Accelerating vasculature imaging in tumor using mesoscopic fluorescence molecular tomography via a hybrid reconstruction strategy
Mesoscopic fluorescent molecular tomography (MFMT) enables to image fluorescent molecular probes beyond the typical depth limits of microscopic imaging and with enhanced resolution compared to macroscopic imaging. However, MFMT is a scattering-based inverse problem that is an ill-posed inverse probl...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 2021-07, Vol.562, p.29-35 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | |
container_start_page | 29 |
container_title | Biochemical and biophysical research communications |
container_volume | 562 |
creator | Yang, Fugang Gong, Xue Faulkner, Denzel Gao, Shan Yao, Ruoyang Zhang, Yanli Intes, Xavier |
description | Mesoscopic fluorescent molecular tomography (MFMT) enables to image fluorescent molecular probes beyond the typical depth limits of microscopic imaging and with enhanced resolution compared to macroscopic imaging. However, MFMT is a scattering-based inverse problem that is an ill-posed inverse problem and hence, requires relative complex iterative solvers coupled with regularization strategies. Inspired by the potential of deep learning in performing image formation tasks from raw measurements, this work proposes a hybrid approach to solve the MFMT inverse problem. This methodology combines a convolutional symmetric network and a conventional iterative algorithm to accelerate the reconstruction procedure. By the proposed deep neural network, the principal components of the sensitivity matrix are extracted and the accompanying noise in measurements is suppressed, which helps to accelerate the reconstruction and improve the accuracy of results. We apply the proposed method to reconstruct in silico and vascular tree models. The results demonstrate that reconstruction accuracy and speed are highly improved due to the reduction of redundant entries of the sensitivity matrix and noise suppression.
•Mesoscopic fluorescent molecular tomography fills the vacuum zone of microscopic and macroscopic imaging resolution.•A hybrid reconstruction strategy that combines convolutional neural network and conventional iterative algorithms.•The principal components of the sensitivity matrix are extracted and the accompanying noise in measurements is suppressed.•Appling to in silico and vascular tree models to verify the accuracy and speed of reconstruction. |
doi_str_mv | 10.1016/j.bbrc.2021.05.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8650049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X21007944</els_id><sourcerecordid>2532253743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-6adcac6a873dc828ad9e314dd3f8d854230292b712112d3d5e22dd57eb7e8b813</originalsourceid><addsrcrecordid>eNp9UU2LFDEQDaK44-of8JSjl24rlf4EEZZl_YAFLwreQjqp6cnQ3RmT9MAc_eemmUXw4iEkVan3quo9xt4KKAWI5v2xHIZgSgQUJdQloHzGdgJ6KFBA9ZztAKApsBc_b9irGI8AQlRN_5LdyAokQIU79vvOGJoo6OSWkZ91NOuk0xqIu1mPW84tPK2zD3yNWzhT9NH4kzN8P60-UDS0GOKzn2jDBp787MegT4cLPzvNNT9chuAsD2T8ElNYTXJ-4fmlE42X1-zFXk-R3jzdt-zHp4fv91-Kx2-fv97fPRamkpiKRlujTaO7VlrTYadtT1JU1sp9Z7u6QgnY49AKFAKttDUhWlu3NLTUDZ2Qt-zjlfe0DjPZPHUeYFKnkBcNF-W1U__-LO6gRn9WXVNnrfpM8O6JIPhfK8WkZpeXnya9kF-jwlpiPm0lcyleS03wMQba_20jQG3eqaPavFObdwpqlb3LoA9XEGUVzo6CisZt2lqXpUvKevc_-B_u1KZb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532253743</pqid></control><display><type>article</type><title>Accelerating vasculature imaging in tumor using mesoscopic fluorescence molecular tomography via a hybrid reconstruction strategy</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yang, Fugang ; Gong, Xue ; Faulkner, Denzel ; Gao, Shan ; Yao, Ruoyang ; Zhang, Yanli ; Intes, Xavier</creator><creatorcontrib>Yang, Fugang ; Gong, Xue ; Faulkner, Denzel ; Gao, Shan ; Yao, Ruoyang ; Zhang, Yanli ; Intes, Xavier</creatorcontrib><description>Mesoscopic fluorescent molecular tomography (MFMT) enables to image fluorescent molecular probes beyond the typical depth limits of microscopic imaging and with enhanced resolution compared to macroscopic imaging. However, MFMT is a scattering-based inverse problem that is an ill-posed inverse problem and hence, requires relative complex iterative solvers coupled with regularization strategies. Inspired by the potential of deep learning in performing image formation tasks from raw measurements, this work proposes a hybrid approach to solve the MFMT inverse problem. This methodology combines a convolutional symmetric network and a conventional iterative algorithm to accelerate the reconstruction procedure. By the proposed deep neural network, the principal components of the sensitivity matrix are extracted and the accompanying noise in measurements is suppressed, which helps to accelerate the reconstruction and improve the accuracy of results. We apply the proposed method to reconstruct in silico and vascular tree models. The results demonstrate that reconstruction accuracy and speed are highly improved due to the reduction of redundant entries of the sensitivity matrix and noise suppression.
•Mesoscopic fluorescent molecular tomography fills the vacuum zone of microscopic and macroscopic imaging resolution.•A hybrid reconstruction strategy that combines convolutional neural network and conventional iterative algorithms.•The principal components of the sensitivity matrix are extracted and the accompanying noise in measurements is suppressed.•Appling to in silico and vascular tree models to verify the accuracy and speed of reconstruction.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2021.05.023</identifier><identifier>PMID: 34030042</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Conventional iterative algorithm ; Deep convolutional symmetric network ; Deep learning ; Mesoscopic fluorescence molecular tomography ; Vasculature imaging</subject><ispartof>Biochemical and biophysical research communications, 2021-07, Vol.562, p.29-35</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-6adcac6a873dc828ad9e314dd3f8d854230292b712112d3d5e22dd57eb7e8b813</citedby><cites>FETCH-LOGICAL-c432t-6adcac6a873dc828ad9e314dd3f8d854230292b712112d3d5e22dd57eb7e8b813</cites><orcidid>0000-0001-5868-4845 ; 0000-0001-7166-5884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006291X21007944$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yang, Fugang</creatorcontrib><creatorcontrib>Gong, Xue</creatorcontrib><creatorcontrib>Faulkner, Denzel</creatorcontrib><creatorcontrib>Gao, Shan</creatorcontrib><creatorcontrib>Yao, Ruoyang</creatorcontrib><creatorcontrib>Zhang, Yanli</creatorcontrib><creatorcontrib>Intes, Xavier</creatorcontrib><title>Accelerating vasculature imaging in tumor using mesoscopic fluorescence molecular tomography via a hybrid reconstruction strategy</title><title>Biochemical and biophysical research communications</title><description>Mesoscopic fluorescent molecular tomography (MFMT) enables to image fluorescent molecular probes beyond the typical depth limits of microscopic imaging and with enhanced resolution compared to macroscopic imaging. However, MFMT is a scattering-based inverse problem that is an ill-posed inverse problem and hence, requires relative complex iterative solvers coupled with regularization strategies. Inspired by the potential of deep learning in performing image formation tasks from raw measurements, this work proposes a hybrid approach to solve the MFMT inverse problem. This methodology combines a convolutional symmetric network and a conventional iterative algorithm to accelerate the reconstruction procedure. By the proposed deep neural network, the principal components of the sensitivity matrix are extracted and the accompanying noise in measurements is suppressed, which helps to accelerate the reconstruction and improve the accuracy of results. We apply the proposed method to reconstruct in silico and vascular tree models. The results demonstrate that reconstruction accuracy and speed are highly improved due to the reduction of redundant entries of the sensitivity matrix and noise suppression.
•Mesoscopic fluorescent molecular tomography fills the vacuum zone of microscopic and macroscopic imaging resolution.•A hybrid reconstruction strategy that combines convolutional neural network and conventional iterative algorithms.•The principal components of the sensitivity matrix are extracted and the accompanying noise in measurements is suppressed.•Appling to in silico and vascular tree models to verify the accuracy and speed of reconstruction.</description><subject>Conventional iterative algorithm</subject><subject>Deep convolutional symmetric network</subject><subject>Deep learning</subject><subject>Mesoscopic fluorescence molecular tomography</subject><subject>Vasculature imaging</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UU2LFDEQDaK44-of8JSjl24rlf4EEZZl_YAFLwreQjqp6cnQ3RmT9MAc_eemmUXw4iEkVan3quo9xt4KKAWI5v2xHIZgSgQUJdQloHzGdgJ6KFBA9ZztAKApsBc_b9irGI8AQlRN_5LdyAokQIU79vvOGJoo6OSWkZ91NOuk0xqIu1mPW84tPK2zD3yNWzhT9NH4kzN8P60-UDS0GOKzn2jDBp787MegT4cLPzvNNT9chuAsD2T8ElNYTXJ-4fmlE42X1-zFXk-R3jzdt-zHp4fv91-Kx2-fv97fPRamkpiKRlujTaO7VlrTYadtT1JU1sp9Z7u6QgnY49AKFAKttDUhWlu3NLTUDZ2Qt-zjlfe0DjPZPHUeYFKnkBcNF-W1U__-LO6gRn9WXVNnrfpM8O6JIPhfK8WkZpeXnya9kF-jwlpiPm0lcyleS03wMQba_20jQG3eqaPavFObdwpqlb3LoA9XEGUVzo6CisZt2lqXpUvKevc_-B_u1KZb</recordid><startdate>20210712</startdate><enddate>20210712</enddate><creator>Yang, Fugang</creator><creator>Gong, Xue</creator><creator>Faulkner, Denzel</creator><creator>Gao, Shan</creator><creator>Yao, Ruoyang</creator><creator>Zhang, Yanli</creator><creator>Intes, Xavier</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5868-4845</orcidid><orcidid>https://orcid.org/0000-0001-7166-5884</orcidid></search><sort><creationdate>20210712</creationdate><title>Accelerating vasculature imaging in tumor using mesoscopic fluorescence molecular tomography via a hybrid reconstruction strategy</title><author>Yang, Fugang ; Gong, Xue ; Faulkner, Denzel ; Gao, Shan ; Yao, Ruoyang ; Zhang, Yanli ; Intes, Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-6adcac6a873dc828ad9e314dd3f8d854230292b712112d3d5e22dd57eb7e8b813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Conventional iterative algorithm</topic><topic>Deep convolutional symmetric network</topic><topic>Deep learning</topic><topic>Mesoscopic fluorescence molecular tomography</topic><topic>Vasculature imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Fugang</creatorcontrib><creatorcontrib>Gong, Xue</creatorcontrib><creatorcontrib>Faulkner, Denzel</creatorcontrib><creatorcontrib>Gao, Shan</creatorcontrib><creatorcontrib>Yao, Ruoyang</creatorcontrib><creatorcontrib>Zhang, Yanli</creatorcontrib><creatorcontrib>Intes, Xavier</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Fugang</au><au>Gong, Xue</au><au>Faulkner, Denzel</au><au>Gao, Shan</au><au>Yao, Ruoyang</au><au>Zhang, Yanli</au><au>Intes, Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerating vasculature imaging in tumor using mesoscopic fluorescence molecular tomography via a hybrid reconstruction strategy</atitle><jtitle>Biochemical and biophysical research communications</jtitle><date>2021-07-12</date><risdate>2021</risdate><volume>562</volume><spage>29</spage><epage>35</epage><pages>29-35</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>Mesoscopic fluorescent molecular tomography (MFMT) enables to image fluorescent molecular probes beyond the typical depth limits of microscopic imaging and with enhanced resolution compared to macroscopic imaging. However, MFMT is a scattering-based inverse problem that is an ill-posed inverse problem and hence, requires relative complex iterative solvers coupled with regularization strategies. Inspired by the potential of deep learning in performing image formation tasks from raw measurements, this work proposes a hybrid approach to solve the MFMT inverse problem. This methodology combines a convolutional symmetric network and a conventional iterative algorithm to accelerate the reconstruction procedure. By the proposed deep neural network, the principal components of the sensitivity matrix are extracted and the accompanying noise in measurements is suppressed, which helps to accelerate the reconstruction and improve the accuracy of results. We apply the proposed method to reconstruct in silico and vascular tree models. The results demonstrate that reconstruction accuracy and speed are highly improved due to the reduction of redundant entries of the sensitivity matrix and noise suppression.
•Mesoscopic fluorescent molecular tomography fills the vacuum zone of microscopic and macroscopic imaging resolution.•A hybrid reconstruction strategy that combines convolutional neural network and conventional iterative algorithms.•The principal components of the sensitivity matrix are extracted and the accompanying noise in measurements is suppressed.•Appling to in silico and vascular tree models to verify the accuracy and speed of reconstruction.</abstract><pub>Elsevier Inc</pub><pmid>34030042</pmid><doi>10.1016/j.bbrc.2021.05.023</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5868-4845</orcidid><orcidid>https://orcid.org/0000-0001-7166-5884</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-291X |
ispartof | Biochemical and biophysical research communications, 2021-07, Vol.562, p.29-35 |
issn | 0006-291X 1090-2104 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8650049 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Conventional iterative algorithm Deep convolutional symmetric network Deep learning Mesoscopic fluorescence molecular tomography Vasculature imaging |
title | Accelerating vasculature imaging in tumor using mesoscopic fluorescence molecular tomography via a hybrid reconstruction strategy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A04%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerating%20vasculature%20imaging%20in%20tumor%20using%20mesoscopic%20fluorescence%20molecular%20tomography%20via%20a%20hybrid%20reconstruction%20strategy&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Yang,%20Fugang&rft.date=2021-07-12&rft.volume=562&rft.spage=29&rft.epage=35&rft.pages=29-35&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2021.05.023&rft_dat=%3Cproquest_pubme%3E2532253743%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532253743&rft_id=info:pmid/34030042&rft_els_id=S0006291X21007944&rfr_iscdi=true |