Zipper head mechanism of telomere synthesis by human telomerase

Telomerase, a multi-subunit ribonucleoprotein complex, is a unique reverse transcriptase that catalyzes the processive addition of a repeat sequence to extend the telomere end using a short fragment of its own RNA component as the template. Despite recent structural characterizations of human and Te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell research 2021-12, Vol.31 (12), p.1275-1290
Hauptverfasser: Wan, Futang, Ding, Yongbo, Zhang, Yuebin, Wu, Zhenfang, Li, Shaobai, Yang, Lin, Yan, Xiangyu, Lan, Pengfei, Li, Guohui, Wu, Jian, Lei, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1290
container_issue 12
container_start_page 1275
container_title Cell research
container_volume 31
creator Wan, Futang
Ding, Yongbo
Zhang, Yuebin
Wu, Zhenfang
Li, Shaobai
Yang, Lin
Yan, Xiangyu
Lan, Pengfei
Li, Guohui
Wu, Jian
Lei, Ming
description Telomerase, a multi-subunit ribonucleoprotein complex, is a unique reverse transcriptase that catalyzes the processive addition of a repeat sequence to extend the telomere end using a short fragment of its own RNA component as the template. Despite recent structural characterizations of human and Tetrahymena telomerase, it is still a mystery how telomerase repeatedly uses its RNA template to synthesize telomeric DNA. Here, we report the cryo-EM structure of human telomerase holoenzyme bound with telomeric DNA at resolutions of 3.5 Å and 3.9 Å for the catalytic core and biogenesis module, respectively. The structure reveals that a leucine residue Leu980 in telomerase reverse transcriptase (TERT) catalytic subunit functions as a zipper head to limit the length of the short primer–template duplex in the active center. Moreover, our structural and computational analyses suggest that TERT and telomerase RNA (hTR) are organized to harbor a preformed active site that can accommodate short primer–template duplex substrates for catalysis. Furthermore, our findings unveil a double-fingers architecture in TERT that ensures nucleotide addition processivity of human telomerase. We propose that the zipper head Leu980 is a structural determinant for the sequence-based pausing signal of DNA synthesis that coincides with the RNA element-based physical template boundary. Functional analyses unveil that the non-glycine zipper head plays an essential role in both telomerase repeat addition processivity and telomere length homeostasis. In addition, we also demonstrate that this zipper head mechanism is conserved in all eukaryotic telomerases. Together, our study provides an integrated model for telomerase-mediated telomere synthesis.
doi_str_mv 10.1038/s41422-021-00586-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8648750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2607083038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-9aaddb9165bdde739a9419ea6bb41a77e27612c9dbceee1f16a81acdf44789ae3</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMozvj4Ay6k4MZNNUnTJtkoMviCATe6cRNu29tphz7GpBXm3xudh4-FqwTOd0_uySHkhNELRiN16QQTnIeUs5DSWCWh3CFjJoUKpYrUrr9T6qWE8hE5cG5OKY9FzPbJKBJScRnTMbl-rRYLtEGJkAcNZiW0lWuCrgh6rLsGLQZu2fYlusoF6TIohwbajQYOj8heAbXD4_V5SF7ubp8nD-H06f5xcjMNMyFFH2qAPE81S-I0z1FGGrRgGiFJU8FASuQyYTzTeZohIitYAopBlhfCb6oBo0NytfJdDGmDeYZtb6E2C1s1YJemg8r8VtqqNLPu3ahEKJ_UG5yvDWz3NqDrTVO5DOsaWuwGZ3isFZUq1rFHz_6g826wrY9neEIlVZH_fU_xFZXZzjmLxXYZRs1nP2bVj_H9mK9-jPRDpz9jbEc2hXggWgHOS-0M7ffb_9h-AB3ZnN0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607083038</pqid></control><display><type>article</type><title>Zipper head mechanism of telomere synthesis by human telomerase</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Wan, Futang ; Ding, Yongbo ; Zhang, Yuebin ; Wu, Zhenfang ; Li, Shaobai ; Yang, Lin ; Yan, Xiangyu ; Lan, Pengfei ; Li, Guohui ; Wu, Jian ; Lei, Ming</creator><creatorcontrib>Wan, Futang ; Ding, Yongbo ; Zhang, Yuebin ; Wu, Zhenfang ; Li, Shaobai ; Yang, Lin ; Yan, Xiangyu ; Lan, Pengfei ; Li, Guohui ; Wu, Jian ; Lei, Ming</creatorcontrib><description>Telomerase, a multi-subunit ribonucleoprotein complex, is a unique reverse transcriptase that catalyzes the processive addition of a repeat sequence to extend the telomere end using a short fragment of its own RNA component as the template. Despite recent structural characterizations of human and Tetrahymena telomerase, it is still a mystery how telomerase repeatedly uses its RNA template to synthesize telomeric DNA. Here, we report the cryo-EM structure of human telomerase holoenzyme bound with telomeric DNA at resolutions of 3.5 Å and 3.9 Å for the catalytic core and biogenesis module, respectively. The structure reveals that a leucine residue Leu980 in telomerase reverse transcriptase (TERT) catalytic subunit functions as a zipper head to limit the length of the short primer–template duplex in the active center. Moreover, our structural and computational analyses suggest that TERT and telomerase RNA (hTR) are organized to harbor a preformed active site that can accommodate short primer–template duplex substrates for catalysis. Furthermore, our findings unveil a double-fingers architecture in TERT that ensures nucleotide addition processivity of human telomerase. We propose that the zipper head Leu980 is a structural determinant for the sequence-based pausing signal of DNA synthesis that coincides with the RNA element-based physical template boundary. Functional analyses unveil that the non-glycine zipper head plays an essential role in both telomerase repeat addition processivity and telomere length homeostasis. In addition, we also demonstrate that this zipper head mechanism is conserved in all eukaryotic telomerases. Together, our study provides an integrated model for telomerase-mediated telomere synthesis.</description><identifier>ISSN: 1001-0602</identifier><identifier>EISSN: 1748-7838</identifier><identifier>DOI: 10.1038/s41422-021-00586-7</identifier><identifier>PMID: 34782750</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>101/28 ; 631/535/1258/1259 ; 631/80/103/560 ; 82/29 ; 82/58 ; 82/83 ; Biomedical and Life Sciences ; Catalysis ; Cell Biology ; Computer applications ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; Glycine ; Holoenzymes - genetics ; Homeostasis ; Humans ; Leucine ; Life Sciences ; Nucleotide sequence ; Nucleotides ; Repetitive Sequences, Nucleic Acid ; Ribonucleic acid ; RNA ; RNA-directed DNA polymerase ; Substrates ; Synthesis ; Telomerase ; Telomerase - metabolism ; Telomerase reverse transcriptase ; Telomere - genetics ; Telomere - metabolism ; Telomeres</subject><ispartof>Cell research, 2021-12, Vol.31 (12), p.1275-1290</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-9aaddb9165bdde739a9419ea6bb41a77e27612c9dbceee1f16a81acdf44789ae3</citedby><cites>FETCH-LOGICAL-c474t-9aaddb9165bdde739a9419ea6bb41a77e27612c9dbceee1f16a81acdf44789ae3</cites><orcidid>0000-0002-1153-4791 ; 0000-0002-4518-9893 ; 0000-0002-2072-0967 ; 0000-0001-8174-7189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648750/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648750/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34782750$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wan, Futang</creatorcontrib><creatorcontrib>Ding, Yongbo</creatorcontrib><creatorcontrib>Zhang, Yuebin</creatorcontrib><creatorcontrib>Wu, Zhenfang</creatorcontrib><creatorcontrib>Li, Shaobai</creatorcontrib><creatorcontrib>Yang, Lin</creatorcontrib><creatorcontrib>Yan, Xiangyu</creatorcontrib><creatorcontrib>Lan, Pengfei</creatorcontrib><creatorcontrib>Li, Guohui</creatorcontrib><creatorcontrib>Wu, Jian</creatorcontrib><creatorcontrib>Lei, Ming</creatorcontrib><title>Zipper head mechanism of telomere synthesis by human telomerase</title><title>Cell research</title><addtitle>Cell Res</addtitle><addtitle>Cell Res</addtitle><description>Telomerase, a multi-subunit ribonucleoprotein complex, is a unique reverse transcriptase that catalyzes the processive addition of a repeat sequence to extend the telomere end using a short fragment of its own RNA component as the template. Despite recent structural characterizations of human and Tetrahymena telomerase, it is still a mystery how telomerase repeatedly uses its RNA template to synthesize telomeric DNA. Here, we report the cryo-EM structure of human telomerase holoenzyme bound with telomeric DNA at resolutions of 3.5 Å and 3.9 Å for the catalytic core and biogenesis module, respectively. The structure reveals that a leucine residue Leu980 in telomerase reverse transcriptase (TERT) catalytic subunit functions as a zipper head to limit the length of the short primer–template duplex in the active center. Moreover, our structural and computational analyses suggest that TERT and telomerase RNA (hTR) are organized to harbor a preformed active site that can accommodate short primer–template duplex substrates for catalysis. Furthermore, our findings unveil a double-fingers architecture in TERT that ensures nucleotide addition processivity of human telomerase. We propose that the zipper head Leu980 is a structural determinant for the sequence-based pausing signal of DNA synthesis that coincides with the RNA element-based physical template boundary. Functional analyses unveil that the non-glycine zipper head plays an essential role in both telomerase repeat addition processivity and telomere length homeostasis. In addition, we also demonstrate that this zipper head mechanism is conserved in all eukaryotic telomerases. Together, our study provides an integrated model for telomerase-mediated telomere synthesis.</description><subject>101/28</subject><subject>631/535/1258/1259</subject><subject>631/80/103/560</subject><subject>82/29</subject><subject>82/58</subject><subject>82/83</subject><subject>Biomedical and Life Sciences</subject><subject>Catalysis</subject><subject>Cell Biology</subject><subject>Computer applications</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>Glycine</subject><subject>Holoenzymes - genetics</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Leucine</subject><subject>Life Sciences</subject><subject>Nucleotide sequence</subject><subject>Nucleotides</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA-directed DNA polymerase</subject><subject>Substrates</subject><subject>Synthesis</subject><subject>Telomerase</subject><subject>Telomerase - metabolism</subject><subject>Telomerase reverse transcriptase</subject><subject>Telomere - genetics</subject><subject>Telomere - metabolism</subject><subject>Telomeres</subject><issn>1001-0602</issn><issn>1748-7838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLxDAUhYMozvj4Ay6k4MZNNUnTJtkoMviCATe6cRNu29tphz7GpBXm3xudh4-FqwTOd0_uySHkhNELRiN16QQTnIeUs5DSWCWh3CFjJoUKpYrUrr9T6qWE8hE5cG5OKY9FzPbJKBJScRnTMbl-rRYLtEGJkAcNZiW0lWuCrgh6rLsGLQZu2fYlusoF6TIohwbajQYOj8heAbXD4_V5SF7ubp8nD-H06f5xcjMNMyFFH2qAPE81S-I0z1FGGrRgGiFJU8FASuQyYTzTeZohIitYAopBlhfCb6oBo0NytfJdDGmDeYZtb6E2C1s1YJemg8r8VtqqNLPu3ahEKJ_UG5yvDWz3NqDrTVO5DOsaWuwGZ3isFZUq1rFHz_6g826wrY9neEIlVZH_fU_xFZXZzjmLxXYZRs1nP2bVj_H9mK9-jPRDpz9jbEc2hXggWgHOS-0M7ffb_9h-AB3ZnN0</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Wan, Futang</creator><creator>Ding, Yongbo</creator><creator>Zhang, Yuebin</creator><creator>Wu, Zhenfang</creator><creator>Li, Shaobai</creator><creator>Yang, Lin</creator><creator>Yan, Xiangyu</creator><creator>Lan, Pengfei</creator><creator>Li, Guohui</creator><creator>Wu, Jian</creator><creator>Lei, Ming</creator><general>Springer Singapore</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1153-4791</orcidid><orcidid>https://orcid.org/0000-0002-4518-9893</orcidid><orcidid>https://orcid.org/0000-0002-2072-0967</orcidid><orcidid>https://orcid.org/0000-0001-8174-7189</orcidid></search><sort><creationdate>20211201</creationdate><title>Zipper head mechanism of telomere synthesis by human telomerase</title><author>Wan, Futang ; Ding, Yongbo ; Zhang, Yuebin ; Wu, Zhenfang ; Li, Shaobai ; Yang, Lin ; Yan, Xiangyu ; Lan, Pengfei ; Li, Guohui ; Wu, Jian ; Lei, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-9aaddb9165bdde739a9419ea6bb41a77e27612c9dbceee1f16a81acdf44789ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>101/28</topic><topic>631/535/1258/1259</topic><topic>631/80/103/560</topic><topic>82/29</topic><topic>82/58</topic><topic>82/83</topic><topic>Biomedical and Life Sciences</topic><topic>Catalysis</topic><topic>Cell Biology</topic><topic>Computer applications</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>Glycine</topic><topic>Holoenzymes - genetics</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Leucine</topic><topic>Life Sciences</topic><topic>Nucleotide sequence</topic><topic>Nucleotides</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA-directed DNA polymerase</topic><topic>Substrates</topic><topic>Synthesis</topic><topic>Telomerase</topic><topic>Telomerase - metabolism</topic><topic>Telomerase reverse transcriptase</topic><topic>Telomere - genetics</topic><topic>Telomere - metabolism</topic><topic>Telomeres</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Futang</creatorcontrib><creatorcontrib>Ding, Yongbo</creatorcontrib><creatorcontrib>Zhang, Yuebin</creatorcontrib><creatorcontrib>Wu, Zhenfang</creatorcontrib><creatorcontrib>Li, Shaobai</creatorcontrib><creatorcontrib>Yang, Lin</creatorcontrib><creatorcontrib>Yan, Xiangyu</creatorcontrib><creatorcontrib>Lan, Pengfei</creatorcontrib><creatorcontrib>Li, Guohui</creatorcontrib><creatorcontrib>Wu, Jian</creatorcontrib><creatorcontrib>Lei, Ming</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Futang</au><au>Ding, Yongbo</au><au>Zhang, Yuebin</au><au>Wu, Zhenfang</au><au>Li, Shaobai</au><au>Yang, Lin</au><au>Yan, Xiangyu</au><au>Lan, Pengfei</au><au>Li, Guohui</au><au>Wu, Jian</au><au>Lei, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zipper head mechanism of telomere synthesis by human telomerase</atitle><jtitle>Cell research</jtitle><stitle>Cell Res</stitle><addtitle>Cell Res</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>31</volume><issue>12</issue><spage>1275</spage><epage>1290</epage><pages>1275-1290</pages><issn>1001-0602</issn><eissn>1748-7838</eissn><abstract>Telomerase, a multi-subunit ribonucleoprotein complex, is a unique reverse transcriptase that catalyzes the processive addition of a repeat sequence to extend the telomere end using a short fragment of its own RNA component as the template. Despite recent structural characterizations of human and Tetrahymena telomerase, it is still a mystery how telomerase repeatedly uses its RNA template to synthesize telomeric DNA. Here, we report the cryo-EM structure of human telomerase holoenzyme bound with telomeric DNA at resolutions of 3.5 Å and 3.9 Å for the catalytic core and biogenesis module, respectively. The structure reveals that a leucine residue Leu980 in telomerase reverse transcriptase (TERT) catalytic subunit functions as a zipper head to limit the length of the short primer–template duplex in the active center. Moreover, our structural and computational analyses suggest that TERT and telomerase RNA (hTR) are organized to harbor a preformed active site that can accommodate short primer–template duplex substrates for catalysis. Furthermore, our findings unveil a double-fingers architecture in TERT that ensures nucleotide addition processivity of human telomerase. We propose that the zipper head Leu980 is a structural determinant for the sequence-based pausing signal of DNA synthesis that coincides with the RNA element-based physical template boundary. Functional analyses unveil that the non-glycine zipper head plays an essential role in both telomerase repeat addition processivity and telomere length homeostasis. In addition, we also demonstrate that this zipper head mechanism is conserved in all eukaryotic telomerases. Together, our study provides an integrated model for telomerase-mediated telomere synthesis.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><pmid>34782750</pmid><doi>10.1038/s41422-021-00586-7</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1153-4791</orcidid><orcidid>https://orcid.org/0000-0002-4518-9893</orcidid><orcidid>https://orcid.org/0000-0002-2072-0967</orcidid><orcidid>https://orcid.org/0000-0001-8174-7189</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1001-0602
ispartof Cell research, 2021-12, Vol.31 (12), p.1275-1290
issn 1001-0602
1748-7838
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8648750
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects 101/28
631/535/1258/1259
631/80/103/560
82/29
82/58
82/83
Biomedical and Life Sciences
Catalysis
Cell Biology
Computer applications
Deoxyribonucleic acid
DNA
DNA biosynthesis
Glycine
Holoenzymes - genetics
Homeostasis
Humans
Leucine
Life Sciences
Nucleotide sequence
Nucleotides
Repetitive Sequences, Nucleic Acid
Ribonucleic acid
RNA
RNA-directed DNA polymerase
Substrates
Synthesis
Telomerase
Telomerase - metabolism
Telomerase reverse transcriptase
Telomere - genetics
Telomere - metabolism
Telomeres
title Zipper head mechanism of telomere synthesis by human telomerase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A10%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zipper%20head%20mechanism%20of%20telomere%20synthesis%20by%20human%20telomerase&rft.jtitle=Cell%20research&rft.au=Wan,%20Futang&rft.date=2021-12-01&rft.volume=31&rft.issue=12&rft.spage=1275&rft.epage=1290&rft.pages=1275-1290&rft.issn=1001-0602&rft.eissn=1748-7838&rft_id=info:doi/10.1038/s41422-021-00586-7&rft_dat=%3Cproquest_pubme%3E2607083038%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607083038&rft_id=info:pmid/34782750&rfr_iscdi=true