A novel Gray-Scale spatial exploitation learning Net for COVID-19 by crawling Internet resources

[Display omitted] •Adapting the crawled updated CXR COVID-19 images datasets using web crawler-based cloud environment.•Crawling the updated CXR COVID-19 images datasets from different websites simultaneously.•Designing a novel Gray-Scale Spatial Exploitation Net (GSEN) to detect infected COVID-19 c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical signal processing and control 2022-03, Vol.73, p.103441-103441, Article 103441
Hauptverfasser: ElAraby, Mohamed E., Elzeki, Omar M., Shams, Mahmoud Y., Mahmoud, Amena, Salem, Hanaa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103441
container_issue
container_start_page 103441
container_title Biomedical signal processing and control
container_volume 73
creator ElAraby, Mohamed E.
Elzeki, Omar M.
Shams, Mahmoud Y.
Mahmoud, Amena
Salem, Hanaa
description [Display omitted] •Adapting the crawled updated CXR COVID-19 images datasets using web crawler-based cloud environment.•Crawling the updated CXR COVID-19 images datasets from different websites simultaneously.•Designing a novel Gray-Scale Spatial Exploitation Net (GSEN) to detect infected COVID-19 cases easily.•Optimizing the hyperparameters of GSEN by using Stochastic Gradient Descent (SGD) Optimizer. Today, the earth planet suffers from the decay of active pandemic COVID-19 which motivates scientists and researchers to detect and diagnose the infected people. Chest X-ray (CXR) image is a common utility tool for detection. Even the CXR suffers from low informative details about COVID-19 patches; the computer vision helps to overcome it through grayscale spatial exploitation analysis. In turn, it is highly recommended to acquire more CXR images to increase the capacity and ability to learn for mining the grayscale spatial exploitation. In this paper, an efficient Gray-scale Spatial Exploitation Net (GSEN) is designed by employing web pages crawling across cloud computing environments. The motivation of this work are i) utilizing a framework methodology for constructing consistent dataset by web crawling to update the dataset continuously per crawling iteration; ii) designing lightweight, fast learning, comparable accuracy, and fine-tuned parameters gray-scale spatial exploitation deep neural net; iii) comprehensive evaluation of the designed gray-scale spatial exploitation net for different collected dataset(s) based on web COVID-19 crawling verse the transfer learning of the pre-trained nets. Different experiments have been performed for benchmarking both the proposed web crawling framework methodology and the designed gray-scale spatial exploitation net. Due to the accuracy metric, the proposed net achieves 95.60% for two-class labels, and 92.67% for three-class labels, respectively compared with the most recent transfer learning Google-Net, VGG-19, Res-Net 50, and Alex-Net approaches. Furthermore, web crawling utilizes the accuracy rates improvement in a positive relationship to the cardinality of crawled CXR dataset.
doi_str_mv 10.1016/j.bspc.2021.103441
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8645252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1746809421010387</els_id><sourcerecordid>2610079056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-82232d4a6e0353ce563219a9eacfec8f441d5522e874a1290ac583228e41d7203</originalsourceid><addsrcrecordid>eNp9kc1OGzEUhS1UBDTwAiwqL7uZ1PbYM7aEkFBoaSRUFkC3ruO5Qx059tSepM3b11EA0U1X_jnnnnvtD6FzSqaU0ObTcrrIg50ywmi5qDmnB-iEtrypJCXy3cueKH6M3ue8JITLlvIjdFxzqZRqyAn6cYVD3IDHN8lsq3trPOA8mNEZj-HP4KMbyyEG7MGk4MIT_gYj7mPCs7vv8-uKKrzYYpvMb78T52GEFIojQY7rZCGfosPe-Axnz-sEPX75_DD7Wt3e3cxnV7eV5UKMlWSsZh03DZBa1BZEUzOqjAJje7CyL4_rhGAMZMsNZYoYK2TNmIQitIzUE3S5zx3WixV0FsKYjNdDciuTtjoap_9Vgvupn-JGy4YLJlgJ-PgckOKvNeRRr1y24L0JENdZs4YS0ipSJpsgtrfaFHNO0L-2oUTv0Oil3qHROzR6j6YUfXg74GvJC4tiuNgboHzTxkHS2ToIFjqXwI66i-5_-X8BJwCfxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610079056</pqid></control><display><type>article</type><title>A novel Gray-Scale spatial exploitation learning Net for COVID-19 by crawling Internet resources</title><source>Elsevier ScienceDirect Journals</source><creator>ElAraby, Mohamed E. ; Elzeki, Omar M. ; Shams, Mahmoud Y. ; Mahmoud, Amena ; Salem, Hanaa</creator><creatorcontrib>ElAraby, Mohamed E. ; Elzeki, Omar M. ; Shams, Mahmoud Y. ; Mahmoud, Amena ; Salem, Hanaa</creatorcontrib><description>[Display omitted] •Adapting the crawled updated CXR COVID-19 images datasets using web crawler-based cloud environment.•Crawling the updated CXR COVID-19 images datasets from different websites simultaneously.•Designing a novel Gray-Scale Spatial Exploitation Net (GSEN) to detect infected COVID-19 cases easily.•Optimizing the hyperparameters of GSEN by using Stochastic Gradient Descent (SGD) Optimizer. Today, the earth planet suffers from the decay of active pandemic COVID-19 which motivates scientists and researchers to detect and diagnose the infected people. Chest X-ray (CXR) image is a common utility tool for detection. Even the CXR suffers from low informative details about COVID-19 patches; the computer vision helps to overcome it through grayscale spatial exploitation analysis. In turn, it is highly recommended to acquire more CXR images to increase the capacity and ability to learn for mining the grayscale spatial exploitation. In this paper, an efficient Gray-scale Spatial Exploitation Net (GSEN) is designed by employing web pages crawling across cloud computing environments. The motivation of this work are i) utilizing a framework methodology for constructing consistent dataset by web crawling to update the dataset continuously per crawling iteration; ii) designing lightweight, fast learning, comparable accuracy, and fine-tuned parameters gray-scale spatial exploitation deep neural net; iii) comprehensive evaluation of the designed gray-scale spatial exploitation net for different collected dataset(s) based on web COVID-19 crawling verse the transfer learning of the pre-trained nets. Different experiments have been performed for benchmarking both the proposed web crawling framework methodology and the designed gray-scale spatial exploitation net. Due to the accuracy metric, the proposed net achieves 95.60% for two-class labels, and 92.67% for three-class labels, respectively compared with the most recent transfer learning Google-Net, VGG-19, Res-Net 50, and Alex-Net approaches. Furthermore, web crawling utilizes the accuracy rates improvement in a positive relationship to the cardinality of crawled CXR dataset.</description><identifier>ISSN: 1746-8094</identifier><identifier>EISSN: 1746-8108</identifier><identifier>EISSN: 1746-8094</identifier><identifier>DOI: 10.1016/j.bspc.2021.103441</identifier><identifier>PMID: 34899960</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Classification ; Cloud computing ; COVID-19 ; CXR images ; Deep convolutional neural networks ; Web crawler</subject><ispartof>Biomedical signal processing and control, 2022-03, Vol.73, p.103441-103441, Article 103441</ispartof><rights>2021 Elsevier Ltd</rights><rights>2021 Elsevier Ltd. All rights reserved.</rights><rights>2021 Elsevier Ltd. All rights reserved. 2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-82232d4a6e0353ce563219a9eacfec8f441d5522e874a1290ac583228e41d7203</citedby><cites>FETCH-LOGICAL-c455t-82232d4a6e0353ce563219a9eacfec8f441d5522e874a1290ac583228e41d7203</cites><orcidid>0000-0002-8714-567X ; 0000-0003-3021-5902 ; 0000-0003-4355-2668 ; 0000-0001-5409-1305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1746809421010387$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27903,27904,65308</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34899960$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ElAraby, Mohamed E.</creatorcontrib><creatorcontrib>Elzeki, Omar M.</creatorcontrib><creatorcontrib>Shams, Mahmoud Y.</creatorcontrib><creatorcontrib>Mahmoud, Amena</creatorcontrib><creatorcontrib>Salem, Hanaa</creatorcontrib><title>A novel Gray-Scale spatial exploitation learning Net for COVID-19 by crawling Internet resources</title><title>Biomedical signal processing and control</title><addtitle>Biomed Signal Process Control</addtitle><description>[Display omitted] •Adapting the crawled updated CXR COVID-19 images datasets using web crawler-based cloud environment.•Crawling the updated CXR COVID-19 images datasets from different websites simultaneously.•Designing a novel Gray-Scale Spatial Exploitation Net (GSEN) to detect infected COVID-19 cases easily.•Optimizing the hyperparameters of GSEN by using Stochastic Gradient Descent (SGD) Optimizer. Today, the earth planet suffers from the decay of active pandemic COVID-19 which motivates scientists and researchers to detect and diagnose the infected people. Chest X-ray (CXR) image is a common utility tool for detection. Even the CXR suffers from low informative details about COVID-19 patches; the computer vision helps to overcome it through grayscale spatial exploitation analysis. In turn, it is highly recommended to acquire more CXR images to increase the capacity and ability to learn for mining the grayscale spatial exploitation. In this paper, an efficient Gray-scale Spatial Exploitation Net (GSEN) is designed by employing web pages crawling across cloud computing environments. The motivation of this work are i) utilizing a framework methodology for constructing consistent dataset by web crawling to update the dataset continuously per crawling iteration; ii) designing lightweight, fast learning, comparable accuracy, and fine-tuned parameters gray-scale spatial exploitation deep neural net; iii) comprehensive evaluation of the designed gray-scale spatial exploitation net for different collected dataset(s) based on web COVID-19 crawling verse the transfer learning of the pre-trained nets. Different experiments have been performed for benchmarking both the proposed web crawling framework methodology and the designed gray-scale spatial exploitation net. Due to the accuracy metric, the proposed net achieves 95.60% for two-class labels, and 92.67% for three-class labels, respectively compared with the most recent transfer learning Google-Net, VGG-19, Res-Net 50, and Alex-Net approaches. Furthermore, web crawling utilizes the accuracy rates improvement in a positive relationship to the cardinality of crawled CXR dataset.</description><subject>Classification</subject><subject>Cloud computing</subject><subject>COVID-19</subject><subject>CXR images</subject><subject>Deep convolutional neural networks</subject><subject>Web crawler</subject><issn>1746-8094</issn><issn>1746-8108</issn><issn>1746-8094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kc1OGzEUhS1UBDTwAiwqL7uZ1PbYM7aEkFBoaSRUFkC3ruO5Qx059tSepM3b11EA0U1X_jnnnnvtD6FzSqaU0ObTcrrIg50ywmi5qDmnB-iEtrypJCXy3cueKH6M3ue8JITLlvIjdFxzqZRqyAn6cYVD3IDHN8lsq3trPOA8mNEZj-HP4KMbyyEG7MGk4MIT_gYj7mPCs7vv8-uKKrzYYpvMb78T52GEFIojQY7rZCGfosPe-Axnz-sEPX75_DD7Wt3e3cxnV7eV5UKMlWSsZh03DZBa1BZEUzOqjAJje7CyL4_rhGAMZMsNZYoYK2TNmIQitIzUE3S5zx3WixV0FsKYjNdDciuTtjoap_9Vgvupn-JGy4YLJlgJ-PgckOKvNeRRr1y24L0JENdZs4YS0ipSJpsgtrfaFHNO0L-2oUTv0Oil3qHROzR6j6YUfXg74GvJC4tiuNgboHzTxkHS2ToIFjqXwI66i-5_-X8BJwCfxA</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>ElAraby, Mohamed E.</creator><creator>Elzeki, Omar M.</creator><creator>Shams, Mahmoud Y.</creator><creator>Mahmoud, Amena</creator><creator>Salem, Hanaa</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8714-567X</orcidid><orcidid>https://orcid.org/0000-0003-3021-5902</orcidid><orcidid>https://orcid.org/0000-0003-4355-2668</orcidid><orcidid>https://orcid.org/0000-0001-5409-1305</orcidid></search><sort><creationdate>20220301</creationdate><title>A novel Gray-Scale spatial exploitation learning Net for COVID-19 by crawling Internet resources</title><author>ElAraby, Mohamed E. ; Elzeki, Omar M. ; Shams, Mahmoud Y. ; Mahmoud, Amena ; Salem, Hanaa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-82232d4a6e0353ce563219a9eacfec8f441d5522e874a1290ac583228e41d7203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classification</topic><topic>Cloud computing</topic><topic>COVID-19</topic><topic>CXR images</topic><topic>Deep convolutional neural networks</topic><topic>Web crawler</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ElAraby, Mohamed E.</creatorcontrib><creatorcontrib>Elzeki, Omar M.</creatorcontrib><creatorcontrib>Shams, Mahmoud Y.</creatorcontrib><creatorcontrib>Mahmoud, Amena</creatorcontrib><creatorcontrib>Salem, Hanaa</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical signal processing and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ElAraby, Mohamed E.</au><au>Elzeki, Omar M.</au><au>Shams, Mahmoud Y.</au><au>Mahmoud, Amena</au><au>Salem, Hanaa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel Gray-Scale spatial exploitation learning Net for COVID-19 by crawling Internet resources</atitle><jtitle>Biomedical signal processing and control</jtitle><addtitle>Biomed Signal Process Control</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>73</volume><spage>103441</spage><epage>103441</epage><pages>103441-103441</pages><artnum>103441</artnum><issn>1746-8094</issn><eissn>1746-8108</eissn><eissn>1746-8094</eissn><abstract>[Display omitted] •Adapting the crawled updated CXR COVID-19 images datasets using web crawler-based cloud environment.•Crawling the updated CXR COVID-19 images datasets from different websites simultaneously.•Designing a novel Gray-Scale Spatial Exploitation Net (GSEN) to detect infected COVID-19 cases easily.•Optimizing the hyperparameters of GSEN by using Stochastic Gradient Descent (SGD) Optimizer. Today, the earth planet suffers from the decay of active pandemic COVID-19 which motivates scientists and researchers to detect and diagnose the infected people. Chest X-ray (CXR) image is a common utility tool for detection. Even the CXR suffers from low informative details about COVID-19 patches; the computer vision helps to overcome it through grayscale spatial exploitation analysis. In turn, it is highly recommended to acquire more CXR images to increase the capacity and ability to learn for mining the grayscale spatial exploitation. In this paper, an efficient Gray-scale Spatial Exploitation Net (GSEN) is designed by employing web pages crawling across cloud computing environments. The motivation of this work are i) utilizing a framework methodology for constructing consistent dataset by web crawling to update the dataset continuously per crawling iteration; ii) designing lightweight, fast learning, comparable accuracy, and fine-tuned parameters gray-scale spatial exploitation deep neural net; iii) comprehensive evaluation of the designed gray-scale spatial exploitation net for different collected dataset(s) based on web COVID-19 crawling verse the transfer learning of the pre-trained nets. Different experiments have been performed for benchmarking both the proposed web crawling framework methodology and the designed gray-scale spatial exploitation net. Due to the accuracy metric, the proposed net achieves 95.60% for two-class labels, and 92.67% for three-class labels, respectively compared with the most recent transfer learning Google-Net, VGG-19, Res-Net 50, and Alex-Net approaches. Furthermore, web crawling utilizes the accuracy rates improvement in a positive relationship to the cardinality of crawled CXR dataset.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34899960</pmid><doi>10.1016/j.bspc.2021.103441</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8714-567X</orcidid><orcidid>https://orcid.org/0000-0003-3021-5902</orcidid><orcidid>https://orcid.org/0000-0003-4355-2668</orcidid><orcidid>https://orcid.org/0000-0001-5409-1305</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1746-8094
ispartof Biomedical signal processing and control, 2022-03, Vol.73, p.103441-103441, Article 103441
issn 1746-8094
1746-8108
1746-8094
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8645252
source Elsevier ScienceDirect Journals
subjects Classification
Cloud computing
COVID-19
CXR images
Deep convolutional neural networks
Web crawler
title A novel Gray-Scale spatial exploitation learning Net for COVID-19 by crawling Internet resources
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A31%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20Gray-Scale%20spatial%20exploitation%20learning%20Net%20for%20COVID-19%20by%20crawling%20Internet%20resources&rft.jtitle=Biomedical%20signal%20processing%20and%20control&rft.au=ElAraby,%20Mohamed%20E.&rft.date=2022-03-01&rft.volume=73&rft.spage=103441&rft.epage=103441&rft.pages=103441-103441&rft.artnum=103441&rft.issn=1746-8094&rft.eissn=1746-8108&rft_id=info:doi/10.1016/j.bspc.2021.103441&rft_dat=%3Cproquest_pubme%3E2610079056%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610079056&rft_id=info:pmid/34899960&rft_els_id=S1746809421010387&rfr_iscdi=true