Understanding Cation Trends for Hydrogen Evolution on Platinum and Gold Electrodes in Alkaline Media

In this work, we study how the cation identity and concentration alter the kinetics of the hydrogen evolution reaction (HER) on platinum and gold electrodes. A previous work suggested an inverted activity trend as a function of alkali metal cation when comparing the performance of platinum and gold...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2021-12, Vol.11 (23), p.14328-14335
Hauptverfasser: Monteiro, Mariana C. O, Goyal, Akansha, Moerland, Pricilla, Koper, Marc T. M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14335
container_issue 23
container_start_page 14328
container_title ACS catalysis
container_volume 11
creator Monteiro, Mariana C. O
Goyal, Akansha
Moerland, Pricilla
Koper, Marc T. M
description In this work, we study how the cation identity and concentration alter the kinetics of the hydrogen evolution reaction (HER) on platinum and gold electrodes. A previous work suggested an inverted activity trend as a function of alkali metal cation when comparing the performance of platinum and gold catalysts in alkaline media. We show that weakly hydrated cations (K+) favor HER on gold only at low overpotentials (or lower alkalinity), whereas in more alkaline pH (or high overpotentials), a higher activity is observed using electrolytes containing strongly hydrated cations (Li+). We find a similar trend for platinum; however, the inhibition of HER by weakly hydrated cations on platinum is observed already at lower alkalinity and lower cation concentrations, suggesting that platinum interacts more strongly with metal cations than gold. We propose that weakly hydrated cations stabilize the transition state of the water dissociation step more favorably due to their higher near-surface concentration in comparison to a strongly hydrated cation such as Li+. However, at high pH and consequently higher near-surface cation concentrations, the accumulation of these species at the outer Helmholtz plane inhibits HER. This is especially pronounced on platinum, where a change in the rate-determining step is observed at pH 13 when using a Li+- or K+-containing electrolyte.
doi_str_mv 10.1021/acscatal.1c04268
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8650008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608534435</sourcerecordid><originalsourceid>FETCH-LOGICAL-a410t-3ffb78e216f24726d976afc48867b02c77fbaa0fdb70fca708736630a4a493503</originalsourceid><addsrcrecordid>eNp1UU1PXCEUJU1NnVj3Lll20VHg8QA3JpPJVJtMYxe6JvfxMWIZmMJ7Jv77Ymc0dlFyE0jOBzfnIHRGyTkljF6AqQZGiOfUEM6E-oBmjPb9vOdd__Hd-xid1vpI2uG9UJJ8QscdV0pRRmfI3ifrSh0h2ZA2eAljyAnfFZdsxT4XfPNsS964hFdPOU5_0TY_YyOmaYubDl_naPEqOjOWbF3FIeFF_AUxJId_OBvgMzryEKs7Pdwn6P7b6m55M1_fXn9fLtZz4JSM8877QSrHqPCMSybspRTgTdtVyIEwI6UfAIi3gyTegCRKdkJ0BDjwy64n3Qm62vvupmHrrHFpLBD1roQtlGedIeh_kRQe9CY_aSX6Fo9qBl8OBiX_nlwd9TZU42KE5PJUNRNE9R1voTYq2VNNybUW59--oUS_9KNf-9GHfprk617SEP2Yp5JaGP-n_wHpYJPi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608534435</pqid></control><display><type>article</type><title>Understanding Cation Trends for Hydrogen Evolution on Platinum and Gold Electrodes in Alkaline Media</title><source>ACS Publications</source><creator>Monteiro, Mariana C. O ; Goyal, Akansha ; Moerland, Pricilla ; Koper, Marc T. M</creator><creatorcontrib>Monteiro, Mariana C. O ; Goyal, Akansha ; Moerland, Pricilla ; Koper, Marc T. M</creatorcontrib><description>In this work, we study how the cation identity and concentration alter the kinetics of the hydrogen evolution reaction (HER) on platinum and gold electrodes. A previous work suggested an inverted activity trend as a function of alkali metal cation when comparing the performance of platinum and gold catalysts in alkaline media. We show that weakly hydrated cations (K+) favor HER on gold only at low overpotentials (or lower alkalinity), whereas in more alkaline pH (or high overpotentials), a higher activity is observed using electrolytes containing strongly hydrated cations (Li+). We find a similar trend for platinum; however, the inhibition of HER by weakly hydrated cations on platinum is observed already at lower alkalinity and lower cation concentrations, suggesting that platinum interacts more strongly with metal cations than gold. We propose that weakly hydrated cations stabilize the transition state of the water dissociation step more favorably due to their higher near-surface concentration in comparison to a strongly hydrated cation such as Li+. However, at high pH and consequently higher near-surface cation concentrations, the accumulation of these species at the outer Helmholtz plane inhibits HER. This is especially pronounced on platinum, where a change in the rate-determining step is observed at pH 13 when using a Li+- or K+-containing electrolyte.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.1c04268</identifier><identifier>PMID: 34888121</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS catalysis, 2021-12, Vol.11 (23), p.14328-14335</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><rights>2021 The Authors. Published by American Chemical Society 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a410t-3ffb78e216f24726d976afc48867b02c77fbaa0fdb70fca708736630a4a493503</citedby><cites>FETCH-LOGICAL-a410t-3ffb78e216f24726d976afc48867b02c77fbaa0fdb70fca708736630a4a493503</cites><orcidid>0000-0001-7451-1004 ; 0000-0001-6777-4594</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.1c04268$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.1c04268$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Monteiro, Mariana C. O</creatorcontrib><creatorcontrib>Goyal, Akansha</creatorcontrib><creatorcontrib>Moerland, Pricilla</creatorcontrib><creatorcontrib>Koper, Marc T. M</creatorcontrib><title>Understanding Cation Trends for Hydrogen Evolution on Platinum and Gold Electrodes in Alkaline Media</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>In this work, we study how the cation identity and concentration alter the kinetics of the hydrogen evolution reaction (HER) on platinum and gold electrodes. A previous work suggested an inverted activity trend as a function of alkali metal cation when comparing the performance of platinum and gold catalysts in alkaline media. We show that weakly hydrated cations (K+) favor HER on gold only at low overpotentials (or lower alkalinity), whereas in more alkaline pH (or high overpotentials), a higher activity is observed using electrolytes containing strongly hydrated cations (Li+). We find a similar trend for platinum; however, the inhibition of HER by weakly hydrated cations on platinum is observed already at lower alkalinity and lower cation concentrations, suggesting that platinum interacts more strongly with metal cations than gold. We propose that weakly hydrated cations stabilize the transition state of the water dissociation step more favorably due to their higher near-surface concentration in comparison to a strongly hydrated cation such as Li+. However, at high pH and consequently higher near-surface cation concentrations, the accumulation of these species at the outer Helmholtz plane inhibits HER. This is especially pronounced on platinum, where a change in the rate-determining step is observed at pH 13 when using a Li+- or K+-containing electrolyte.</description><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UU1PXCEUJU1NnVj3Lll20VHg8QA3JpPJVJtMYxe6JvfxMWIZmMJ7Jv77Ymc0dlFyE0jOBzfnIHRGyTkljF6AqQZGiOfUEM6E-oBmjPb9vOdd__Hd-xid1vpI2uG9UJJ8QscdV0pRRmfI3ifrSh0h2ZA2eAljyAnfFZdsxT4XfPNsS964hFdPOU5_0TY_YyOmaYubDl_naPEqOjOWbF3FIeFF_AUxJId_OBvgMzryEKs7Pdwn6P7b6m55M1_fXn9fLtZz4JSM8877QSrHqPCMSybspRTgTdtVyIEwI6UfAIi3gyTegCRKdkJ0BDjwy64n3Qm62vvupmHrrHFpLBD1roQtlGedIeh_kRQe9CY_aSX6Fo9qBl8OBiX_nlwd9TZU42KE5PJUNRNE9R1voTYq2VNNybUW59--oUS_9KNf-9GHfprk617SEP2Yp5JaGP-n_wHpYJPi</recordid><startdate>20211203</startdate><enddate>20211203</enddate><creator>Monteiro, Mariana C. O</creator><creator>Goyal, Akansha</creator><creator>Moerland, Pricilla</creator><creator>Koper, Marc T. M</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7451-1004</orcidid><orcidid>https://orcid.org/0000-0001-6777-4594</orcidid></search><sort><creationdate>20211203</creationdate><title>Understanding Cation Trends for Hydrogen Evolution on Platinum and Gold Electrodes in Alkaline Media</title><author>Monteiro, Mariana C. O ; Goyal, Akansha ; Moerland, Pricilla ; Koper, Marc T. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a410t-3ffb78e216f24726d976afc48867b02c77fbaa0fdb70fca708736630a4a493503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monteiro, Mariana C. O</creatorcontrib><creatorcontrib>Goyal, Akansha</creatorcontrib><creatorcontrib>Moerland, Pricilla</creatorcontrib><creatorcontrib>Koper, Marc T. M</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monteiro, Mariana C. O</au><au>Goyal, Akansha</au><au>Moerland, Pricilla</au><au>Koper, Marc T. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Cation Trends for Hydrogen Evolution on Platinum and Gold Electrodes in Alkaline Media</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2021-12-03</date><risdate>2021</risdate><volume>11</volume><issue>23</issue><spage>14328</spage><epage>14335</epage><pages>14328-14335</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>In this work, we study how the cation identity and concentration alter the kinetics of the hydrogen evolution reaction (HER) on platinum and gold electrodes. A previous work suggested an inverted activity trend as a function of alkali metal cation when comparing the performance of platinum and gold catalysts in alkaline media. We show that weakly hydrated cations (K+) favor HER on gold only at low overpotentials (or lower alkalinity), whereas in more alkaline pH (or high overpotentials), a higher activity is observed using electrolytes containing strongly hydrated cations (Li+). We find a similar trend for platinum; however, the inhibition of HER by weakly hydrated cations on platinum is observed already at lower alkalinity and lower cation concentrations, suggesting that platinum interacts more strongly with metal cations than gold. We propose that weakly hydrated cations stabilize the transition state of the water dissociation step more favorably due to their higher near-surface concentration in comparison to a strongly hydrated cation such as Li+. However, at high pH and consequently higher near-surface cation concentrations, the accumulation of these species at the outer Helmholtz plane inhibits HER. This is especially pronounced on platinum, where a change in the rate-determining step is observed at pH 13 when using a Li+- or K+-containing electrolyte.</abstract><pub>American Chemical Society</pub><pmid>34888121</pmid><doi>10.1021/acscatal.1c04268</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7451-1004</orcidid><orcidid>https://orcid.org/0000-0001-6777-4594</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2021-12, Vol.11 (23), p.14328-14335
issn 2155-5435
2155-5435
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8650008
source ACS Publications
title Understanding Cation Trends for Hydrogen Evolution on Platinum and Gold Electrodes in Alkaline Media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A26%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Cation%20Trends%20for%20Hydrogen%20Evolution%20on%20Platinum%20and%20Gold%20Electrodes%20in%20Alkaline%20Media&rft.jtitle=ACS%20catalysis&rft.au=Monteiro,%20Mariana%20C.%20O&rft.date=2021-12-03&rft.volume=11&rft.issue=23&rft.spage=14328&rft.epage=14335&rft.pages=14328-14335&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.1c04268&rft_dat=%3Cproquest_pubme%3E2608534435%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608534435&rft_id=info:pmid/34888121&rfr_iscdi=true