Muscle-specific Cand2 is translationally upregulated by mTORC1 and promotes adverse cardiac remodeling

The mechanistic target of rapamycin (mTOR) promotes pathological remodeling in the heart by activating ribosomal biogenesis and mRNA translation. Inhibition of mTOR in cardiomyocytes is protective; however, a detailed role of mTOR in translational regulation of specific mRNA networks in the diseased...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EMBO reports 2021-12, Vol.22 (12), p.e52170-n/a
Hauptverfasser: Górska, Agnieszka A, Sandmann, Clara, Riechert, Eva, Hofmann, Christoph, Malovrh, Ellen, Varma, Eshita, Kmietczyk, Vivien, Ölschläger, Julie, Jürgensen, Lonny, Kamuf-Schenk, Verena, Stroh, Claudia, Furkel, Jennifer, Konstandin, Mathias H, Sticht, Carsten, Boileau, Etienne, Dieterich, Christoph, Frey, Norbert, Katus, Hugo A, Doroudgar, Shirin, Völkers, Mirko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page e52170
container_title EMBO reports
container_volume 22
creator Górska, Agnieszka A
Sandmann, Clara
Riechert, Eva
Hofmann, Christoph
Malovrh, Ellen
Varma, Eshita
Kmietczyk, Vivien
Ölschläger, Julie
Jürgensen, Lonny
Kamuf-Schenk, Verena
Stroh, Claudia
Furkel, Jennifer
Konstandin, Mathias H
Sticht, Carsten
Boileau, Etienne
Dieterich, Christoph
Frey, Norbert
Katus, Hugo A
Doroudgar, Shirin
Völkers, Mirko
description The mechanistic target of rapamycin (mTOR) promotes pathological remodeling in the heart by activating ribosomal biogenesis and mRNA translation. Inhibition of mTOR in cardiomyocytes is protective; however, a detailed role of mTOR in translational regulation of specific mRNA networks in the diseased heart is unknown. We performed cardiomyocyte genome-wide sequencing to define mTOR-dependent gene expression control at the level of mRNA translation. We identify the muscle-specific protein Cullin-associated NEDD8-dissociated protein 2 (Cand2) as a translationally upregulated gene, dependent on the activity of mTOR. Deletion of Cand2 protects the myocardium against pathological remodeling. Mechanistically, we show that Cand2 links mTOR signaling to pathological cell growth by increasing Grk5 protein expression. Our data suggest that cell-type-specific targeting of mTOR might have therapeutic value against pathological cardiac remodeling. SYNOPSIS Genome-wide translational profiling identifies mTORC1-dependent genes in cardiomyocytes in response to neurohumoral stimulation. Expression of the muscle-specific gene Cand2 is controlled by mTORC1 and Cand2 regulates cardiac function and pathological hypertrophy. Cand2 is translationally upregulated during pathological stress in cardiac myocytes. Cand2 expression depends on the activity of mTORC1. Cand2 promotes the expression of G-protein coupled receptor 5 (Grk5), which in turn links to myocyte enhancer factor 2 (MEF2)-driven transcription of cardiac hypertophy genes. Graphical Abstract Genome-wide translational profiling identifies mTORC1-dependent genes in cardiomyocytes in response to neurohumoral stimulation. Expression of the muscle-specific gene Cand2 is controlled by mTORC1 and Cand2 regulates cardiac function and pathological hypertrophy.
doi_str_mv 10.15252/embr.202052170
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8647021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2606830916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5130-3fbc17a92951f7e32d828e59061d19a75d31d02fe9a087a2c4cad4af21149913</originalsourceid><addsrcrecordid>eNqFkc9rFDEUxwdRbK2evUnAi5dpXzKTZOJBqEv9AS2FsgdvIZu8WVMykzHZqex_b-quaxXEU0Le5_vl-_KtqpcUTilnnJ3hsEqnDBhwRiU8qo5pK1TdUNk93t8Zo1-Oqmc53wIAV7J7Wh01rQAuQB1X_dWcbcA6T2h97y1ZmNEx4jPZJDPmYDY-jiaELZmnhOu5PKAjqy0Zltc3C0oKTaYUh7jBTIy7w5SRWJOcN5YkHKLD4Mf18-pJb0LGF_vzpFp-uFguPtWX1x8_L84va8tpA3XTryyVRjHFaS-xYa5jHXIFgjqqjOSuoQ5Yj8pAJw2zrTWuNT2jtFWKNifVu53tNK8GdBbHskXQU_KDSVsdjdd_Tkb_Va_jne5EK4HdG7zZG6T4bca80YPPFkMwI8Y5a8algk4J2RT09V_obZxT-atCCRBdA4qKQp3tKJtizgn7QxgK-meF-r5CfaiwKF493OHA_-qsAG93wHcfcPs_P31x9f7moTvsxLnoxjWm36n_FegHAPq5Ug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2606830916</pqid></control><display><type>article</type><title>Muscle-specific Cand2 is translationally upregulated by mTORC1 and promotes adverse cardiac remodeling</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Górska, Agnieszka A ; Sandmann, Clara ; Riechert, Eva ; Hofmann, Christoph ; Malovrh, Ellen ; Varma, Eshita ; Kmietczyk, Vivien ; Ölschläger, Julie ; Jürgensen, Lonny ; Kamuf-Schenk, Verena ; Stroh, Claudia ; Furkel, Jennifer ; Konstandin, Mathias H ; Sticht, Carsten ; Boileau, Etienne ; Dieterich, Christoph ; Frey, Norbert ; Katus, Hugo A ; Doroudgar, Shirin ; Völkers, Mirko</creator><creatorcontrib>Górska, Agnieszka A ; Sandmann, Clara ; Riechert, Eva ; Hofmann, Christoph ; Malovrh, Ellen ; Varma, Eshita ; Kmietczyk, Vivien ; Ölschläger, Julie ; Jürgensen, Lonny ; Kamuf-Schenk, Verena ; Stroh, Claudia ; Furkel, Jennifer ; Konstandin, Mathias H ; Sticht, Carsten ; Boileau, Etienne ; Dieterich, Christoph ; Frey, Norbert ; Katus, Hugo A ; Doroudgar, Shirin ; Völkers, Mirko</creatorcontrib><description>The mechanistic target of rapamycin (mTOR) promotes pathological remodeling in the heart by activating ribosomal biogenesis and mRNA translation. Inhibition of mTOR in cardiomyocytes is protective; however, a detailed role of mTOR in translational regulation of specific mRNA networks in the diseased heart is unknown. We performed cardiomyocyte genome-wide sequencing to define mTOR-dependent gene expression control at the level of mRNA translation. We identify the muscle-specific protein Cullin-associated NEDD8-dissociated protein 2 (Cand2) as a translationally upregulated gene, dependent on the activity of mTOR. Deletion of Cand2 protects the myocardium against pathological remodeling. Mechanistically, we show that Cand2 links mTOR signaling to pathological cell growth by increasing Grk5 protein expression. Our data suggest that cell-type-specific targeting of mTOR might have therapeutic value against pathological cardiac remodeling. SYNOPSIS Genome-wide translational profiling identifies mTORC1-dependent genes in cardiomyocytes in response to neurohumoral stimulation. Expression of the muscle-specific gene Cand2 is controlled by mTORC1 and Cand2 regulates cardiac function and pathological hypertrophy. Cand2 is translationally upregulated during pathological stress in cardiac myocytes. Cand2 expression depends on the activity of mTORC1. Cand2 promotes the expression of G-protein coupled receptor 5 (Grk5), which in turn links to myocyte enhancer factor 2 (MEF2)-driven transcription of cardiac hypertophy genes. Graphical Abstract Genome-wide translational profiling identifies mTORC1-dependent genes in cardiomyocytes in response to neurohumoral stimulation. Expression of the muscle-specific gene Cand2 is controlled by mTORC1 and Cand2 regulates cardiac function and pathological hypertrophy.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.202052170</identifier><identifier>PMID: 34605609</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Cand2 ; cardiac ; Cardiomyocytes ; Coronary artery disease ; Cullin ; EMBO24 ; Gene deletion ; Gene expression ; Gene sequencing ; Genes ; Genomes ; Heart diseases ; Humans ; Hypertrophy ; Mechanistic Target of Rapamycin Complex 1 - genetics ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; mTOR ; Muscle Proteins ; Muscles ; Myocardium ; Myocardium - metabolism ; Myocyte enhancer factor 2 ; Myocytes ; Myocytes, Cardiac - metabolism ; Proteins ; Rapamycin ; Signal Transduction ; TOR protein ; Transcription Factors ; Translation ; Up-Regulation ; Ventricular Remodeling - genetics</subject><ispartof>EMBO reports, 2021-12, Vol.22 (12), p.e52170-n/a</ispartof><rights>The Author(s) 2021</rights><rights>2021 The Authors. Published under the terms of the CC BY NC ND 4.0 license</rights><rights>2021 The Authors. Published under the terms of the CC BY NC ND 4.0 license.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5130-3fbc17a92951f7e32d828e59061d19a75d31d02fe9a087a2c4cad4af21149913</citedby><cites>FETCH-LOGICAL-c5130-3fbc17a92951f7e32d828e59061d19a75d31d02fe9a087a2c4cad4af21149913</cites><orcidid>0000-0002-9737-3406 ; 0000-0003-4667-6690 ; 0000-0002-1964-4098 ; 0000-0001-9355-0973 ; 0000-0001-9115-8628 ; 0000-0003-4876-7860 ; 0000-0003-0911-6125 ; 0000-0002-4728-4077 ; 0000-0001-9468-6311 ; 0000-0002-3389-6582 ; 0000-0003-2344-1856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8647021/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8647021/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,41120,42189,45574,45575,46409,46833,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34605609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Górska, Agnieszka A</creatorcontrib><creatorcontrib>Sandmann, Clara</creatorcontrib><creatorcontrib>Riechert, Eva</creatorcontrib><creatorcontrib>Hofmann, Christoph</creatorcontrib><creatorcontrib>Malovrh, Ellen</creatorcontrib><creatorcontrib>Varma, Eshita</creatorcontrib><creatorcontrib>Kmietczyk, Vivien</creatorcontrib><creatorcontrib>Ölschläger, Julie</creatorcontrib><creatorcontrib>Jürgensen, Lonny</creatorcontrib><creatorcontrib>Kamuf-Schenk, Verena</creatorcontrib><creatorcontrib>Stroh, Claudia</creatorcontrib><creatorcontrib>Furkel, Jennifer</creatorcontrib><creatorcontrib>Konstandin, Mathias H</creatorcontrib><creatorcontrib>Sticht, Carsten</creatorcontrib><creatorcontrib>Boileau, Etienne</creatorcontrib><creatorcontrib>Dieterich, Christoph</creatorcontrib><creatorcontrib>Frey, Norbert</creatorcontrib><creatorcontrib>Katus, Hugo A</creatorcontrib><creatorcontrib>Doroudgar, Shirin</creatorcontrib><creatorcontrib>Völkers, Mirko</creatorcontrib><title>Muscle-specific Cand2 is translationally upregulated by mTORC1 and promotes adverse cardiac remodeling</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>The mechanistic target of rapamycin (mTOR) promotes pathological remodeling in the heart by activating ribosomal biogenesis and mRNA translation. Inhibition of mTOR in cardiomyocytes is protective; however, a detailed role of mTOR in translational regulation of specific mRNA networks in the diseased heart is unknown. We performed cardiomyocyte genome-wide sequencing to define mTOR-dependent gene expression control at the level of mRNA translation. We identify the muscle-specific protein Cullin-associated NEDD8-dissociated protein 2 (Cand2) as a translationally upregulated gene, dependent on the activity of mTOR. Deletion of Cand2 protects the myocardium against pathological remodeling. Mechanistically, we show that Cand2 links mTOR signaling to pathological cell growth by increasing Grk5 protein expression. Our data suggest that cell-type-specific targeting of mTOR might have therapeutic value against pathological cardiac remodeling. SYNOPSIS Genome-wide translational profiling identifies mTORC1-dependent genes in cardiomyocytes in response to neurohumoral stimulation. Expression of the muscle-specific gene Cand2 is controlled by mTORC1 and Cand2 regulates cardiac function and pathological hypertrophy. Cand2 is translationally upregulated during pathological stress in cardiac myocytes. Cand2 expression depends on the activity of mTORC1. Cand2 promotes the expression of G-protein coupled receptor 5 (Grk5), which in turn links to myocyte enhancer factor 2 (MEF2)-driven transcription of cardiac hypertophy genes. Graphical Abstract Genome-wide translational profiling identifies mTORC1-dependent genes in cardiomyocytes in response to neurohumoral stimulation. Expression of the muscle-specific gene Cand2 is controlled by mTORC1 and Cand2 regulates cardiac function and pathological hypertrophy.</description><subject>Cand2</subject><subject>cardiac</subject><subject>Cardiomyocytes</subject><subject>Coronary artery disease</subject><subject>Cullin</subject><subject>EMBO24</subject><subject>Gene deletion</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genomes</subject><subject>Heart diseases</subject><subject>Humans</subject><subject>Hypertrophy</subject><subject>Mechanistic Target of Rapamycin Complex 1 - genetics</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>mTOR</subject><subject>Muscle Proteins</subject><subject>Muscles</subject><subject>Myocardium</subject><subject>Myocardium - metabolism</subject><subject>Myocyte enhancer factor 2</subject><subject>Myocytes</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Proteins</subject><subject>Rapamycin</subject><subject>Signal Transduction</subject><subject>TOR protein</subject><subject>Transcription Factors</subject><subject>Translation</subject><subject>Up-Regulation</subject><subject>Ventricular Remodeling - genetics</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc9rFDEUxwdRbK2evUnAi5dpXzKTZOJBqEv9AS2FsgdvIZu8WVMykzHZqex_b-quaxXEU0Le5_vl-_KtqpcUTilnnJ3hsEqnDBhwRiU8qo5pK1TdUNk93t8Zo1-Oqmc53wIAV7J7Wh01rQAuQB1X_dWcbcA6T2h97y1ZmNEx4jPZJDPmYDY-jiaELZmnhOu5PKAjqy0Zltc3C0oKTaYUh7jBTIy7w5SRWJOcN5YkHKLD4Mf18-pJb0LGF_vzpFp-uFguPtWX1x8_L84va8tpA3XTryyVRjHFaS-xYa5jHXIFgjqqjOSuoQ5Yj8pAJw2zrTWuNT2jtFWKNifVu53tNK8GdBbHskXQU_KDSVsdjdd_Tkb_Va_jne5EK4HdG7zZG6T4bca80YPPFkMwI8Y5a8algk4J2RT09V_obZxT-atCCRBdA4qKQp3tKJtizgn7QxgK-meF-r5CfaiwKF493OHA_-qsAG93wHcfcPs_P31x9f7moTvsxLnoxjWm36n_FegHAPq5Ug</recordid><startdate>20211206</startdate><enddate>20211206</enddate><creator>Górska, Agnieszka A</creator><creator>Sandmann, Clara</creator><creator>Riechert, Eva</creator><creator>Hofmann, Christoph</creator><creator>Malovrh, Ellen</creator><creator>Varma, Eshita</creator><creator>Kmietczyk, Vivien</creator><creator>Ölschläger, Julie</creator><creator>Jürgensen, Lonny</creator><creator>Kamuf-Schenk, Verena</creator><creator>Stroh, Claudia</creator><creator>Furkel, Jennifer</creator><creator>Konstandin, Mathias H</creator><creator>Sticht, Carsten</creator><creator>Boileau, Etienne</creator><creator>Dieterich, Christoph</creator><creator>Frey, Norbert</creator><creator>Katus, Hugo A</creator><creator>Doroudgar, Shirin</creator><creator>Völkers, Mirko</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9737-3406</orcidid><orcidid>https://orcid.org/0000-0003-4667-6690</orcidid><orcidid>https://orcid.org/0000-0002-1964-4098</orcidid><orcidid>https://orcid.org/0000-0001-9355-0973</orcidid><orcidid>https://orcid.org/0000-0001-9115-8628</orcidid><orcidid>https://orcid.org/0000-0003-4876-7860</orcidid><orcidid>https://orcid.org/0000-0003-0911-6125</orcidid><orcidid>https://orcid.org/0000-0002-4728-4077</orcidid><orcidid>https://orcid.org/0000-0001-9468-6311</orcidid><orcidid>https://orcid.org/0000-0002-3389-6582</orcidid><orcidid>https://orcid.org/0000-0003-2344-1856</orcidid></search><sort><creationdate>20211206</creationdate><title>Muscle-specific Cand2 is translationally upregulated by mTORC1 and promotes adverse cardiac remodeling</title><author>Górska, Agnieszka A ; Sandmann, Clara ; Riechert, Eva ; Hofmann, Christoph ; Malovrh, Ellen ; Varma, Eshita ; Kmietczyk, Vivien ; Ölschläger, Julie ; Jürgensen, Lonny ; Kamuf-Schenk, Verena ; Stroh, Claudia ; Furkel, Jennifer ; Konstandin, Mathias H ; Sticht, Carsten ; Boileau, Etienne ; Dieterich, Christoph ; Frey, Norbert ; Katus, Hugo A ; Doroudgar, Shirin ; Völkers, Mirko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5130-3fbc17a92951f7e32d828e59061d19a75d31d02fe9a087a2c4cad4af21149913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cand2</topic><topic>cardiac</topic><topic>Cardiomyocytes</topic><topic>Coronary artery disease</topic><topic>Cullin</topic><topic>EMBO24</topic><topic>Gene deletion</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genomes</topic><topic>Heart diseases</topic><topic>Humans</topic><topic>Hypertrophy</topic><topic>Mechanistic Target of Rapamycin Complex 1 - genetics</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>mTOR</topic><topic>Muscle Proteins</topic><topic>Muscles</topic><topic>Myocardium</topic><topic>Myocardium - metabolism</topic><topic>Myocyte enhancer factor 2</topic><topic>Myocytes</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Proteins</topic><topic>Rapamycin</topic><topic>Signal Transduction</topic><topic>TOR protein</topic><topic>Transcription Factors</topic><topic>Translation</topic><topic>Up-Regulation</topic><topic>Ventricular Remodeling - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Górska, Agnieszka A</creatorcontrib><creatorcontrib>Sandmann, Clara</creatorcontrib><creatorcontrib>Riechert, Eva</creatorcontrib><creatorcontrib>Hofmann, Christoph</creatorcontrib><creatorcontrib>Malovrh, Ellen</creatorcontrib><creatorcontrib>Varma, Eshita</creatorcontrib><creatorcontrib>Kmietczyk, Vivien</creatorcontrib><creatorcontrib>Ölschläger, Julie</creatorcontrib><creatorcontrib>Jürgensen, Lonny</creatorcontrib><creatorcontrib>Kamuf-Schenk, Verena</creatorcontrib><creatorcontrib>Stroh, Claudia</creatorcontrib><creatorcontrib>Furkel, Jennifer</creatorcontrib><creatorcontrib>Konstandin, Mathias H</creatorcontrib><creatorcontrib>Sticht, Carsten</creatorcontrib><creatorcontrib>Boileau, Etienne</creatorcontrib><creatorcontrib>Dieterich, Christoph</creatorcontrib><creatorcontrib>Frey, Norbert</creatorcontrib><creatorcontrib>Katus, Hugo A</creatorcontrib><creatorcontrib>Doroudgar, Shirin</creatorcontrib><creatorcontrib>Völkers, Mirko</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Górska, Agnieszka A</au><au>Sandmann, Clara</au><au>Riechert, Eva</au><au>Hofmann, Christoph</au><au>Malovrh, Ellen</au><au>Varma, Eshita</au><au>Kmietczyk, Vivien</au><au>Ölschläger, Julie</au><au>Jürgensen, Lonny</au><au>Kamuf-Schenk, Verena</au><au>Stroh, Claudia</au><au>Furkel, Jennifer</au><au>Konstandin, Mathias H</au><au>Sticht, Carsten</au><au>Boileau, Etienne</au><au>Dieterich, Christoph</au><au>Frey, Norbert</au><au>Katus, Hugo A</au><au>Doroudgar, Shirin</au><au>Völkers, Mirko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Muscle-specific Cand2 is translationally upregulated by mTORC1 and promotes adverse cardiac remodeling</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2021-12-06</date><risdate>2021</risdate><volume>22</volume><issue>12</issue><spage>e52170</spage><epage>n/a</epage><pages>e52170-n/a</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><abstract>The mechanistic target of rapamycin (mTOR) promotes pathological remodeling in the heart by activating ribosomal biogenesis and mRNA translation. Inhibition of mTOR in cardiomyocytes is protective; however, a detailed role of mTOR in translational regulation of specific mRNA networks in the diseased heart is unknown. We performed cardiomyocyte genome-wide sequencing to define mTOR-dependent gene expression control at the level of mRNA translation. We identify the muscle-specific protein Cullin-associated NEDD8-dissociated protein 2 (Cand2) as a translationally upregulated gene, dependent on the activity of mTOR. Deletion of Cand2 protects the myocardium against pathological remodeling. Mechanistically, we show that Cand2 links mTOR signaling to pathological cell growth by increasing Grk5 protein expression. Our data suggest that cell-type-specific targeting of mTOR might have therapeutic value against pathological cardiac remodeling. SYNOPSIS Genome-wide translational profiling identifies mTORC1-dependent genes in cardiomyocytes in response to neurohumoral stimulation. Expression of the muscle-specific gene Cand2 is controlled by mTORC1 and Cand2 regulates cardiac function and pathological hypertrophy. Cand2 is translationally upregulated during pathological stress in cardiac myocytes. Cand2 expression depends on the activity of mTORC1. Cand2 promotes the expression of G-protein coupled receptor 5 (Grk5), which in turn links to myocyte enhancer factor 2 (MEF2)-driven transcription of cardiac hypertophy genes. Graphical Abstract Genome-wide translational profiling identifies mTORC1-dependent genes in cardiomyocytes in response to neurohumoral stimulation. Expression of the muscle-specific gene Cand2 is controlled by mTORC1 and Cand2 regulates cardiac function and pathological hypertrophy.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34605609</pmid><doi>10.15252/embr.202052170</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9737-3406</orcidid><orcidid>https://orcid.org/0000-0003-4667-6690</orcidid><orcidid>https://orcid.org/0000-0002-1964-4098</orcidid><orcidid>https://orcid.org/0000-0001-9355-0973</orcidid><orcidid>https://orcid.org/0000-0001-9115-8628</orcidid><orcidid>https://orcid.org/0000-0003-4876-7860</orcidid><orcidid>https://orcid.org/0000-0003-0911-6125</orcidid><orcidid>https://orcid.org/0000-0002-4728-4077</orcidid><orcidid>https://orcid.org/0000-0001-9468-6311</orcidid><orcidid>https://orcid.org/0000-0002-3389-6582</orcidid><orcidid>https://orcid.org/0000-0003-2344-1856</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1469-221X
ispartof EMBO reports, 2021-12, Vol.22 (12), p.e52170-n/a
issn 1469-221X
1469-3178
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8647021
source Wiley Online Library - AutoHoldings Journals; MEDLINE; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central
subjects Cand2
cardiac
Cardiomyocytes
Coronary artery disease
Cullin
EMBO24
Gene deletion
Gene expression
Gene sequencing
Genes
Genomes
Heart diseases
Humans
Hypertrophy
Mechanistic Target of Rapamycin Complex 1 - genetics
Mechanistic Target of Rapamycin Complex 1 - metabolism
mTOR
Muscle Proteins
Muscles
Myocardium
Myocardium - metabolism
Myocyte enhancer factor 2
Myocytes
Myocytes, Cardiac - metabolism
Proteins
Rapamycin
Signal Transduction
TOR protein
Transcription Factors
Translation
Up-Regulation
Ventricular Remodeling - genetics
title Muscle-specific Cand2 is translationally upregulated by mTORC1 and promotes adverse cardiac remodeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A48%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Muscle-specific%20Cand2%20is%20translationally%20upregulated%20by%20mTORC1%20and%20promotes%20adverse%20cardiac%20remodeling&rft.jtitle=EMBO%20reports&rft.au=G%C3%B3rska,%20Agnieszka%20A&rft.date=2021-12-06&rft.volume=22&rft.issue=12&rft.spage=e52170&rft.epage=n/a&rft.pages=e52170-n/a&rft.issn=1469-221X&rft.eissn=1469-3178&rft_id=info:doi/10.15252/embr.202052170&rft_dat=%3Cproquest_pubme%3E2606830916%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2606830916&rft_id=info:pmid/34605609&rfr_iscdi=true