K.</creatorcontrib><creatorcontrib>Xu, Tianbo</creatorcontrib><creatorcontrib>Nelson, Amy</creatorcontrib><creatorcontrib>Gray, Robert</creatorcontrib><creatorcontrib>Jha, Ashwani</creatorcontrib><creatorcontrib>Cardoso, Jorge</creatorcontrib><creatorcontrib>Ourselin, Sebastien</creatorcontrib><creatorcontrib>Rees, Geraint</creatorcontrib><creatorcontrib>Jäger, Hans Rolf</creatorcontrib><creatorcontrib>Nachev, Parashkev</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cortex</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonkhoff, Anna K.</au><au>Xu, Tianbo</au><au>Nelson, Amy</au><au>Gray, Robert</au><au>Jha, Ashwani</au><au>Cardoso, Jorge</au><au>Ourselin, Sebastien</au><au>Rees, Geraint</au><au>Jäger, Hans Rolf</au><au>Nachev, Parashkev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reclassifying stroke lesion anatomy</atitle><jtitle>Cortex</jtitle><addtitle>Cortex</addtitle><date>2021-12</date><risdate>2021</risdate><volume>145</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0010-9452</issn><eissn>1973-8102</eissn><abstract>Cognitive and behavioural outcomes in stroke reflect the interaction between two complex anatomically-distributed patterns: the functional organization of the brain and the structural distribution of ischaemic injury. Conventional outcome models—for individual prediction or population-level inference—commonly ignore this complexity, discarding anatomical variation beyond simple characteristics such as lesion volume. This sets a hard limit on the maximum fidelity such models can achieve. High-dimensional methods can overcome this problem, but only at prohibitively large data scales. Drawing on one of the largest published collections of anatomically-registered imaging of acute stroke—N = 1333—here we use non-linear dimensionality reduction to derive a succinct latent representation of the anatomical patterns of ischaemic injury, agglomerated into 21 distinct intuitive categories. We compare the maximal predictive performance it enables against both simpler low-dimensional and more complex high-dimensional representations, employing multiple empirically-informed ground truth models of distributed structure–outcome relationships. We show our representation sets a substantially higher ceiling on predictive fidelity than conventional low-dimensional approaches, but lower than that achievable within a high-dimensional framework. Where descriptive simplicity is a necessity, such as within clinical care or research trials of modest size, the representation we propose arguably offers a favourable compromise of compactness and fidelity.</abstract><cop>Italy</cop><pub>Elsevier Ltd</pub><pmid>34673291</pmid><doi>10.1016/j.cortex.2021.09.007</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2718-4423</orcidid><orcidid>https://orcid.org/0000-0002-6403-4184</orcidid><orcidid>https://orcid.org/0000-0002-9623-7007</orcidid><orcidid>https://orcid.org/0000-0002-5927-1089</orcidid><orcidid>https://orcid.org/0000-0003-2835-6837</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-9452 |
ispartof | Cortex, 2021-12, Vol.145, p.1-12 |
issn | 0010-9452 1973-8102 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8650827 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Brain - diagnostic imaging Brain imaging Brain Mapping Clinical Neuroanatomy Dimensionality reduction Humans Lesion anatomy Lesion–deficit prediction Stroke Stroke - diagnostic imaging |
title | Reclassifying stroke lesion anatomy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A02%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reclassifying%20stroke%20lesion%20anatomy&rft.jtitle=Cortex&rft.au=Bonkhoff,%20Anna%20K.&rft.date=2021-12&rft.volume=145&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0010-9452&rft.eissn=1973-8102&rft_id=info:doi/10.1016/j.cortex.2021.09.007&rft_dat=%3Cproquest_pubme%3E2584432537%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584432537&rft_id=info:pmid/34673291&rft_els_id=S0010945221003087&rfr_iscdi=true |