Enhancer decommissioning imposes an epigenetic barrier to sensory hair cell regeneration

Adult mammalian tissues such as heart, brain, retina, and the sensory structures of the inner ear do not effectively regenerate, although a latent capacity for regeneration exists at embryonic and perinatal times. We explored the epigenetic basis for this latent regenerative potential in the mouse i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental cell 2021-09, Vol.56 (17), p.2471-2485.e5
Hauptverfasser: Tao, Litao, Yu, Haoze V., Llamas, Juan, Trecek, Talon, Wang, Xizi, Stojanova, Zlatka, Groves, Andrew K., Segil, Neil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2485.e5
container_issue 17
container_start_page 2471
container_title Developmental cell
container_volume 56
creator Tao, Litao
Yu, Haoze V.
Llamas, Juan
Trecek, Talon
Wang, Xizi
Stojanova, Zlatka
Groves, Andrew K.
Segil, Neil
description Adult mammalian tissues such as heart, brain, retina, and the sensory structures of the inner ear do not effectively regenerate, although a latent capacity for regeneration exists at embryonic and perinatal times. We explored the epigenetic basis for this latent regenerative potential in the mouse inner ear and its rapid loss during maturation. In perinatal supporting cells, whose fate is maintained by Notch-mediated lateral inhibition, the hair cell enhancer network is epigenetically primed (H3K4me1) but silenced (active H3K27 de-acetylation and trimethylation). Blocking Notch signaling during the perinatal period of plasticity rapidly eliminates epigenetic silencing and allows supporting cells to transdifferentiate into hair cells. Importantly, H3K4me1 priming of the hair cell enhancers in supporting cells is removed during the first post-natal week, coinciding with the loss of transdifferentiation potential. We hypothesize that enhancer decommissioning during cochlear maturation contributes to the failure of hair cell regeneration in the mature organ of Corti. [Display omitted] •Hair cell enhancers in P1 support cells are epigenetically “primed but silenced”•Hair cell enhancers are decommissioned by H3K4me1-loss in maturing support cells•Enhancer decommissioning blocks supporting cell transdifferentiation•Inhibiting H3K4me1 demethylation extends perinatal transdifferentiation potential Mammals are unable to regenerate cochlear sensory hair cells, while other vertebrates preserve robust inner ear regenerative capacity. We show that epigenetic decommissioning of hair-cell-specific enhancers (removal of H3K4me1) in supporting cells during perinatal maturation contributes to loss of regenerative capacity in the mammalian inner ear.
doi_str_mv 10.1016/j.devcel.2021.07.003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8650127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1534580721005591</els_id><sourcerecordid>2557225723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-a72920548fba3456f818773eddcea6b7d33f65e3160c3be0fc3ecee4561021ec3</originalsourceid><addsrcrecordid>eNp9UU1LAzEQDaJYrf4DDzl62TXZbDbxIoj4BQUvCt5CNjvbpnSTmmwL_nunVBQvHoYM5M2bee8RcsFZyRlvrpZlB1sHq7JiFS-ZKhkTB-SEa6ULLiU_xF6KupCaqQk5zXnJcIxrdkwmohaC60afkPf7sLDBQaIduDgMPmcfgw9z6od1zJCpDRTWfg4BRu9oa1PyiB4jzRByTJ90YX2ieMiKJtjBkh2R4owc9XaV4fz7nZK3h_vXu6di9vL4fHc7K5xkzVhYVV1XTNa6b62oZdNrFKAEdJ0D27SqE6JvJAjeMCdaYL0T4AAQyVE2ODElN3ve9aYdAKfCmOzKrJMfbPo00Xrz9yf4hZnHrdGNZLxSSHD5TZDixwbyaNCEnRwbIG6yqaRUVYUlEFrvoS7FnBP0P2s4M7tQzNLsQzG7UAxTBkP5PRHQhy26Z7LzgKZ3PoEbTRf9_wRfzFWYoA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557225723</pqid></control><display><type>article</type><title>Enhancer decommissioning imposes an epigenetic barrier to sensory hair cell regeneration</title><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tao, Litao ; Yu, Haoze V. ; Llamas, Juan ; Trecek, Talon ; Wang, Xizi ; Stojanova, Zlatka ; Groves, Andrew K. ; Segil, Neil</creator><creatorcontrib>Tao, Litao ; Yu, Haoze V. ; Llamas, Juan ; Trecek, Talon ; Wang, Xizi ; Stojanova, Zlatka ; Groves, Andrew K. ; Segil, Neil</creatorcontrib><description>Adult mammalian tissues such as heart, brain, retina, and the sensory structures of the inner ear do not effectively regenerate, although a latent capacity for regeneration exists at embryonic and perinatal times. We explored the epigenetic basis for this latent regenerative potential in the mouse inner ear and its rapid loss during maturation. In perinatal supporting cells, whose fate is maintained by Notch-mediated lateral inhibition, the hair cell enhancer network is epigenetically primed (H3K4me1) but silenced (active H3K27 de-acetylation and trimethylation). Blocking Notch signaling during the perinatal period of plasticity rapidly eliminates epigenetic silencing and allows supporting cells to transdifferentiate into hair cells. Importantly, H3K4me1 priming of the hair cell enhancers in supporting cells is removed during the first post-natal week, coinciding with the loss of transdifferentiation potential. We hypothesize that enhancer decommissioning during cochlear maturation contributes to the failure of hair cell regeneration in the mature organ of Corti. [Display omitted] •Hair cell enhancers in P1 support cells are epigenetically “primed but silenced”•Hair cell enhancers are decommissioned by H3K4me1-loss in maturing support cells•Enhancer decommissioning blocks supporting cell transdifferentiation•Inhibiting H3K4me1 demethylation extends perinatal transdifferentiation potential Mammals are unable to regenerate cochlear sensory hair cells, while other vertebrates preserve robust inner ear regenerative capacity. We show that epigenetic decommissioning of hair-cell-specific enhancers (removal of H3K4me1) in supporting cells during perinatal maturation contributes to loss of regenerative capacity in the mammalian inner ear.</description><identifier>ISSN: 1534-5807</identifier><identifier>EISSN: 1878-1551</identifier><identifier>DOI: 10.1016/j.devcel.2021.07.003</identifier><identifier>PMID: 34331868</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>ATOH1 targetome ; enhancer decommissioning ; epigenetics ; H3K4me1 ; inner ear ; maturation ; regeneration ; sensory hair cell ; transdifferentiation potential</subject><ispartof>Developmental cell, 2021-09, Vol.56 (17), p.2471-2485.e5</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-a72920548fba3456f818773eddcea6b7d33f65e3160c3be0fc3ecee4561021ec3</citedby><cites>FETCH-LOGICAL-c506t-a72920548fba3456f818773eddcea6b7d33f65e3160c3be0fc3ecee4561021ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1534580721005591$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Tao, Litao</creatorcontrib><creatorcontrib>Yu, Haoze V.</creatorcontrib><creatorcontrib>Llamas, Juan</creatorcontrib><creatorcontrib>Trecek, Talon</creatorcontrib><creatorcontrib>Wang, Xizi</creatorcontrib><creatorcontrib>Stojanova, Zlatka</creatorcontrib><creatorcontrib>Groves, Andrew K.</creatorcontrib><creatorcontrib>Segil, Neil</creatorcontrib><title>Enhancer decommissioning imposes an epigenetic barrier to sensory hair cell regeneration</title><title>Developmental cell</title><description>Adult mammalian tissues such as heart, brain, retina, and the sensory structures of the inner ear do not effectively regenerate, although a latent capacity for regeneration exists at embryonic and perinatal times. We explored the epigenetic basis for this latent regenerative potential in the mouse inner ear and its rapid loss during maturation. In perinatal supporting cells, whose fate is maintained by Notch-mediated lateral inhibition, the hair cell enhancer network is epigenetically primed (H3K4me1) but silenced (active H3K27 de-acetylation and trimethylation). Blocking Notch signaling during the perinatal period of plasticity rapidly eliminates epigenetic silencing and allows supporting cells to transdifferentiate into hair cells. Importantly, H3K4me1 priming of the hair cell enhancers in supporting cells is removed during the first post-natal week, coinciding with the loss of transdifferentiation potential. We hypothesize that enhancer decommissioning during cochlear maturation contributes to the failure of hair cell regeneration in the mature organ of Corti. [Display omitted] •Hair cell enhancers in P1 support cells are epigenetically “primed but silenced”•Hair cell enhancers are decommissioned by H3K4me1-loss in maturing support cells•Enhancer decommissioning blocks supporting cell transdifferentiation•Inhibiting H3K4me1 demethylation extends perinatal transdifferentiation potential Mammals are unable to regenerate cochlear sensory hair cells, while other vertebrates preserve robust inner ear regenerative capacity. We show that epigenetic decommissioning of hair-cell-specific enhancers (removal of H3K4me1) in supporting cells during perinatal maturation contributes to loss of regenerative capacity in the mammalian inner ear.</description><subject>ATOH1 targetome</subject><subject>enhancer decommissioning</subject><subject>epigenetics</subject><subject>H3K4me1</subject><subject>inner ear</subject><subject>maturation</subject><subject>regeneration</subject><subject>sensory hair cell</subject><subject>transdifferentiation potential</subject><issn>1534-5807</issn><issn>1878-1551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UU1LAzEQDaJYrf4DDzl62TXZbDbxIoj4BQUvCt5CNjvbpnSTmmwL_nunVBQvHoYM5M2bee8RcsFZyRlvrpZlB1sHq7JiFS-ZKhkTB-SEa6ULLiU_xF6KupCaqQk5zXnJcIxrdkwmohaC60afkPf7sLDBQaIduDgMPmcfgw9z6od1zJCpDRTWfg4BRu9oa1PyiB4jzRByTJ90YX2ieMiKJtjBkh2R4owc9XaV4fz7nZK3h_vXu6di9vL4fHc7K5xkzVhYVV1XTNa6b62oZdNrFKAEdJ0D27SqE6JvJAjeMCdaYL0T4AAQyVE2ODElN3ve9aYdAKfCmOzKrJMfbPo00Xrz9yf4hZnHrdGNZLxSSHD5TZDixwbyaNCEnRwbIG6yqaRUVYUlEFrvoS7FnBP0P2s4M7tQzNLsQzG7UAxTBkP5PRHQhy26Z7LzgKZ3PoEbTRf9_wRfzFWYoA</recordid><startdate>20210913</startdate><enddate>20210913</enddate><creator>Tao, Litao</creator><creator>Yu, Haoze V.</creator><creator>Llamas, Juan</creator><creator>Trecek, Talon</creator><creator>Wang, Xizi</creator><creator>Stojanova, Zlatka</creator><creator>Groves, Andrew K.</creator><creator>Segil, Neil</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210913</creationdate><title>Enhancer decommissioning imposes an epigenetic barrier to sensory hair cell regeneration</title><author>Tao, Litao ; Yu, Haoze V. ; Llamas, Juan ; Trecek, Talon ; Wang, Xizi ; Stojanova, Zlatka ; Groves, Andrew K. ; Segil, Neil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-a72920548fba3456f818773eddcea6b7d33f65e3160c3be0fc3ecee4561021ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ATOH1 targetome</topic><topic>enhancer decommissioning</topic><topic>epigenetics</topic><topic>H3K4me1</topic><topic>inner ear</topic><topic>maturation</topic><topic>regeneration</topic><topic>sensory hair cell</topic><topic>transdifferentiation potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Litao</creatorcontrib><creatorcontrib>Yu, Haoze V.</creatorcontrib><creatorcontrib>Llamas, Juan</creatorcontrib><creatorcontrib>Trecek, Talon</creatorcontrib><creatorcontrib>Wang, Xizi</creatorcontrib><creatorcontrib>Stojanova, Zlatka</creatorcontrib><creatorcontrib>Groves, Andrew K.</creatorcontrib><creatorcontrib>Segil, Neil</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Developmental cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Litao</au><au>Yu, Haoze V.</au><au>Llamas, Juan</au><au>Trecek, Talon</au><au>Wang, Xizi</au><au>Stojanova, Zlatka</au><au>Groves, Andrew K.</au><au>Segil, Neil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancer decommissioning imposes an epigenetic barrier to sensory hair cell regeneration</atitle><jtitle>Developmental cell</jtitle><date>2021-09-13</date><risdate>2021</risdate><volume>56</volume><issue>17</issue><spage>2471</spage><epage>2485.e5</epage><pages>2471-2485.e5</pages><issn>1534-5807</issn><eissn>1878-1551</eissn><abstract>Adult mammalian tissues such as heart, brain, retina, and the sensory structures of the inner ear do not effectively regenerate, although a latent capacity for regeneration exists at embryonic and perinatal times. We explored the epigenetic basis for this latent regenerative potential in the mouse inner ear and its rapid loss during maturation. In perinatal supporting cells, whose fate is maintained by Notch-mediated lateral inhibition, the hair cell enhancer network is epigenetically primed (H3K4me1) but silenced (active H3K27 de-acetylation and trimethylation). Blocking Notch signaling during the perinatal period of plasticity rapidly eliminates epigenetic silencing and allows supporting cells to transdifferentiate into hair cells. Importantly, H3K4me1 priming of the hair cell enhancers in supporting cells is removed during the first post-natal week, coinciding with the loss of transdifferentiation potential. We hypothesize that enhancer decommissioning during cochlear maturation contributes to the failure of hair cell regeneration in the mature organ of Corti. [Display omitted] •Hair cell enhancers in P1 support cells are epigenetically “primed but silenced”•Hair cell enhancers are decommissioned by H3K4me1-loss in maturing support cells•Enhancer decommissioning blocks supporting cell transdifferentiation•Inhibiting H3K4me1 demethylation extends perinatal transdifferentiation potential Mammals are unable to regenerate cochlear sensory hair cells, while other vertebrates preserve robust inner ear regenerative capacity. We show that epigenetic decommissioning of hair-cell-specific enhancers (removal of H3K4me1) in supporting cells during perinatal maturation contributes to loss of regenerative capacity in the mammalian inner ear.</abstract><pub>Elsevier Inc</pub><pmid>34331868</pmid><doi>10.1016/j.devcel.2021.07.003</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-5807
ispartof Developmental cell, 2021-09, Vol.56 (17), p.2471-2485.e5
issn 1534-5807
1878-1551
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8650127
source Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects ATOH1 targetome
enhancer decommissioning
epigenetics
H3K4me1
inner ear
maturation
regeneration
sensory hair cell
transdifferentiation potential
title Enhancer decommissioning imposes an epigenetic barrier to sensory hair cell regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A00%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancer%20decommissioning%20imposes%20an%20epigenetic%20barrier%20to%20sensory%20hair%20cell%20regeneration&rft.jtitle=Developmental%20cell&rft.au=Tao,%20Litao&rft.date=2021-09-13&rft.volume=56&rft.issue=17&rft.spage=2471&rft.epage=2485.e5&rft.pages=2471-2485.e5&rft.issn=1534-5807&rft.eissn=1878-1551&rft_id=info:doi/10.1016/j.devcel.2021.07.003&rft_dat=%3Cproquest_pubme%3E2557225723%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557225723&rft_id=info:pmid/34331868&rft_els_id=S1534580721005591&rfr_iscdi=true