Accelerating vasculature imaging in tumor using mesoscopic fluorescence molecular tomography via a hybrid reconstruction strategy

Mesoscopic fluorescent molecular tomography (MFMT) enables to image fluorescent molecular probes beyond the typical depth limits of microscopic imaging and with enhanced resolution compared to macroscopic imaging. However, MFMT is a scattering-based inverse problem that is an ill-posed inverse probl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2021-07, Vol.562, p.29-35
Hauptverfasser: Yang, Fugang, Gong, Xue, Faulkner, Denzel, Gao, Shan, Yao, Ruoyang, Zhang, Yanli, Intes, Xavier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue
container_start_page 29
container_title Biochemical and biophysical research communications
container_volume 562
creator Yang, Fugang
Gong, Xue
Faulkner, Denzel
Gao, Shan
Yao, Ruoyang
Zhang, Yanli
Intes, Xavier
description Mesoscopic fluorescent molecular tomography (MFMT) enables to image fluorescent molecular probes beyond the typical depth limits of microscopic imaging and with enhanced resolution compared to macroscopic imaging. However, MFMT is a scattering-based inverse problem that is an ill-posed inverse problem and hence, requires relative complex iterative solvers coupled with regularization strategies. Inspired by the potential of deep learning in performing image formation tasks from raw measurements, this work proposes a hybrid approach to solve the MFMT inverse problem. This methodology combines a convolutional symmetric network and a conventional iterative algorithm to accelerate the reconstruction procedure. By the proposed deep neural network, the principal components of the sensitivity matrix are extracted and the accompanying noise in measurements is suppressed, which helps to accelerate the reconstruction and improve the accuracy of results. We apply the proposed method to reconstruct in silico and vascular tree models. The results demonstrate that reconstruction accuracy and speed are highly improved due to the reduction of redundant entries of the sensitivity matrix and noise suppression. •Mesoscopic fluorescent molecular tomography fills the vacuum zone of microscopic and macroscopic imaging resolution.•A hybrid reconstruction strategy that combines convolutional neural network and conventional iterative algorithms.•The principal components of the sensitivity matrix are extracted and the accompanying noise in measurements is suppressed.•Appling to in silico and vascular tree models to verify the accuracy and speed of reconstruction.
doi_str_mv 10.1016/j.bbrc.2021.05.023
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8650049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X21007944</els_id><sourcerecordid>2532253743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-6adcac6a873dc828ad9e314dd3f8d854230292b712112d3d5e22dd57eb7e8b813</originalsourceid><addsrcrecordid>eNp9UU2LFDEQDaK44-of8JSjl24rlf4EEZZl_YAFLwreQjqp6cnQ3RmT9MAc_eemmUXw4iEkVan3quo9xt4KKAWI5v2xHIZgSgQUJdQloHzGdgJ6KFBA9ZztAKApsBc_b9irGI8AQlRN_5LdyAokQIU79vvOGJoo6OSWkZ91NOuk0xqIu1mPW84tPK2zD3yNWzhT9NH4kzN8P60-UDS0GOKzn2jDBp787MegT4cLPzvNNT9chuAsD2T8ElNYTXJ-4fmlE42X1-zFXk-R3jzdt-zHp4fv91-Kx2-fv97fPRamkpiKRlujTaO7VlrTYadtT1JU1sp9Z7u6QgnY49AKFAKttDUhWlu3NLTUDZ2Qt-zjlfe0DjPZPHUeYFKnkBcNF-W1U__-LO6gRn9WXVNnrfpM8O6JIPhfK8WkZpeXnya9kF-jwlpiPm0lcyleS03wMQba_20jQG3eqaPavFObdwpqlb3LoA9XEGUVzo6CisZt2lqXpUvKevc_-B_u1KZb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532253743</pqid></control><display><type>article</type><title>Accelerating vasculature imaging in tumor using mesoscopic fluorescence molecular tomography via a hybrid reconstruction strategy</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yang, Fugang ; Gong, Xue ; Faulkner, Denzel ; Gao, Shan ; Yao, Ruoyang ; Zhang, Yanli ; Intes, Xavier</creator><creatorcontrib>Yang, Fugang ; Gong, Xue ; Faulkner, Denzel ; Gao, Shan ; Yao, Ruoyang ; Zhang, Yanli ; Intes, Xavier</creatorcontrib><description>Mesoscopic fluorescent molecular tomography (MFMT) enables to image fluorescent molecular probes beyond the typical depth limits of microscopic imaging and with enhanced resolution compared to macroscopic imaging. However, MFMT is a scattering-based inverse problem that is an ill-posed inverse problem and hence, requires relative complex iterative solvers coupled with regularization strategies. Inspired by the potential of deep learning in performing image formation tasks from raw measurements, this work proposes a hybrid approach to solve the MFMT inverse problem. This methodology combines a convolutional symmetric network and a conventional iterative algorithm to accelerate the reconstruction procedure. By the proposed deep neural network, the principal components of the sensitivity matrix are extracted and the accompanying noise in measurements is suppressed, which helps to accelerate the reconstruction and improve the accuracy of results. We apply the proposed method to reconstruct in silico and vascular tree models. The results demonstrate that reconstruction accuracy and speed are highly improved due to the reduction of redundant entries of the sensitivity matrix and noise suppression. •Mesoscopic fluorescent molecular tomography fills the vacuum zone of microscopic and macroscopic imaging resolution.•A hybrid reconstruction strategy that combines convolutional neural network and conventional iterative algorithms.•The principal components of the sensitivity matrix are extracted and the accompanying noise in measurements is suppressed.•Appling to in silico and vascular tree models to verify the accuracy and speed of reconstruction.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2021.05.023</identifier><identifier>PMID: 34030042</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Conventional iterative algorithm ; Deep convolutional symmetric network ; Deep learning ; Mesoscopic fluorescence molecular tomography ; Vasculature imaging</subject><ispartof>Biochemical and biophysical research communications, 2021-07, Vol.562, p.29-35</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-6adcac6a873dc828ad9e314dd3f8d854230292b712112d3d5e22dd57eb7e8b813</citedby><cites>FETCH-LOGICAL-c432t-6adcac6a873dc828ad9e314dd3f8d854230292b712112d3d5e22dd57eb7e8b813</cites><orcidid>0000-0001-5868-4845 ; 0000-0001-7166-5884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006291X21007944$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yang, Fugang</creatorcontrib><creatorcontrib>Gong, Xue</creatorcontrib><creatorcontrib>Faulkner, Denzel</creatorcontrib><creatorcontrib>Gao, Shan</creatorcontrib><creatorcontrib>Yao, Ruoyang</creatorcontrib><creatorcontrib>Zhang, Yanli</creatorcontrib><creatorcontrib>Intes, Xavier</creatorcontrib><title>Accelerating vasculature imaging in tumor using mesoscopic fluorescence molecular tomography via a hybrid reconstruction strategy</title><title>Biochemical and biophysical research communications</title><description>Mesoscopic fluorescent molecular tomography (MFMT) enables to image fluorescent molecular probes beyond the typical depth limits of microscopic imaging and with enhanced resolution compared to macroscopic imaging. However, MFMT is a scattering-based inverse problem that is an ill-posed inverse problem and hence, requires relative complex iterative solvers coupled with regularization strategies. Inspired by the potential of deep learning in performing image formation tasks from raw measurements, this work proposes a hybrid approach to solve the MFMT inverse problem. This methodology combines a convolutional symmetric network and a conventional iterative algorithm to accelerate the reconstruction procedure. By the proposed deep neural network, the principal components of the sensitivity matrix are extracted and the accompanying noise in measurements is suppressed, which helps to accelerate the reconstruction and improve the accuracy of results. We apply the proposed method to reconstruct in silico and vascular tree models. The results demonstrate that reconstruction accuracy and speed are highly improved due to the reduction of redundant entries of the sensitivity matrix and noise suppression. •Mesoscopic fluorescent molecular tomography fills the vacuum zone of microscopic and macroscopic imaging resolution.•A hybrid reconstruction strategy that combines convolutional neural network and conventional iterative algorithms.•The principal components of the sensitivity matrix are extracted and the accompanying noise in measurements is suppressed.•Appling to in silico and vascular tree models to verify the accuracy and speed of reconstruction.</description><subject>Conventional iterative algorithm</subject><subject>Deep convolutional symmetric network</subject><subject>Deep learning</subject><subject>Mesoscopic fluorescence molecular tomography</subject><subject>Vasculature imaging</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UU2LFDEQDaK44-of8JSjl24rlf4EEZZl_YAFLwreQjqp6cnQ3RmT9MAc_eemmUXw4iEkVan3quo9xt4KKAWI5v2xHIZgSgQUJdQloHzGdgJ6KFBA9ZztAKApsBc_b9irGI8AQlRN_5LdyAokQIU79vvOGJoo6OSWkZ91NOuk0xqIu1mPW84tPK2zD3yNWzhT9NH4kzN8P60-UDS0GOKzn2jDBp787MegT4cLPzvNNT9chuAsD2T8ElNYTXJ-4fmlE42X1-zFXk-R3jzdt-zHp4fv91-Kx2-fv97fPRamkpiKRlujTaO7VlrTYadtT1JU1sp9Z7u6QgnY49AKFAKttDUhWlu3NLTUDZ2Qt-zjlfe0DjPZPHUeYFKnkBcNF-W1U__-LO6gRn9WXVNnrfpM8O6JIPhfK8WkZpeXnya9kF-jwlpiPm0lcyleS03wMQba_20jQG3eqaPavFObdwpqlb3LoA9XEGUVzo6CisZt2lqXpUvKevc_-B_u1KZb</recordid><startdate>20210712</startdate><enddate>20210712</enddate><creator>Yang, Fugang</creator><creator>Gong, Xue</creator><creator>Faulkner, Denzel</creator><creator>Gao, Shan</creator><creator>Yao, Ruoyang</creator><creator>Zhang, Yanli</creator><creator>Intes, Xavier</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5868-4845</orcidid><orcidid>https://orcid.org/0000-0001-7166-5884</orcidid></search><sort><creationdate>20210712</creationdate><title>Accelerating vasculature imaging in tumor using mesoscopic fluorescence molecular tomography via a hybrid reconstruction strategy</title><author>Yang, Fugang ; Gong, Xue ; Faulkner, Denzel ; Gao, Shan ; Yao, Ruoyang ; Zhang, Yanli ; Intes, Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-6adcac6a873dc828ad9e314dd3f8d854230292b712112d3d5e22dd57eb7e8b813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Conventional iterative algorithm</topic><topic>Deep convolutional symmetric network</topic><topic>Deep learning</topic><topic>Mesoscopic fluorescence molecular tomography</topic><topic>Vasculature imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Fugang</creatorcontrib><creatorcontrib>Gong, Xue</creatorcontrib><creatorcontrib>Faulkner, Denzel</creatorcontrib><creatorcontrib>Gao, Shan</creatorcontrib><creatorcontrib>Yao, Ruoyang</creatorcontrib><creatorcontrib>Zhang, Yanli</creatorcontrib><creatorcontrib>Intes, Xavier</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Fugang</au><au>Gong, Xue</au><au>Faulkner, Denzel</au><au>Gao, Shan</au><au>Yao, Ruoyang</au><au>Zhang, Yanli</au><au>Intes, Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerating vasculature imaging in tumor using mesoscopic fluorescence molecular tomography via a hybrid reconstruction strategy</atitle><jtitle>Biochemical and biophysical research communications</jtitle><date>2021-07-12</date><risdate>2021</risdate><volume>562</volume><spage>29</spage><epage>35</epage><pages>29-35</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>Mesoscopic fluorescent molecular tomography (MFMT) enables to image fluorescent molecular probes beyond the typical depth limits of microscopic imaging and with enhanced resolution compared to macroscopic imaging. However, MFMT is a scattering-based inverse problem that is an ill-posed inverse problem and hence, requires relative complex iterative solvers coupled with regularization strategies. Inspired by the potential of deep learning in performing image formation tasks from raw measurements, this work proposes a hybrid approach to solve the MFMT inverse problem. This methodology combines a convolutional symmetric network and a conventional iterative algorithm to accelerate the reconstruction procedure. By the proposed deep neural network, the principal components of the sensitivity matrix are extracted and the accompanying noise in measurements is suppressed, which helps to accelerate the reconstruction and improve the accuracy of results. We apply the proposed method to reconstruct in silico and vascular tree models. The results demonstrate that reconstruction accuracy and speed are highly improved due to the reduction of redundant entries of the sensitivity matrix and noise suppression. •Mesoscopic fluorescent molecular tomography fills the vacuum zone of microscopic and macroscopic imaging resolution.•A hybrid reconstruction strategy that combines convolutional neural network and conventional iterative algorithms.•The principal components of the sensitivity matrix are extracted and the accompanying noise in measurements is suppressed.•Appling to in silico and vascular tree models to verify the accuracy and speed of reconstruction.</abstract><pub>Elsevier Inc</pub><pmid>34030042</pmid><doi>10.1016/j.bbrc.2021.05.023</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5868-4845</orcidid><orcidid>https://orcid.org/0000-0001-7166-5884</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-291X
ispartof Biochemical and biophysical research communications, 2021-07, Vol.562, p.29-35
issn 0006-291X
1090-2104
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8650049
source Elsevier ScienceDirect Journals Complete
subjects Conventional iterative algorithm
Deep convolutional symmetric network
Deep learning
Mesoscopic fluorescence molecular tomography
Vasculature imaging
title Accelerating vasculature imaging in tumor using mesoscopic fluorescence molecular tomography via a hybrid reconstruction strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A04%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerating%20vasculature%20imaging%20in%20tumor%20using%20mesoscopic%20fluorescence%20molecular%20tomography%20via%20a%20hybrid%20reconstruction%20strategy&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Yang,%20Fugang&rft.date=2021-07-12&rft.volume=562&rft.spage=29&rft.epage=35&rft.pages=29-35&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2021.05.023&rft_dat=%3Cproquest_pubme%3E2532253743%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532253743&rft_id=info:pmid/34030042&rft_els_id=S0006291X21007944&rfr_iscdi=true