Versatile Analysis of DNA–Biomolecule Interactions in Solution by Hydrodynamic Separation and Single Molecule Detection
DNA can interact with a wide array of molecules with a range of binding affinities, stoichiometry, and size-scales. We present a sensitive, quantitative, and versatile platform for sensing and evaluating these diverse DNA–biomolecule interactions and DNA conformational changes in free solution. Sing...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2019-02, Vol.91 (4), p.2822-2830 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2830 |
---|---|
container_issue | 4 |
container_start_page | 2822 |
container_title | Analytical chemistry (Washington) |
container_volume | 91 |
creator | Friedrich, Sarah M Bang, Rachel Li, Andrew Wang, Tza-Huei |
description | DNA can interact with a wide array of molecules with a range of binding affinities, stoichiometry, and size-scales. We present a sensitive, quantitative, and versatile platform for sensing and evaluating these diverse DNA–biomolecule interactions and DNA conformational changes in free solution. Single molecule free solution hydrodynamic separation utilizes differences in hydrodynamic mobility to separate bound DNA–biomolecule complexes from unbound DNA and determine the associated size change that results from binding. Single molecule detection enables highly quantitative analysis of the fraction of DNA in the bound and unbound state to characterize binding behavior including affinity, stoichiometry, and cooperativity. A stacked injection scheme increases throughput to enable practical analysis of DNA–biomolecule interactions using only picoliters of sample per measurement. To demonstrate analysis of DNA–protein interactions on a local scale, we investigate binding of the E. coli single stranded binding protein to two DNA oligos both individually and in direct competition. We show that stoichiometry and cooperativity is a function of DNA length and verify these differences in binding characteristics through direct competition. To demonstrate analysis of DNA–small molecule interactions and global conformational changes, we also assess DNA condensation with the polyamine spermidine. We use hydrodynamic mobility to evaluate the size of spermidine-condensed DNA and single molecule burst analysis to evaluate DNA packing within the condensed globules relative to free-coiled DNA. This platform thus presents a versatile tool capable of quantitative and sensitive evaluation of diverse biomolecular interactions, complex properties, and binding characteristics. |
doi_str_mv | 10.1021/acs.analchem.8b04733 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8648464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179440995</sourcerecordid><originalsourceid>FETCH-LOGICAL-a477t-667e5a3877926abe64df36ccd0179cce24662ce076befb37cda8e5c935db3263</originalsourceid><addsrcrecordid>eNp9kctu1DAUhiMEokPhDRCKxIZNhuNL7GSDNG2BViqwmIqt5TgnravEHuwEKTvegTfkSfB0LgIWrCzrfP_ny59lLwksCVDyVpu41E735g6HZdUAl4w9yhakpFCIqqKPswUAsIJKgJPsWYz3AIQAEU-zEwZCVDWQRTZ_xRD1aHvMV0k2Rxtz3-UXn1e_fvw8s37wPZopTa_ciEGb0XoXc-vyte-n7SZv5vxyboNvZ6cHa_I1bnTQDyPt2nxt3W2Kfzp4LnDEB8vz7Emn-4gv9utpdvPh_c35ZXH95ePV-eq60FzKsRBCYqlZJWVNhW5Q8LZjwpgWiKyNQcqFoAZBiga7hknT6gpLU7OybRgV7DR7t9NupmbA1qAbg-7VJthBh1l5bdXfE2fv1K3_rirBKy54ErzZC4L_NmEc1WCjwb7XDv0UFU334Bzqukzo63_Qez-F9K2JokRQQUqQieI7ygQfY8DueBkCalutStWqQ7VqX22KvfrzIcfQocsEwA7Yxo8H_9f5G1FUtxk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216261507</pqid></control><display><type>article</type><title>Versatile Analysis of DNA–Biomolecule Interactions in Solution by Hydrodynamic Separation and Single Molecule Detection</title><source>ACS Publications</source><creator>Friedrich, Sarah M ; Bang, Rachel ; Li, Andrew ; Wang, Tza-Huei</creator><creatorcontrib>Friedrich, Sarah M ; Bang, Rachel ; Li, Andrew ; Wang, Tza-Huei</creatorcontrib><description>DNA can interact with a wide array of molecules with a range of binding affinities, stoichiometry, and size-scales. We present a sensitive, quantitative, and versatile platform for sensing and evaluating these diverse DNA–biomolecule interactions and DNA conformational changes in free solution. Single molecule free solution hydrodynamic separation utilizes differences in hydrodynamic mobility to separate bound DNA–biomolecule complexes from unbound DNA and determine the associated size change that results from binding. Single molecule detection enables highly quantitative analysis of the fraction of DNA in the bound and unbound state to characterize binding behavior including affinity, stoichiometry, and cooperativity. A stacked injection scheme increases throughput to enable practical analysis of DNA–biomolecule interactions using only picoliters of sample per measurement. To demonstrate analysis of DNA–protein interactions on a local scale, we investigate binding of the E. coli single stranded binding protein to two DNA oligos both individually and in direct competition. We show that stoichiometry and cooperativity is a function of DNA length and verify these differences in binding characteristics through direct competition. To demonstrate analysis of DNA–small molecule interactions and global conformational changes, we also assess DNA condensation with the polyamine spermidine. We use hydrodynamic mobility to evaluate the size of spermidine-condensed DNA and single molecule burst analysis to evaluate DNA packing within the condensed globules relative to free-coiled DNA. This platform thus presents a versatile tool capable of quantitative and sensitive evaluation of diverse biomolecular interactions, complex properties, and binding characteristics.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.8b04733</identifier><identifier>PMID: 30668901</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Affinity ; Biomolecules ; Chemistry ; Competition ; Cooperativity ; Deoxyribonucleic acid ; DNA ; E coli ; Globules ; Mobility ; Protein interaction ; Proteins ; Quantitative analysis ; Separation ; Spermidine ; Stoichiometry</subject><ispartof>Analytical chemistry (Washington), 2019-02, Vol.91 (4), p.2822-2830</ispartof><rights>Copyright American Chemical Society Feb 19, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a477t-667e5a3877926abe64df36ccd0179cce24662ce076befb37cda8e5c935db3263</citedby><cites>FETCH-LOGICAL-a477t-667e5a3877926abe64df36ccd0179cce24662ce076befb37cda8e5c935db3263</cites><orcidid>0000-0001-9954-5438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.8b04733$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.8b04733$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30668901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Friedrich, Sarah M</creatorcontrib><creatorcontrib>Bang, Rachel</creatorcontrib><creatorcontrib>Li, Andrew</creatorcontrib><creatorcontrib>Wang, Tza-Huei</creatorcontrib><title>Versatile Analysis of DNA–Biomolecule Interactions in Solution by Hydrodynamic Separation and Single Molecule Detection</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>DNA can interact with a wide array of molecules with a range of binding affinities, stoichiometry, and size-scales. We present a sensitive, quantitative, and versatile platform for sensing and evaluating these diverse DNA–biomolecule interactions and DNA conformational changes in free solution. Single molecule free solution hydrodynamic separation utilizes differences in hydrodynamic mobility to separate bound DNA–biomolecule complexes from unbound DNA and determine the associated size change that results from binding. Single molecule detection enables highly quantitative analysis of the fraction of DNA in the bound and unbound state to characterize binding behavior including affinity, stoichiometry, and cooperativity. A stacked injection scheme increases throughput to enable practical analysis of DNA–biomolecule interactions using only picoliters of sample per measurement. To demonstrate analysis of DNA–protein interactions on a local scale, we investigate binding of the E. coli single stranded binding protein to two DNA oligos both individually and in direct competition. We show that stoichiometry and cooperativity is a function of DNA length and verify these differences in binding characteristics through direct competition. To demonstrate analysis of DNA–small molecule interactions and global conformational changes, we also assess DNA condensation with the polyamine spermidine. We use hydrodynamic mobility to evaluate the size of spermidine-condensed DNA and single molecule burst analysis to evaluate DNA packing within the condensed globules relative to free-coiled DNA. This platform thus presents a versatile tool capable of quantitative and sensitive evaluation of diverse biomolecular interactions, complex properties, and binding characteristics.</description><subject>Affinity</subject><subject>Biomolecules</subject><subject>Chemistry</subject><subject>Competition</subject><subject>Cooperativity</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>E coli</subject><subject>Globules</subject><subject>Mobility</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>Quantitative analysis</subject><subject>Separation</subject><subject>Spermidine</subject><subject>Stoichiometry</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kctu1DAUhiMEokPhDRCKxIZNhuNL7GSDNG2BViqwmIqt5TgnravEHuwEKTvegTfkSfB0LgIWrCzrfP_ny59lLwksCVDyVpu41E735g6HZdUAl4w9yhakpFCIqqKPswUAsIJKgJPsWYz3AIQAEU-zEwZCVDWQRTZ_xRD1aHvMV0k2Rxtz3-UXn1e_fvw8s37wPZopTa_ciEGb0XoXc-vyte-n7SZv5vxyboNvZ6cHa_I1bnTQDyPt2nxt3W2Kfzp4LnDEB8vz7Emn-4gv9utpdvPh_c35ZXH95ePV-eq60FzKsRBCYqlZJWVNhW5Q8LZjwpgWiKyNQcqFoAZBiga7hknT6gpLU7OybRgV7DR7t9NupmbA1qAbg-7VJthBh1l5bdXfE2fv1K3_rirBKy54ErzZC4L_NmEc1WCjwb7XDv0UFU334Bzqukzo63_Qez-F9K2JokRQQUqQieI7ygQfY8DueBkCalutStWqQ7VqX22KvfrzIcfQocsEwA7Yxo8H_9f5G1FUtxk</recordid><startdate>20190219</startdate><enddate>20190219</enddate><creator>Friedrich, Sarah M</creator><creator>Bang, Rachel</creator><creator>Li, Andrew</creator><creator>Wang, Tza-Huei</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9954-5438</orcidid></search><sort><creationdate>20190219</creationdate><title>Versatile Analysis of DNA–Biomolecule Interactions in Solution by Hydrodynamic Separation and Single Molecule Detection</title><author>Friedrich, Sarah M ; Bang, Rachel ; Li, Andrew ; Wang, Tza-Huei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a477t-667e5a3877926abe64df36ccd0179cce24662ce076befb37cda8e5c935db3263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Affinity</topic><topic>Biomolecules</topic><topic>Chemistry</topic><topic>Competition</topic><topic>Cooperativity</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>E coli</topic><topic>Globules</topic><topic>Mobility</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>Quantitative analysis</topic><topic>Separation</topic><topic>Spermidine</topic><topic>Stoichiometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friedrich, Sarah M</creatorcontrib><creatorcontrib>Bang, Rachel</creatorcontrib><creatorcontrib>Li, Andrew</creatorcontrib><creatorcontrib>Wang, Tza-Huei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friedrich, Sarah M</au><au>Bang, Rachel</au><au>Li, Andrew</au><au>Wang, Tza-Huei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Versatile Analysis of DNA–Biomolecule Interactions in Solution by Hydrodynamic Separation and Single Molecule Detection</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2019-02-19</date><risdate>2019</risdate><volume>91</volume><issue>4</issue><spage>2822</spage><epage>2830</epage><pages>2822-2830</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>DNA can interact with a wide array of molecules with a range of binding affinities, stoichiometry, and size-scales. We present a sensitive, quantitative, and versatile platform for sensing and evaluating these diverse DNA–biomolecule interactions and DNA conformational changes in free solution. Single molecule free solution hydrodynamic separation utilizes differences in hydrodynamic mobility to separate bound DNA–biomolecule complexes from unbound DNA and determine the associated size change that results from binding. Single molecule detection enables highly quantitative analysis of the fraction of DNA in the bound and unbound state to characterize binding behavior including affinity, stoichiometry, and cooperativity. A stacked injection scheme increases throughput to enable practical analysis of DNA–biomolecule interactions using only picoliters of sample per measurement. To demonstrate analysis of DNA–protein interactions on a local scale, we investigate binding of the E. coli single stranded binding protein to two DNA oligos both individually and in direct competition. We show that stoichiometry and cooperativity is a function of DNA length and verify these differences in binding characteristics through direct competition. To demonstrate analysis of DNA–small molecule interactions and global conformational changes, we also assess DNA condensation with the polyamine spermidine. We use hydrodynamic mobility to evaluate the size of spermidine-condensed DNA and single molecule burst analysis to evaluate DNA packing within the condensed globules relative to free-coiled DNA. This platform thus presents a versatile tool capable of quantitative and sensitive evaluation of diverse biomolecular interactions, complex properties, and binding characteristics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30668901</pmid><doi>10.1021/acs.analchem.8b04733</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9954-5438</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2019-02, Vol.91 (4), p.2822-2830 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8648464 |
source | ACS Publications |
subjects | Affinity Biomolecules Chemistry Competition Cooperativity Deoxyribonucleic acid DNA E coli Globules Mobility Protein interaction Proteins Quantitative analysis Separation Spermidine Stoichiometry |
title | Versatile Analysis of DNA–Biomolecule Interactions in Solution by Hydrodynamic Separation and Single Molecule Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T21%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Versatile%20Analysis%20of%20DNA%E2%80%93Biomolecule%20Interactions%20in%20Solution%20by%20Hydrodynamic%20Separation%20and%20Single%20Molecule%20Detection&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Friedrich,%20Sarah%20M&rft.date=2019-02-19&rft.volume=91&rft.issue=4&rft.spage=2822&rft.epage=2830&rft.pages=2822-2830&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.8b04733&rft_dat=%3Cproquest_pubme%3E2179440995%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216261507&rft_id=info:pmid/30668901&rfr_iscdi=true |