Reclassifying stroke lesion anatomy

Cognitive and behavioural outcomes in stroke reflect the interaction between two complex anatomically-distributed patterns: the functional organization of the brain and the structural distribution of ischaemic injury. Conventional outcome models—for individual prediction or population-level inferenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cortex 2021-12, Vol.145, p.1-12
Hauptverfasser: Bonkhoff, Anna K., Xu, Tianbo, Nelson, Amy, Gray, Robert, Jha, Ashwani, Cardoso, Jorge, Ourselin, Sebastien, Rees, Geraint, Jäger, Hans Rolf, Nachev, Parashkev
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title Cortex
container_volume 145
creator Bonkhoff, Anna K.
Xu, Tianbo
Nelson, Amy
Gray, Robert
Jha, Ashwani
Cardoso, Jorge
Ourselin, Sebastien
Rees, Geraint
Jäger, Hans Rolf
Nachev, Parashkev
description Cognitive and behavioural outcomes in stroke reflect the interaction between two complex anatomically-distributed patterns: the functional organization of the brain and the structural distribution of ischaemic injury. Conventional outcome models—for individual prediction or population-level inference—commonly ignore this complexity, discarding anatomical variation beyond simple characteristics such as lesion volume. This sets a hard limit on the maximum fidelity such models can achieve. High-dimensional methods can overcome this problem, but only at prohibitively large data scales. Drawing on one of the largest published collections of anatomically-registered imaging of acute stroke—N = 1333—here we use non-linear dimensionality reduction to derive a succinct latent representation of the anatomical patterns of ischaemic injury, agglomerated into 21 distinct intuitive categories. We compare the maximal predictive performance it enables against both simpler low-dimensional and more complex high-dimensional representations, employing multiple empirically-informed ground truth models of distributed structure–outcome relationships. We show our representation sets a substantially higher ceiling on predictive fidelity than conventional low-dimensional approaches, but lower than that achievable within a high-dimensional framework. Where descriptive simplicity is a necessity, such as within clinical care or research trials of modest size, the representation we propose arguably offers a favourable compromise of compactness and fidelity.
doi_str_mv 10.1016/j.cortex.2021.09.007
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8650827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010945221003087</els_id><sourcerecordid>2584432537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-572ed004d07f84152f0993b985f7088a500da4c06b620eedcf9ba4d8230d13a33</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWqv_QKTgxs2MN6-ZZCOI-IKCILoOaeZOTZ1ONJmK_fdOaX1tXN3Fueecez9CjijkFGhxNstdiB1-5AwYzUHnAOUWGVBd8kxRYNtkAEAh00KyPbKf0gyAgZJyl-xxUZScaTogJw_oGpuSr5e-nY5SF8MLjhpMPrQj29ouzJcHZKe2TcLDzRySp-urx8vbbHx_c3d5Mc6cKHiXyZJhBSAqKGslqGQ1aM0nWsm6BKWsBKiscFBMCgaIlav1xIpKMQ4V5ZbzITlf574uJvNex7aLtjGv0c9tXJpgvfmrtP7ZTMO7UYUExco-4HQTEMPbAlNn5j45bBrbYlgkw6QSgjPJV6tivepiSCli_V1Dwaz4mplZ8zUrvga06fn2tuPfJ36bvoD-_IA9qHeP0STnsXVY-YiuM1Xw_zd8Am__jgA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584432537</pqid></control><display><type>article</type><title>Reclassifying stroke lesion anatomy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Bonkhoff, Anna K. ; Xu, Tianbo ; Nelson, Amy ; Gray, Robert ; Jha, Ashwani ; Cardoso, Jorge ; Ourselin, Sebastien ; Rees, Geraint ; Jäger, Hans Rolf ; Nachev, Parashkev</creator><creatorcontrib>Bonkhoff, Anna K. ; Xu, Tianbo ; Nelson, Amy ; Gray, Robert ; Jha, Ashwani ; Cardoso, Jorge ; Ourselin, Sebastien ; Rees, Geraint ; Jäger, Hans Rolf ; Nachev, Parashkev</creatorcontrib><description>Cognitive and behavioural outcomes in stroke reflect the interaction between two complex anatomically-distributed patterns: the functional organization of the brain and the structural distribution of ischaemic injury. Conventional outcome models—for individual prediction or population-level inference—commonly ignore this complexity, discarding anatomical variation beyond simple characteristics such as lesion volume. This sets a hard limit on the maximum fidelity such models can achieve. High-dimensional methods can overcome this problem, but only at prohibitively large data scales. Drawing on one of the largest published collections of anatomically-registered imaging of acute stroke—N = 1333—here we use non-linear dimensionality reduction to derive a succinct latent representation of the anatomical patterns of ischaemic injury, agglomerated into 21 distinct intuitive categories. We compare the maximal predictive performance it enables against both simpler low-dimensional and more complex high-dimensional representations, employing multiple empirically-informed ground truth models of distributed structure–outcome relationships. We show our representation sets a substantially higher ceiling on predictive fidelity than conventional low-dimensional approaches, but lower than that achievable within a high-dimensional framework. Where descriptive simplicity is a necessity, such as within clinical care or research trials of modest size, the representation we propose arguably offers a favourable compromise of compactness and fidelity.</description><identifier>ISSN: 0010-9452</identifier><identifier>EISSN: 1973-8102</identifier><identifier>DOI: 10.1016/j.cortex.2021.09.007</identifier><identifier>PMID: 34673291</identifier><language>eng</language><publisher>Italy: Elsevier Ltd</publisher><subject>Brain - diagnostic imaging ; Brain imaging ; Brain Mapping ; Clinical Neuroanatomy ; Dimensionality reduction ; Humans ; Lesion anatomy ; Lesion–deficit prediction ; Stroke ; Stroke - diagnostic imaging</subject><ispartof>Cortex, 2021-12, Vol.145, p.1-12</ispartof><rights>2021 The Author(s)</rights><rights>Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved.</rights><rights>2021 The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-572ed004d07f84152f0993b985f7088a500da4c06b620eedcf9ba4d8230d13a33</citedby><cites>FETCH-LOGICAL-c463t-572ed004d07f84152f0993b985f7088a500da4c06b620eedcf9ba4d8230d13a33</cites><orcidid>0000-0002-2718-4423 ; 0000-0002-6403-4184 ; 0000-0002-9623-7007 ; 0000-0002-5927-1089 ; 0000-0003-2835-6837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cortex.2021.09.007$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34673291$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonkhoff, Anna K.</creatorcontrib><creatorcontrib>Xu, Tianbo</creatorcontrib><creatorcontrib>Nelson, Amy</creatorcontrib><creatorcontrib>Gray, Robert</creatorcontrib><creatorcontrib>Jha, Ashwani</creatorcontrib><creatorcontrib>Cardoso, Jorge</creatorcontrib><creatorcontrib>Ourselin, Sebastien</creatorcontrib><creatorcontrib>Rees, Geraint</creatorcontrib><creatorcontrib>Jäger, Hans Rolf</creatorcontrib><creatorcontrib>Nachev, Parashkev</creatorcontrib><title>Reclassifying stroke lesion anatomy</title><title>Cortex</title><addtitle>Cortex</addtitle><description>Cognitive and behavioural outcomes in stroke reflect the interaction between two complex anatomically-distributed patterns: the functional organization of the brain and the structural distribution of ischaemic injury. Conventional outcome models—for individual prediction or population-level inference—commonly ignore this complexity, discarding anatomical variation beyond simple characteristics such as lesion volume. This sets a hard limit on the maximum fidelity such models can achieve. High-dimensional methods can overcome this problem, but only at prohibitively large data scales. Drawing on one of the largest published collections of anatomically-registered imaging of acute stroke—N = 1333—here we use non-linear dimensionality reduction to derive a succinct latent representation of the anatomical patterns of ischaemic injury, agglomerated into 21 distinct intuitive categories. We compare the maximal predictive performance it enables against both simpler low-dimensional and more complex high-dimensional representations, employing multiple empirically-informed ground truth models of distributed structure–outcome relationships. We show our representation sets a substantially higher ceiling on predictive fidelity than conventional low-dimensional approaches, but lower than that achievable within a high-dimensional framework. Where descriptive simplicity is a necessity, such as within clinical care or research trials of modest size, the representation we propose arguably offers a favourable compromise of compactness and fidelity.</description><subject>Brain - diagnostic imaging</subject><subject>Brain imaging</subject><subject>Brain Mapping</subject><subject>Clinical Neuroanatomy</subject><subject>Dimensionality reduction</subject><subject>Humans</subject><subject>Lesion anatomy</subject><subject>Lesion–deficit prediction</subject><subject>Stroke</subject><subject>Stroke - diagnostic imaging</subject><issn>0010-9452</issn><issn>1973-8102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLAzEUhYMoWqv_QKTgxs2MN6-ZZCOI-IKCILoOaeZOTZ1ONJmK_fdOaX1tXN3Fueecez9CjijkFGhxNstdiB1-5AwYzUHnAOUWGVBd8kxRYNtkAEAh00KyPbKf0gyAgZJyl-xxUZScaTogJw_oGpuSr5e-nY5SF8MLjhpMPrQj29ouzJcHZKe2TcLDzRySp-urx8vbbHx_c3d5Mc6cKHiXyZJhBSAqKGslqGQ1aM0nWsm6BKWsBKiscFBMCgaIlav1xIpKMQ4V5ZbzITlf574uJvNex7aLtjGv0c9tXJpgvfmrtP7ZTMO7UYUExco-4HQTEMPbAlNn5j45bBrbYlgkw6QSgjPJV6tivepiSCli_V1Dwaz4mplZ8zUrvga06fn2tuPfJ36bvoD-_IA9qHeP0STnsXVY-YiuM1Xw_zd8Am__jgA</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Bonkhoff, Anna K.</creator><creator>Xu, Tianbo</creator><creator>Nelson, Amy</creator><creator>Gray, Robert</creator><creator>Jha, Ashwani</creator><creator>Cardoso, Jorge</creator><creator>Ourselin, Sebastien</creator><creator>Rees, Geraint</creator><creator>Jäger, Hans Rolf</creator><creator>Nachev, Parashkev</creator><general>Elsevier Ltd</general><general>Masson</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2718-4423</orcidid><orcidid>https://orcid.org/0000-0002-6403-4184</orcidid><orcidid>https://orcid.org/0000-0002-9623-7007</orcidid><orcidid>https://orcid.org/0000-0002-5927-1089</orcidid><orcidid>https://orcid.org/0000-0003-2835-6837</orcidid></search><sort><creationdate>202112</creationdate><title>Reclassifying stroke lesion anatomy</title><author>Bonkhoff, Anna K. ; Xu, Tianbo ; Nelson, Amy ; Gray, Robert ; Jha, Ashwani ; Cardoso, Jorge ; Ourselin, Sebastien ; Rees, Geraint ; Jäger, Hans Rolf ; Nachev, Parashkev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-572ed004d07f84152f0993b985f7088a500da4c06b620eedcf9ba4d8230d13a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brain - diagnostic imaging</topic><topic>Brain imaging</topic><topic>Brain Mapping</topic><topic>Clinical Neuroanatomy</topic><topic>Dimensionality reduction</topic><topic>Humans</topic><topic>Lesion anatomy</topic><topic>Lesion–deficit prediction</topic><topic>Stroke</topic><topic>Stroke - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonkhoff, Anna K.</creatorcontrib><creatorcontrib>Xu, Tianbo</creatorcontrib><creatorcontrib>Nelson, Amy</creatorcontrib><creatorcontrib>Gray, Robert</creatorcontrib><creatorcontrib>Jha, Ashwani</creatorcontrib><creatorcontrib>Cardoso, Jorge</creatorcontrib><creatorcontrib>Ourselin, Sebastien</creatorcontrib><creatorcontrib>Rees, Geraint</creatorcontrib><creatorcontrib>Jäger, Hans Rolf</creatorcontrib><creatorcontrib>Nachev, Parashkev</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cortex</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonkhoff, Anna K.</au><au>Xu, Tianbo</au><au>Nelson, Amy</au><au>Gray, Robert</au><au>Jha, Ashwani</au><au>Cardoso, Jorge</au><au>Ourselin, Sebastien</au><au>Rees, Geraint</au><au>Jäger, Hans Rolf</au><au>Nachev, Parashkev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reclassifying stroke lesion anatomy</atitle><jtitle>Cortex</jtitle><addtitle>Cortex</addtitle><date>2021-12</date><risdate>2021</risdate><volume>145</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0010-9452</issn><eissn>1973-8102</eissn><abstract>Cognitive and behavioural outcomes in stroke reflect the interaction between two complex anatomically-distributed patterns: the functional organization of the brain and the structural distribution of ischaemic injury. Conventional outcome models—for individual prediction or population-level inference—commonly ignore this complexity, discarding anatomical variation beyond simple characteristics such as lesion volume. This sets a hard limit on the maximum fidelity such models can achieve. High-dimensional methods can overcome this problem, but only at prohibitively large data scales. Drawing on one of the largest published collections of anatomically-registered imaging of acute stroke—N = 1333—here we use non-linear dimensionality reduction to derive a succinct latent representation of the anatomical patterns of ischaemic injury, agglomerated into 21 distinct intuitive categories. We compare the maximal predictive performance it enables against both simpler low-dimensional and more complex high-dimensional representations, employing multiple empirically-informed ground truth models of distributed structure–outcome relationships. We show our representation sets a substantially higher ceiling on predictive fidelity than conventional low-dimensional approaches, but lower than that achievable within a high-dimensional framework. Where descriptive simplicity is a necessity, such as within clinical care or research trials of modest size, the representation we propose arguably offers a favourable compromise of compactness and fidelity.</abstract><cop>Italy</cop><pub>Elsevier Ltd</pub><pmid>34673291</pmid><doi>10.1016/j.cortex.2021.09.007</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2718-4423</orcidid><orcidid>https://orcid.org/0000-0002-6403-4184</orcidid><orcidid>https://orcid.org/0000-0002-9623-7007</orcidid><orcidid>https://orcid.org/0000-0002-5927-1089</orcidid><orcidid>https://orcid.org/0000-0003-2835-6837</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-9452
ispartof Cortex, 2021-12, Vol.145, p.1-12
issn 0010-9452
1973-8102
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8650827
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Brain - diagnostic imaging
Brain imaging
Brain Mapping
Clinical Neuroanatomy
Dimensionality reduction
Humans
Lesion anatomy
Lesion–deficit prediction
Stroke
Stroke - diagnostic imaging
title Reclassifying stroke lesion anatomy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A02%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reclassifying%20stroke%20lesion%20anatomy&rft.jtitle=Cortex&rft.au=Bonkhoff,%20Anna%20K.&rft.date=2021-12&rft.volume=145&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0010-9452&rft.eissn=1973-8102&rft_id=info:doi/10.1016/j.cortex.2021.09.007&rft_dat=%3Cproquest_pubme%3E2584432537%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584432537&rft_id=info:pmid/34673291&rft_els_id=S0010945221003087&rfr_iscdi=true