Zipper head mechanism of telomere synthesis by human telomerase
Telomerase, a multi-subunit ribonucleoprotein complex, is a unique reverse transcriptase that catalyzes the processive addition of a repeat sequence to extend the telomere end using a short fragment of its own RNA component as the template. Despite recent structural characterizations of human and Te...
Gespeichert in:
Veröffentlicht in: | Cell research 2021-12, Vol.31 (12), p.1275-1290 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1290 |
---|---|
container_issue | 12 |
container_start_page | 1275 |
container_title | Cell research |
container_volume | 31 |
creator | Wan, Futang Ding, Yongbo Zhang, Yuebin Wu, Zhenfang Li, Shaobai Yang, Lin Yan, Xiangyu Lan, Pengfei Li, Guohui Wu, Jian Lei, Ming |
description | Telomerase, a multi-subunit ribonucleoprotein complex, is a unique reverse transcriptase that catalyzes the processive addition of a repeat sequence to extend the telomere end using a short fragment of its own RNA component as the template. Despite recent structural characterizations of human and
Tetrahymena
telomerase, it is still a mystery how telomerase repeatedly uses its RNA template to synthesize telomeric DNA. Here, we report the cryo-EM structure of human telomerase holoenzyme bound with telomeric DNA at resolutions of 3.5 Å and 3.9 Å for the catalytic core and biogenesis module, respectively. The structure reveals that a leucine residue Leu980 in telomerase reverse transcriptase (TERT) catalytic subunit functions as a zipper head to limit the length of the short primer–template duplex in the active center. Moreover, our structural and computational analyses suggest that TERT and telomerase RNA (hTR) are organized to harbor a preformed active site that can accommodate short primer–template duplex substrates for catalysis. Furthermore, our findings unveil a double-fingers architecture in TERT that ensures nucleotide addition processivity of human telomerase. We propose that the zipper head Leu980 is a structural determinant for the sequence-based pausing signal of DNA synthesis that coincides with the RNA element-based physical template boundary. Functional analyses unveil that the non-glycine zipper head plays an essential role in both telomerase repeat addition processivity and telomere length homeostasis. In addition, we also demonstrate that this zipper head mechanism is conserved in all eukaryotic telomerases. Together, our study provides an integrated model for telomerase-mediated telomere synthesis. |
doi_str_mv | 10.1038/s41422-021-00586-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8648750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2607083038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-9aaddb9165bdde739a9419ea6bb41a77e27612c9dbceee1f16a81acdf44789ae3</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMozvj4Ay6k4MZNNUnTJtkoMviCATe6cRNu29tphz7GpBXm3xudh4-FqwTOd0_uySHkhNELRiN16QQTnIeUs5DSWCWh3CFjJoUKpYrUrr9T6qWE8hE5cG5OKY9FzPbJKBJScRnTMbl-rRYLtEGJkAcNZiW0lWuCrgh6rLsGLQZu2fYlusoF6TIohwbajQYOj8heAbXD4_V5SF7ubp8nD-H06f5xcjMNMyFFH2qAPE81S-I0z1FGGrRgGiFJU8FASuQyYTzTeZohIitYAopBlhfCb6oBo0NytfJdDGmDeYZtb6E2C1s1YJemg8r8VtqqNLPu3ahEKJ_UG5yvDWz3NqDrTVO5DOsaWuwGZ3isFZUq1rFHz_6g826wrY9neEIlVZH_fU_xFZXZzjmLxXYZRs1nP2bVj_H9mK9-jPRDpz9jbEc2hXggWgHOS-0M7ffb_9h-AB3ZnN0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607083038</pqid></control><display><type>article</type><title>Zipper head mechanism of telomere synthesis by human telomerase</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Wan, Futang ; Ding, Yongbo ; Zhang, Yuebin ; Wu, Zhenfang ; Li, Shaobai ; Yang, Lin ; Yan, Xiangyu ; Lan, Pengfei ; Li, Guohui ; Wu, Jian ; Lei, Ming</creator><creatorcontrib>Wan, Futang ; Ding, Yongbo ; Zhang, Yuebin ; Wu, Zhenfang ; Li, Shaobai ; Yang, Lin ; Yan, Xiangyu ; Lan, Pengfei ; Li, Guohui ; Wu, Jian ; Lei, Ming</creatorcontrib><description>Telomerase, a multi-subunit ribonucleoprotein complex, is a unique reverse transcriptase that catalyzes the processive addition of a repeat sequence to extend the telomere end using a short fragment of its own RNA component as the template. Despite recent structural characterizations of human and
Tetrahymena
telomerase, it is still a mystery how telomerase repeatedly uses its RNA template to synthesize telomeric DNA. Here, we report the cryo-EM structure of human telomerase holoenzyme bound with telomeric DNA at resolutions of 3.5 Å and 3.9 Å for the catalytic core and biogenesis module, respectively. The structure reveals that a leucine residue Leu980 in telomerase reverse transcriptase (TERT) catalytic subunit functions as a zipper head to limit the length of the short primer–template duplex in the active center. Moreover, our structural and computational analyses suggest that TERT and telomerase RNA (hTR) are organized to harbor a preformed active site that can accommodate short primer–template duplex substrates for catalysis. Furthermore, our findings unveil a double-fingers architecture in TERT that ensures nucleotide addition processivity of human telomerase. We propose that the zipper head Leu980 is a structural determinant for the sequence-based pausing signal of DNA synthesis that coincides with the RNA element-based physical template boundary. Functional analyses unveil that the non-glycine zipper head plays an essential role in both telomerase repeat addition processivity and telomere length homeostasis. In addition, we also demonstrate that this zipper head mechanism is conserved in all eukaryotic telomerases. Together, our study provides an integrated model for telomerase-mediated telomere synthesis.</description><identifier>ISSN: 1001-0602</identifier><identifier>EISSN: 1748-7838</identifier><identifier>DOI: 10.1038/s41422-021-00586-7</identifier><identifier>PMID: 34782750</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>101/28 ; 631/535/1258/1259 ; 631/80/103/560 ; 82/29 ; 82/58 ; 82/83 ; Biomedical and Life Sciences ; Catalysis ; Cell Biology ; Computer applications ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; Glycine ; Holoenzymes - genetics ; Homeostasis ; Humans ; Leucine ; Life Sciences ; Nucleotide sequence ; Nucleotides ; Repetitive Sequences, Nucleic Acid ; Ribonucleic acid ; RNA ; RNA-directed DNA polymerase ; Substrates ; Synthesis ; Telomerase ; Telomerase - metabolism ; Telomerase reverse transcriptase ; Telomere - genetics ; Telomere - metabolism ; Telomeres</subject><ispartof>Cell research, 2021-12, Vol.31 (12), p.1275-1290</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-9aaddb9165bdde739a9419ea6bb41a77e27612c9dbceee1f16a81acdf44789ae3</citedby><cites>FETCH-LOGICAL-c474t-9aaddb9165bdde739a9419ea6bb41a77e27612c9dbceee1f16a81acdf44789ae3</cites><orcidid>0000-0002-1153-4791 ; 0000-0002-4518-9893 ; 0000-0002-2072-0967 ; 0000-0001-8174-7189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648750/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648750/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34782750$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wan, Futang</creatorcontrib><creatorcontrib>Ding, Yongbo</creatorcontrib><creatorcontrib>Zhang, Yuebin</creatorcontrib><creatorcontrib>Wu, Zhenfang</creatorcontrib><creatorcontrib>Li, Shaobai</creatorcontrib><creatorcontrib>Yang, Lin</creatorcontrib><creatorcontrib>Yan, Xiangyu</creatorcontrib><creatorcontrib>Lan, Pengfei</creatorcontrib><creatorcontrib>Li, Guohui</creatorcontrib><creatorcontrib>Wu, Jian</creatorcontrib><creatorcontrib>Lei, Ming</creatorcontrib><title>Zipper head mechanism of telomere synthesis by human telomerase</title><title>Cell research</title><addtitle>Cell Res</addtitle><addtitle>Cell Res</addtitle><description>Telomerase, a multi-subunit ribonucleoprotein complex, is a unique reverse transcriptase that catalyzes the processive addition of a repeat sequence to extend the telomere end using a short fragment of its own RNA component as the template. Despite recent structural characterizations of human and
Tetrahymena
telomerase, it is still a mystery how telomerase repeatedly uses its RNA template to synthesize telomeric DNA. Here, we report the cryo-EM structure of human telomerase holoenzyme bound with telomeric DNA at resolutions of 3.5 Å and 3.9 Å for the catalytic core and biogenesis module, respectively. The structure reveals that a leucine residue Leu980 in telomerase reverse transcriptase (TERT) catalytic subunit functions as a zipper head to limit the length of the short primer–template duplex in the active center. Moreover, our structural and computational analyses suggest that TERT and telomerase RNA (hTR) are organized to harbor a preformed active site that can accommodate short primer–template duplex substrates for catalysis. Furthermore, our findings unveil a double-fingers architecture in TERT that ensures nucleotide addition processivity of human telomerase. We propose that the zipper head Leu980 is a structural determinant for the sequence-based pausing signal of DNA synthesis that coincides with the RNA element-based physical template boundary. Functional analyses unveil that the non-glycine zipper head plays an essential role in both telomerase repeat addition processivity and telomere length homeostasis. In addition, we also demonstrate that this zipper head mechanism is conserved in all eukaryotic telomerases. Together, our study provides an integrated model for telomerase-mediated telomere synthesis.</description><subject>101/28</subject><subject>631/535/1258/1259</subject><subject>631/80/103/560</subject><subject>82/29</subject><subject>82/58</subject><subject>82/83</subject><subject>Biomedical and Life Sciences</subject><subject>Catalysis</subject><subject>Cell Biology</subject><subject>Computer applications</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>Glycine</subject><subject>Holoenzymes - genetics</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Leucine</subject><subject>Life Sciences</subject><subject>Nucleotide sequence</subject><subject>Nucleotides</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA-directed DNA polymerase</subject><subject>Substrates</subject><subject>Synthesis</subject><subject>Telomerase</subject><subject>Telomerase - metabolism</subject><subject>Telomerase reverse transcriptase</subject><subject>Telomere - genetics</subject><subject>Telomere - metabolism</subject><subject>Telomeres</subject><issn>1001-0602</issn><issn>1748-7838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLxDAUhYMozvj4Ay6k4MZNNUnTJtkoMviCATe6cRNu29tphz7GpBXm3xudh4-FqwTOd0_uySHkhNELRiN16QQTnIeUs5DSWCWh3CFjJoUKpYrUrr9T6qWE8hE5cG5OKY9FzPbJKBJScRnTMbl-rRYLtEGJkAcNZiW0lWuCrgh6rLsGLQZu2fYlusoF6TIohwbajQYOj8heAbXD4_V5SF7ubp8nD-H06f5xcjMNMyFFH2qAPE81S-I0z1FGGrRgGiFJU8FASuQyYTzTeZohIitYAopBlhfCb6oBo0NytfJdDGmDeYZtb6E2C1s1YJemg8r8VtqqNLPu3ahEKJ_UG5yvDWz3NqDrTVO5DOsaWuwGZ3isFZUq1rFHz_6g826wrY9neEIlVZH_fU_xFZXZzjmLxXYZRs1nP2bVj_H9mK9-jPRDpz9jbEc2hXggWgHOS-0M7ffb_9h-AB3ZnN0</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Wan, Futang</creator><creator>Ding, Yongbo</creator><creator>Zhang, Yuebin</creator><creator>Wu, Zhenfang</creator><creator>Li, Shaobai</creator><creator>Yang, Lin</creator><creator>Yan, Xiangyu</creator><creator>Lan, Pengfei</creator><creator>Li, Guohui</creator><creator>Wu, Jian</creator><creator>Lei, Ming</creator><general>Springer Singapore</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1153-4791</orcidid><orcidid>https://orcid.org/0000-0002-4518-9893</orcidid><orcidid>https://orcid.org/0000-0002-2072-0967</orcidid><orcidid>https://orcid.org/0000-0001-8174-7189</orcidid></search><sort><creationdate>20211201</creationdate><title>Zipper head mechanism of telomere synthesis by human telomerase</title><author>Wan, Futang ; Ding, Yongbo ; Zhang, Yuebin ; Wu, Zhenfang ; Li, Shaobai ; Yang, Lin ; Yan, Xiangyu ; Lan, Pengfei ; Li, Guohui ; Wu, Jian ; Lei, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-9aaddb9165bdde739a9419ea6bb41a77e27612c9dbceee1f16a81acdf44789ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>101/28</topic><topic>631/535/1258/1259</topic><topic>631/80/103/560</topic><topic>82/29</topic><topic>82/58</topic><topic>82/83</topic><topic>Biomedical and Life Sciences</topic><topic>Catalysis</topic><topic>Cell Biology</topic><topic>Computer applications</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>Glycine</topic><topic>Holoenzymes - genetics</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Leucine</topic><topic>Life Sciences</topic><topic>Nucleotide sequence</topic><topic>Nucleotides</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA-directed DNA polymerase</topic><topic>Substrates</topic><topic>Synthesis</topic><topic>Telomerase</topic><topic>Telomerase - metabolism</topic><topic>Telomerase reverse transcriptase</topic><topic>Telomere - genetics</topic><topic>Telomere - metabolism</topic><topic>Telomeres</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Futang</creatorcontrib><creatorcontrib>Ding, Yongbo</creatorcontrib><creatorcontrib>Zhang, Yuebin</creatorcontrib><creatorcontrib>Wu, Zhenfang</creatorcontrib><creatorcontrib>Li, Shaobai</creatorcontrib><creatorcontrib>Yang, Lin</creatorcontrib><creatorcontrib>Yan, Xiangyu</creatorcontrib><creatorcontrib>Lan, Pengfei</creatorcontrib><creatorcontrib>Li, Guohui</creatorcontrib><creatorcontrib>Wu, Jian</creatorcontrib><creatorcontrib>Lei, Ming</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Futang</au><au>Ding, Yongbo</au><au>Zhang, Yuebin</au><au>Wu, Zhenfang</au><au>Li, Shaobai</au><au>Yang, Lin</au><au>Yan, Xiangyu</au><au>Lan, Pengfei</au><au>Li, Guohui</au><au>Wu, Jian</au><au>Lei, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zipper head mechanism of telomere synthesis by human telomerase</atitle><jtitle>Cell research</jtitle><stitle>Cell Res</stitle><addtitle>Cell Res</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>31</volume><issue>12</issue><spage>1275</spage><epage>1290</epage><pages>1275-1290</pages><issn>1001-0602</issn><eissn>1748-7838</eissn><abstract>Telomerase, a multi-subunit ribonucleoprotein complex, is a unique reverse transcriptase that catalyzes the processive addition of a repeat sequence to extend the telomere end using a short fragment of its own RNA component as the template. Despite recent structural characterizations of human and
Tetrahymena
telomerase, it is still a mystery how telomerase repeatedly uses its RNA template to synthesize telomeric DNA. Here, we report the cryo-EM structure of human telomerase holoenzyme bound with telomeric DNA at resolutions of 3.5 Å and 3.9 Å for the catalytic core and biogenesis module, respectively. The structure reveals that a leucine residue Leu980 in telomerase reverse transcriptase (TERT) catalytic subunit functions as a zipper head to limit the length of the short primer–template duplex in the active center. Moreover, our structural and computational analyses suggest that TERT and telomerase RNA (hTR) are organized to harbor a preformed active site that can accommodate short primer–template duplex substrates for catalysis. Furthermore, our findings unveil a double-fingers architecture in TERT that ensures nucleotide addition processivity of human telomerase. We propose that the zipper head Leu980 is a structural determinant for the sequence-based pausing signal of DNA synthesis that coincides with the RNA element-based physical template boundary. Functional analyses unveil that the non-glycine zipper head plays an essential role in both telomerase repeat addition processivity and telomere length homeostasis. In addition, we also demonstrate that this zipper head mechanism is conserved in all eukaryotic telomerases. Together, our study provides an integrated model for telomerase-mediated telomere synthesis.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><pmid>34782750</pmid><doi>10.1038/s41422-021-00586-7</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1153-4791</orcidid><orcidid>https://orcid.org/0000-0002-4518-9893</orcidid><orcidid>https://orcid.org/0000-0002-2072-0967</orcidid><orcidid>https://orcid.org/0000-0001-8174-7189</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-0602 |
ispartof | Cell research, 2021-12, Vol.31 (12), p.1275-1290 |
issn | 1001-0602 1748-7838 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8648750 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | 101/28 631/535/1258/1259 631/80/103/560 82/29 82/58 82/83 Biomedical and Life Sciences Catalysis Cell Biology Computer applications Deoxyribonucleic acid DNA DNA biosynthesis Glycine Holoenzymes - genetics Homeostasis Humans Leucine Life Sciences Nucleotide sequence Nucleotides Repetitive Sequences, Nucleic Acid Ribonucleic acid RNA RNA-directed DNA polymerase Substrates Synthesis Telomerase Telomerase - metabolism Telomerase reverse transcriptase Telomere - genetics Telomere - metabolism Telomeres |
title | Zipper head mechanism of telomere synthesis by human telomerase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A10%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zipper%20head%20mechanism%20of%20telomere%20synthesis%20by%20human%20telomerase&rft.jtitle=Cell%20research&rft.au=Wan,%20Futang&rft.date=2021-12-01&rft.volume=31&rft.issue=12&rft.spage=1275&rft.epage=1290&rft.pages=1275-1290&rft.issn=1001-0602&rft.eissn=1748-7838&rft_id=info:doi/10.1038/s41422-021-00586-7&rft_dat=%3Cproquest_pubme%3E2607083038%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607083038&rft_id=info:pmid/34782750&rfr_iscdi=true |