DC‐GAN‐based synthetic X‐ray images augmentation for increasing the performance of EfficientNet for COVID‐19 detection

Currently, many deep learning models are being used to classify COVID‐19 and normal cases from chest X‐rays. However, the available data (X‐rays) for COVID‐19 is limited to train a robust deep‐learning model. Researchers have used data augmentation techniques to tackle this issue by increasing the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems 2022-03, Vol.39 (3), p.e12823-n/a
Hauptverfasser: Shah, Pir Masoom, Ullah, Hamid, Ullah, Rahim, Shah, Dilawar, Wang, Yulin, Islam, Saif ul, Gani, Abdullah, Rodrigues, Joel J. P. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page e12823
container_title Expert systems
container_volume 39
creator Shah, Pir Masoom
Ullah, Hamid
Ullah, Rahim
Shah, Dilawar
Wang, Yulin
Islam, Saif ul
Gani, Abdullah
Rodrigues, Joel J. P. C.
description Currently, many deep learning models are being used to classify COVID‐19 and normal cases from chest X‐rays. However, the available data (X‐rays) for COVID‐19 is limited to train a robust deep‐learning model. Researchers have used data augmentation techniques to tackle this issue by increasing the numbers of samples through flipping, translation, and rotation. However, by adopting this strategy, the model compromises for the learning of high‐dimensional features for a given problem. Hence, there are high chances of overfitting. In this paper, we used deep‐convolutional generative adversarial networks algorithm to address this issue, which generates synthetic images for all the classes (Normal, Pneumonia, and COVID‐19). To validate whether the generated images are accurate, we used the k‐mean clustering technique with three clusters (Normal, Pneumonia, and COVID‐19). We only selected the X‐ray images classified in the correct clusters for training. In this way, we formed a synthetic dataset with three classes. The generated dataset was then fed to The EfficientNetB4 for training. The experiments achieved promising results of 95% in terms of area under the curve (AUC). To validate that our network has learned discriminated features associated with lung in the X‐rays, we used the Grad‐CAM technique to visualize the underlying pattern, which leads the network to its final decision.
doi_str_mv 10.1111/exsy.12823
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8646497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2632103665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4763-303f7bdc4f64aa1f5e003cfa9e796ab321f4019cfc17b64d8279d7c9d5ce77ac3</originalsourceid><addsrcrecordid>eNp9kc9u1DAQhy0EokvhwgMgS1wQUlo79trxBanaLm2lqj3wR-VkOc546ypxtnYC5IJ4BJ6xT4K321bAAR9safzNp99oEHpJyR7NZx--p2mPllXJHqEZ5aIqCFP8MZqRUoiCy5LsoGcpXRFCqJTiKdphvFKVVGqGfhwubn7-Ojo4y3dtEjQ4TWG4hMFbfJFr0UzYd2YFCZtx1UEYzOD7gF0fsQ82gkk-rHDuwGuIudqZYAH3Di-d89bnhjMYbvHF-eeTw6ykCjcwgN14nqMnzrQJXty9u-jT--XHxXFxen50sjg4LSyXghWMMCfrxnInuDHUzYEQZp1RIJUwNSup44Qq6yyVteBNVUrVSKuauQUpjWW76N3Wux7rDhqbY0XT6nXMs8VJ98brv3-Cv9Sr_quuBBdcySx4cyeI_fUIadCdTxba1gTox6RLQQmpeMk26Ot_0Kt-jCGPl6kclTAh5pl6u6Vs7FOK4B7CUKI3a9WbterbtWb41Z_xH9D7PWaAboFvvoXpPyq9vPjwZSv9DeK2s3Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632103665</pqid></control><display><type>article</type><title>DC‐GAN‐based synthetic X‐ray images augmentation for increasing the performance of EfficientNet for COVID‐19 detection</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Shah, Pir Masoom ; Ullah, Hamid ; Ullah, Rahim ; Shah, Dilawar ; Wang, Yulin ; Islam, Saif ul ; Gani, Abdullah ; Rodrigues, Joel J. P. C.</creator><creatorcontrib>Shah, Pir Masoom ; Ullah, Hamid ; Ullah, Rahim ; Shah, Dilawar ; Wang, Yulin ; Islam, Saif ul ; Gani, Abdullah ; Rodrigues, Joel J. P. C.</creatorcontrib><description>Currently, many deep learning models are being used to classify COVID‐19 and normal cases from chest X‐rays. However, the available data (X‐rays) for COVID‐19 is limited to train a robust deep‐learning model. Researchers have used data augmentation techniques to tackle this issue by increasing the numbers of samples through flipping, translation, and rotation. However, by adopting this strategy, the model compromises for the learning of high‐dimensional features for a given problem. Hence, there are high chances of overfitting. In this paper, we used deep‐convolutional generative adversarial networks algorithm to address this issue, which generates synthetic images for all the classes (Normal, Pneumonia, and COVID‐19). To validate whether the generated images are accurate, we used the k‐mean clustering technique with three clusters (Normal, Pneumonia, and COVID‐19). We only selected the X‐ray images classified in the correct clusters for training. In this way, we formed a synthetic dataset with three classes. The generated dataset was then fed to The EfficientNetB4 for training. The experiments achieved promising results of 95% in terms of area under the curve (AUC). To validate that our network has learned discriminated features associated with lung in the X‐rays, we used the Grad‐CAM technique to visualize the underlying pattern, which leads the network to its final decision.</description><identifier>ISSN: 0266-4720</identifier><identifier>EISSN: 1468-0394</identifier><identifier>DOI: 10.1111/exsy.12823</identifier><identifier>PMID: 34898799</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Clustering ; convolutional neural networks ; COVID-19 ; Data augmentation ; Datasets ; Deep learning ; Deep Neural Networks for Biomedical Data and Imaging ; deep‐convolutional generative adversarial networks ; Generative adversarial networks ; Machine learning ; Original ; Pneumonia ; synthetic images ; Training ; X‐rays</subject><ispartof>Expert systems, 2022-03, Vol.39 (3), p.e12823-n/a</ispartof><rights>2021 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4763-303f7bdc4f64aa1f5e003cfa9e796ab321f4019cfc17b64d8279d7c9d5ce77ac3</citedby><cites>FETCH-LOGICAL-c4763-303f7bdc4f64aa1f5e003cfa9e796ab321f4019cfc17b64d8279d7c9d5ce77ac3</cites><orcidid>0000-0002-9546-4195 ; 0000-0003-2701-6646</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fexsy.12823$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fexsy.12823$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34898799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shah, Pir Masoom</creatorcontrib><creatorcontrib>Ullah, Hamid</creatorcontrib><creatorcontrib>Ullah, Rahim</creatorcontrib><creatorcontrib>Shah, Dilawar</creatorcontrib><creatorcontrib>Wang, Yulin</creatorcontrib><creatorcontrib>Islam, Saif ul</creatorcontrib><creatorcontrib>Gani, Abdullah</creatorcontrib><creatorcontrib>Rodrigues, Joel J. P. C.</creatorcontrib><title>DC‐GAN‐based synthetic X‐ray images augmentation for increasing the performance of EfficientNet for COVID‐19 detection</title><title>Expert systems</title><addtitle>Expert Syst</addtitle><description>Currently, many deep learning models are being used to classify COVID‐19 and normal cases from chest X‐rays. However, the available data (X‐rays) for COVID‐19 is limited to train a robust deep‐learning model. Researchers have used data augmentation techniques to tackle this issue by increasing the numbers of samples through flipping, translation, and rotation. However, by adopting this strategy, the model compromises for the learning of high‐dimensional features for a given problem. Hence, there are high chances of overfitting. In this paper, we used deep‐convolutional generative adversarial networks algorithm to address this issue, which generates synthetic images for all the classes (Normal, Pneumonia, and COVID‐19). To validate whether the generated images are accurate, we used the k‐mean clustering technique with three clusters (Normal, Pneumonia, and COVID‐19). We only selected the X‐ray images classified in the correct clusters for training. In this way, we formed a synthetic dataset with three classes. The generated dataset was then fed to The EfficientNetB4 for training. The experiments achieved promising results of 95% in terms of area under the curve (AUC). To validate that our network has learned discriminated features associated with lung in the X‐rays, we used the Grad‐CAM technique to visualize the underlying pattern, which leads the network to its final decision.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>convolutional neural networks</subject><subject>COVID-19</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Deep Neural Networks for Biomedical Data and Imaging</subject><subject>deep‐convolutional generative adversarial networks</subject><subject>Generative adversarial networks</subject><subject>Machine learning</subject><subject>Original</subject><subject>Pneumonia</subject><subject>synthetic images</subject><subject>Training</subject><subject>X‐rays</subject><issn>0266-4720</issn><issn>1468-0394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQhy0EokvhwgMgS1wQUlo79trxBanaLm2lqj3wR-VkOc546ypxtnYC5IJ4BJ6xT4K321bAAR9safzNp99oEHpJyR7NZx--p2mPllXJHqEZ5aIqCFP8MZqRUoiCy5LsoGcpXRFCqJTiKdphvFKVVGqGfhwubn7-Ojo4y3dtEjQ4TWG4hMFbfJFr0UzYd2YFCZtx1UEYzOD7gF0fsQ82gkk-rHDuwGuIudqZYAH3Di-d89bnhjMYbvHF-eeTw6ykCjcwgN14nqMnzrQJXty9u-jT--XHxXFxen50sjg4LSyXghWMMCfrxnInuDHUzYEQZp1RIJUwNSup44Qq6yyVteBNVUrVSKuauQUpjWW76N3Wux7rDhqbY0XT6nXMs8VJ98brv3-Cv9Sr_quuBBdcySx4cyeI_fUIadCdTxba1gTox6RLQQmpeMk26Ot_0Kt-jCGPl6kclTAh5pl6u6Vs7FOK4B7CUKI3a9WbterbtWb41Z_xH9D7PWaAboFvvoXpPyq9vPjwZSv9DeK2s3Y</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Shah, Pir Masoom</creator><creator>Ullah, Hamid</creator><creator>Ullah, Rahim</creator><creator>Shah, Dilawar</creator><creator>Wang, Yulin</creator><creator>Islam, Saif ul</creator><creator>Gani, Abdullah</creator><creator>Rodrigues, Joel J. P. C.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9546-4195</orcidid><orcidid>https://orcid.org/0000-0003-2701-6646</orcidid></search><sort><creationdate>202203</creationdate><title>DC‐GAN‐based synthetic X‐ray images augmentation for increasing the performance of EfficientNet for COVID‐19 detection</title><author>Shah, Pir Masoom ; Ullah, Hamid ; Ullah, Rahim ; Shah, Dilawar ; Wang, Yulin ; Islam, Saif ul ; Gani, Abdullah ; Rodrigues, Joel J. P. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4763-303f7bdc4f64aa1f5e003cfa9e796ab321f4019cfc17b64d8279d7c9d5ce77ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>convolutional neural networks</topic><topic>COVID-19</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Deep Neural Networks for Biomedical Data and Imaging</topic><topic>deep‐convolutional generative adversarial networks</topic><topic>Generative adversarial networks</topic><topic>Machine learning</topic><topic>Original</topic><topic>Pneumonia</topic><topic>synthetic images</topic><topic>Training</topic><topic>X‐rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Pir Masoom</creatorcontrib><creatorcontrib>Ullah, Hamid</creatorcontrib><creatorcontrib>Ullah, Rahim</creatorcontrib><creatorcontrib>Shah, Dilawar</creatorcontrib><creatorcontrib>Wang, Yulin</creatorcontrib><creatorcontrib>Islam, Saif ul</creatorcontrib><creatorcontrib>Gani, Abdullah</creatorcontrib><creatorcontrib>Rodrigues, Joel J. P. C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Expert systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Pir Masoom</au><au>Ullah, Hamid</au><au>Ullah, Rahim</au><au>Shah, Dilawar</au><au>Wang, Yulin</au><au>Islam, Saif ul</au><au>Gani, Abdullah</au><au>Rodrigues, Joel J. P. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DC‐GAN‐based synthetic X‐ray images augmentation for increasing the performance of EfficientNet for COVID‐19 detection</atitle><jtitle>Expert systems</jtitle><addtitle>Expert Syst</addtitle><date>2022-03</date><risdate>2022</risdate><volume>39</volume><issue>3</issue><spage>e12823</spage><epage>n/a</epage><pages>e12823-n/a</pages><issn>0266-4720</issn><eissn>1468-0394</eissn><abstract>Currently, many deep learning models are being used to classify COVID‐19 and normal cases from chest X‐rays. However, the available data (X‐rays) for COVID‐19 is limited to train a robust deep‐learning model. Researchers have used data augmentation techniques to tackle this issue by increasing the numbers of samples through flipping, translation, and rotation. However, by adopting this strategy, the model compromises for the learning of high‐dimensional features for a given problem. Hence, there are high chances of overfitting. In this paper, we used deep‐convolutional generative adversarial networks algorithm to address this issue, which generates synthetic images for all the classes (Normal, Pneumonia, and COVID‐19). To validate whether the generated images are accurate, we used the k‐mean clustering technique with three clusters (Normal, Pneumonia, and COVID‐19). We only selected the X‐ray images classified in the correct clusters for training. In this way, we formed a synthetic dataset with three classes. The generated dataset was then fed to The EfficientNetB4 for training. The experiments achieved promising results of 95% in terms of area under the curve (AUC). To validate that our network has learned discriminated features associated with lung in the X‐rays, we used the Grad‐CAM technique to visualize the underlying pattern, which leads the network to its final decision.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>34898799</pmid><doi>10.1111/exsy.12823</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9546-4195</orcidid><orcidid>https://orcid.org/0000-0003-2701-6646</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-4720
ispartof Expert systems, 2022-03, Vol.39 (3), p.e12823-n/a
issn 0266-4720
1468-0394
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8646497
source Wiley Online Library Journals Frontfile Complete; Business Source Complete
subjects Algorithms
Clustering
convolutional neural networks
COVID-19
Data augmentation
Datasets
Deep learning
Deep Neural Networks for Biomedical Data and Imaging
deep‐convolutional generative adversarial networks
Generative adversarial networks
Machine learning
Original
Pneumonia
synthetic images
Training
X‐rays
title DC‐GAN‐based synthetic X‐ray images augmentation for increasing the performance of EfficientNet for COVID‐19 detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DC%E2%80%90GAN%E2%80%90based%20synthetic%20X%E2%80%90ray%20images%20augmentation%20for%20increasing%20the%20performance%20of%20EfficientNet%20for%20COVID%E2%80%9019%20detection&rft.jtitle=Expert%20systems&rft.au=Shah,%20Pir%20Masoom&rft.date=2022-03&rft.volume=39&rft.issue=3&rft.spage=e12823&rft.epage=n/a&rft.pages=e12823-n/a&rft.issn=0266-4720&rft.eissn=1468-0394&rft_id=info:doi/10.1111/exsy.12823&rft_dat=%3Cproquest_pubme%3E2632103665%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2632103665&rft_id=info:pmid/34898799&rfr_iscdi=true