DC‐GAN‐based synthetic X‐ray images augmentation for increasing the performance of EfficientNet for COVID‐19 detection
Currently, many deep learning models are being used to classify COVID‐19 and normal cases from chest X‐rays. However, the available data (X‐rays) for COVID‐19 is limited to train a robust deep‐learning model. Researchers have used data augmentation techniques to tackle this issue by increasing the n...
Gespeichert in:
Veröffentlicht in: | Expert systems 2022-03, Vol.39 (3), p.e12823-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | e12823 |
container_title | Expert systems |
container_volume | 39 |
creator | Shah, Pir Masoom Ullah, Hamid Ullah, Rahim Shah, Dilawar Wang, Yulin Islam, Saif ul Gani, Abdullah Rodrigues, Joel J. P. C. |
description | Currently, many deep learning models are being used to classify COVID‐19 and normal cases from chest X‐rays. However, the available data (X‐rays) for COVID‐19 is limited to train a robust deep‐learning model. Researchers have used data augmentation techniques to tackle this issue by increasing the numbers of samples through flipping, translation, and rotation. However, by adopting this strategy, the model compromises for the learning of high‐dimensional features for a given problem. Hence, there are high chances of overfitting. In this paper, we used deep‐convolutional generative adversarial networks algorithm to address this issue, which generates synthetic images for all the classes (Normal, Pneumonia, and COVID‐19). To validate whether the generated images are accurate, we used the k‐mean clustering technique with three clusters (Normal, Pneumonia, and COVID‐19). We only selected the X‐ray images classified in the correct clusters for training. In this way, we formed a synthetic dataset with three classes. The generated dataset was then fed to The EfficientNetB4 for training. The experiments achieved promising results of 95% in terms of area under the curve (AUC). To validate that our network has learned discriminated features associated with lung in the X‐rays, we used the Grad‐CAM technique to visualize the underlying pattern, which leads the network to its final decision. |
doi_str_mv | 10.1111/exsy.12823 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8646497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2632103665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4763-303f7bdc4f64aa1f5e003cfa9e796ab321f4019cfc17b64d8279d7c9d5ce77ac3</originalsourceid><addsrcrecordid>eNp9kc9u1DAQhy0EokvhwgMgS1wQUlo79trxBanaLm2lqj3wR-VkOc546ypxtnYC5IJ4BJ6xT4K321bAAR9safzNp99oEHpJyR7NZx--p2mPllXJHqEZ5aIqCFP8MZqRUoiCy5LsoGcpXRFCqJTiKdphvFKVVGqGfhwubn7-Ojo4y3dtEjQ4TWG4hMFbfJFr0UzYd2YFCZtx1UEYzOD7gF0fsQ82gkk-rHDuwGuIudqZYAH3Di-d89bnhjMYbvHF-eeTw6ykCjcwgN14nqMnzrQJXty9u-jT--XHxXFxen50sjg4LSyXghWMMCfrxnInuDHUzYEQZp1RIJUwNSup44Qq6yyVteBNVUrVSKuauQUpjWW76N3Wux7rDhqbY0XT6nXMs8VJ98brv3-Cv9Sr_quuBBdcySx4cyeI_fUIadCdTxba1gTox6RLQQmpeMk26Ot_0Kt-jCGPl6kclTAh5pl6u6Vs7FOK4B7CUKI3a9WbterbtWb41Z_xH9D7PWaAboFvvoXpPyq9vPjwZSv9DeK2s3Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632103665</pqid></control><display><type>article</type><title>DC‐GAN‐based synthetic X‐ray images augmentation for increasing the performance of EfficientNet for COVID‐19 detection</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Shah, Pir Masoom ; Ullah, Hamid ; Ullah, Rahim ; Shah, Dilawar ; Wang, Yulin ; Islam, Saif ul ; Gani, Abdullah ; Rodrigues, Joel J. P. C.</creator><creatorcontrib>Shah, Pir Masoom ; Ullah, Hamid ; Ullah, Rahim ; Shah, Dilawar ; Wang, Yulin ; Islam, Saif ul ; Gani, Abdullah ; Rodrigues, Joel J. P. C.</creatorcontrib><description>Currently, many deep learning models are being used to classify COVID‐19 and normal cases from chest X‐rays. However, the available data (X‐rays) for COVID‐19 is limited to train a robust deep‐learning model. Researchers have used data augmentation techniques to tackle this issue by increasing the numbers of samples through flipping, translation, and rotation. However, by adopting this strategy, the model compromises for the learning of high‐dimensional features for a given problem. Hence, there are high chances of overfitting. In this paper, we used deep‐convolutional generative adversarial networks algorithm to address this issue, which generates synthetic images for all the classes (Normal, Pneumonia, and COVID‐19). To validate whether the generated images are accurate, we used the k‐mean clustering technique with three clusters (Normal, Pneumonia, and COVID‐19). We only selected the X‐ray images classified in the correct clusters for training. In this way, we formed a synthetic dataset with three classes. The generated dataset was then fed to The EfficientNetB4 for training. The experiments achieved promising results of 95% in terms of area under the curve (AUC). To validate that our network has learned discriminated features associated with lung in the X‐rays, we used the Grad‐CAM technique to visualize the underlying pattern, which leads the network to its final decision.</description><identifier>ISSN: 0266-4720</identifier><identifier>EISSN: 1468-0394</identifier><identifier>DOI: 10.1111/exsy.12823</identifier><identifier>PMID: 34898799</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Clustering ; convolutional neural networks ; COVID-19 ; Data augmentation ; Datasets ; Deep learning ; Deep Neural Networks for Biomedical Data and Imaging ; deep‐convolutional generative adversarial networks ; Generative adversarial networks ; Machine learning ; Original ; Pneumonia ; synthetic images ; Training ; X‐rays</subject><ispartof>Expert systems, 2022-03, Vol.39 (3), p.e12823-n/a</ispartof><rights>2021 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons, Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4763-303f7bdc4f64aa1f5e003cfa9e796ab321f4019cfc17b64d8279d7c9d5ce77ac3</citedby><cites>FETCH-LOGICAL-c4763-303f7bdc4f64aa1f5e003cfa9e796ab321f4019cfc17b64d8279d7c9d5ce77ac3</cites><orcidid>0000-0002-9546-4195 ; 0000-0003-2701-6646</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fexsy.12823$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fexsy.12823$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34898799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shah, Pir Masoom</creatorcontrib><creatorcontrib>Ullah, Hamid</creatorcontrib><creatorcontrib>Ullah, Rahim</creatorcontrib><creatorcontrib>Shah, Dilawar</creatorcontrib><creatorcontrib>Wang, Yulin</creatorcontrib><creatorcontrib>Islam, Saif ul</creatorcontrib><creatorcontrib>Gani, Abdullah</creatorcontrib><creatorcontrib>Rodrigues, Joel J. P. C.</creatorcontrib><title>DC‐GAN‐based synthetic X‐ray images augmentation for increasing the performance of EfficientNet for COVID‐19 detection</title><title>Expert systems</title><addtitle>Expert Syst</addtitle><description>Currently, many deep learning models are being used to classify COVID‐19 and normal cases from chest X‐rays. However, the available data (X‐rays) for COVID‐19 is limited to train a robust deep‐learning model. Researchers have used data augmentation techniques to tackle this issue by increasing the numbers of samples through flipping, translation, and rotation. However, by adopting this strategy, the model compromises for the learning of high‐dimensional features for a given problem. Hence, there are high chances of overfitting. In this paper, we used deep‐convolutional generative adversarial networks algorithm to address this issue, which generates synthetic images for all the classes (Normal, Pneumonia, and COVID‐19). To validate whether the generated images are accurate, we used the k‐mean clustering technique with three clusters (Normal, Pneumonia, and COVID‐19). We only selected the X‐ray images classified in the correct clusters for training. In this way, we formed a synthetic dataset with three classes. The generated dataset was then fed to The EfficientNetB4 for training. The experiments achieved promising results of 95% in terms of area under the curve (AUC). To validate that our network has learned discriminated features associated with lung in the X‐rays, we used the Grad‐CAM technique to visualize the underlying pattern, which leads the network to its final decision.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>convolutional neural networks</subject><subject>COVID-19</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Deep Neural Networks for Biomedical Data and Imaging</subject><subject>deep‐convolutional generative adversarial networks</subject><subject>Generative adversarial networks</subject><subject>Machine learning</subject><subject>Original</subject><subject>Pneumonia</subject><subject>synthetic images</subject><subject>Training</subject><subject>X‐rays</subject><issn>0266-4720</issn><issn>1468-0394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQhy0EokvhwgMgS1wQUlo79trxBanaLm2lqj3wR-VkOc546ypxtnYC5IJ4BJ6xT4K321bAAR9safzNp99oEHpJyR7NZx--p2mPllXJHqEZ5aIqCFP8MZqRUoiCy5LsoGcpXRFCqJTiKdphvFKVVGqGfhwubn7-Ojo4y3dtEjQ4TWG4hMFbfJFr0UzYd2YFCZtx1UEYzOD7gF0fsQ82gkk-rHDuwGuIudqZYAH3Di-d89bnhjMYbvHF-eeTw6ykCjcwgN14nqMnzrQJXty9u-jT--XHxXFxen50sjg4LSyXghWMMCfrxnInuDHUzYEQZp1RIJUwNSup44Qq6yyVteBNVUrVSKuauQUpjWW76N3Wux7rDhqbY0XT6nXMs8VJ98brv3-Cv9Sr_quuBBdcySx4cyeI_fUIadCdTxba1gTox6RLQQmpeMk26Ot_0Kt-jCGPl6kclTAh5pl6u6Vs7FOK4B7CUKI3a9WbterbtWb41Z_xH9D7PWaAboFvvoXpPyq9vPjwZSv9DeK2s3Y</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Shah, Pir Masoom</creator><creator>Ullah, Hamid</creator><creator>Ullah, Rahim</creator><creator>Shah, Dilawar</creator><creator>Wang, Yulin</creator><creator>Islam, Saif ul</creator><creator>Gani, Abdullah</creator><creator>Rodrigues, Joel J. P. C.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9546-4195</orcidid><orcidid>https://orcid.org/0000-0003-2701-6646</orcidid></search><sort><creationdate>202203</creationdate><title>DC‐GAN‐based synthetic X‐ray images augmentation for increasing the performance of EfficientNet for COVID‐19 detection</title><author>Shah, Pir Masoom ; Ullah, Hamid ; Ullah, Rahim ; Shah, Dilawar ; Wang, Yulin ; Islam, Saif ul ; Gani, Abdullah ; Rodrigues, Joel J. P. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4763-303f7bdc4f64aa1f5e003cfa9e796ab321f4019cfc17b64d8279d7c9d5ce77ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>convolutional neural networks</topic><topic>COVID-19</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Deep Neural Networks for Biomedical Data and Imaging</topic><topic>deep‐convolutional generative adversarial networks</topic><topic>Generative adversarial networks</topic><topic>Machine learning</topic><topic>Original</topic><topic>Pneumonia</topic><topic>synthetic images</topic><topic>Training</topic><topic>X‐rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Pir Masoom</creatorcontrib><creatorcontrib>Ullah, Hamid</creatorcontrib><creatorcontrib>Ullah, Rahim</creatorcontrib><creatorcontrib>Shah, Dilawar</creatorcontrib><creatorcontrib>Wang, Yulin</creatorcontrib><creatorcontrib>Islam, Saif ul</creatorcontrib><creatorcontrib>Gani, Abdullah</creatorcontrib><creatorcontrib>Rodrigues, Joel J. P. C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Expert systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Pir Masoom</au><au>Ullah, Hamid</au><au>Ullah, Rahim</au><au>Shah, Dilawar</au><au>Wang, Yulin</au><au>Islam, Saif ul</au><au>Gani, Abdullah</au><au>Rodrigues, Joel J. P. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DC‐GAN‐based synthetic X‐ray images augmentation for increasing the performance of EfficientNet for COVID‐19 detection</atitle><jtitle>Expert systems</jtitle><addtitle>Expert Syst</addtitle><date>2022-03</date><risdate>2022</risdate><volume>39</volume><issue>3</issue><spage>e12823</spage><epage>n/a</epage><pages>e12823-n/a</pages><issn>0266-4720</issn><eissn>1468-0394</eissn><abstract>Currently, many deep learning models are being used to classify COVID‐19 and normal cases from chest X‐rays. However, the available data (X‐rays) for COVID‐19 is limited to train a robust deep‐learning model. Researchers have used data augmentation techniques to tackle this issue by increasing the numbers of samples through flipping, translation, and rotation. However, by adopting this strategy, the model compromises for the learning of high‐dimensional features for a given problem. Hence, there are high chances of overfitting. In this paper, we used deep‐convolutional generative adversarial networks algorithm to address this issue, which generates synthetic images for all the classes (Normal, Pneumonia, and COVID‐19). To validate whether the generated images are accurate, we used the k‐mean clustering technique with three clusters (Normal, Pneumonia, and COVID‐19). We only selected the X‐ray images classified in the correct clusters for training. In this way, we formed a synthetic dataset with three classes. The generated dataset was then fed to The EfficientNetB4 for training. The experiments achieved promising results of 95% in terms of area under the curve (AUC). To validate that our network has learned discriminated features associated with lung in the X‐rays, we used the Grad‐CAM technique to visualize the underlying pattern, which leads the network to its final decision.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>34898799</pmid><doi>10.1111/exsy.12823</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9546-4195</orcidid><orcidid>https://orcid.org/0000-0003-2701-6646</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-4720 |
ispartof | Expert systems, 2022-03, Vol.39 (3), p.e12823-n/a |
issn | 0266-4720 1468-0394 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8646497 |
source | Wiley Online Library Journals Frontfile Complete; Business Source Complete |
subjects | Algorithms Clustering convolutional neural networks COVID-19 Data augmentation Datasets Deep learning Deep Neural Networks for Biomedical Data and Imaging deep‐convolutional generative adversarial networks Generative adversarial networks Machine learning Original Pneumonia synthetic images Training X‐rays |
title | DC‐GAN‐based synthetic X‐ray images augmentation for increasing the performance of EfficientNet for COVID‐19 detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DC%E2%80%90GAN%E2%80%90based%20synthetic%20X%E2%80%90ray%20images%20augmentation%20for%20increasing%20the%20performance%20of%20EfficientNet%20for%20COVID%E2%80%9019%20detection&rft.jtitle=Expert%20systems&rft.au=Shah,%20Pir%20Masoom&rft.date=2022-03&rft.volume=39&rft.issue=3&rft.spage=e12823&rft.epage=n/a&rft.pages=e12823-n/a&rft.issn=0266-4720&rft.eissn=1468-0394&rft_id=info:doi/10.1111/exsy.12823&rft_dat=%3Cproquest_pubme%3E2632103665%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2632103665&rft_id=info:pmid/34898799&rfr_iscdi=true |