Two plastid POLLUX ion channel-like proteins are required for stress-triggered stromal Ca2+release

Two decades ago, large cation currents were discovered in the envelope membranes of Pisum sativum L. (pea) chloroplasts. The deduced K+-permeable channel was coined fast-activating chloroplast cation channel but its molecular identity remained elusive. To reveal candidates, we mined proteomic datase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2021-12, Vol.187 (4), p.2110-2125
Hauptverfasser: Völkner, Carsten, Holzner, Lorenz Josef, Day, Philip M, Ashok, Amra Dhabalia, Vries, Jan de, Bölter, Bettina, Kunz, Hans-Henning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2125
container_issue 4
container_start_page 2110
container_title Plant physiology (Bethesda)
container_volume 187
creator Völkner, Carsten
Holzner, Lorenz Josef
Day, Philip M
Ashok, Amra Dhabalia
Vries, Jan de
Bölter, Bettina
Kunz, Hans-Henning
description Two decades ago, large cation currents were discovered in the envelope membranes of Pisum sativum L. (pea) chloroplasts. The deduced K+-permeable channel was coined fast-activating chloroplast cation channel but its molecular identity remained elusive. To reveal candidates, we mined proteomic datasets of isolated pea envelopes. Our search uncovered distant members of the nuclear POLLUX ion channel family. Since pea is not amenable to molecular genetics, we used Arabidopsis thaliana to characterize the two gene homologs. Using several independent approaches, we show that both candidates localize to the chloroplast envelope membrane. The proteins, designated PLASTID ENVELOPE ION CHANNELS (PEC1/2), form oligomers with regulator of K+ conductance domains protruding into the intermembrane space. Heterologous expression of PEC1/2 rescues yeast mutants deficient in K+ uptake. Nuclear POLLUX ion channels cofunction with Ca2+ channels to generate Ca2+ signals, critical for establishing mycorrhizal symbiosis and root development. Chloroplasts also exhibit Ca2+ transients in the stroma, probably to relay abiotic and biotic cues between plastids and the nucleus via the cytosol. Our results show that pec1pec2 loss-of-function double mutants fail to trigger the characteristic stromal Ca2+ release observed in wild-type plants exposed to external stress stimuli. Besides this molecular abnormality, pec1pec2 double mutants do not show obvious phenotypes. Future studies of PEC proteins will help to decipher the plant's stress-related Ca2+ signaling network and the role of plastids. More importantly, the discovery of PECs in the envelope membrane is another critical step towards completing the chloroplast ion transport protein inventory.
doi_str_mv 10.1093/plphys/kiab424
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8644588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580015162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-13f92a51b0a3d7c5b4ed55a0006571fdf8a138afa03beb757edf533c7ef2dcd33</originalsourceid><addsrcrecordid>eNpVUU1rGzEQFSWldtJeeww6BsrG-lh55UsgmDYpGNyDA72J2dXIViyvNtI6xf--G-yY9jTDmzdvHvMI-crZLWczOelCtznkydZDXYryAxlzJUUhVKkvyJixoWdaz0bkMudnxhiXvPxERrKccs1makzq1Z9IuwC595b-Wi4WT7-pjy1tNtC2GIrgt0i7FHv0baaQkCZ82fuElrqYaO4T5lz0ya_X-AYOQNxBoHMQ3xIGhIyfyUcHIeOXU70iTz--r-aPxWL58HN-vygaKVhfcOlmAhSvGUhbNaou0SoFg-mpqrizTgOXGhwwWWNdqQqtU1I2FTphGyvlFbk76nb7eoe2wbZPEEyX_A7SwUTw5v9J6zdmHV-Nnpal0noQuDkJpPiyx9ybnc8NhgAtxn02Qunhg4pPxUC9PVKbFHNO6M5nODNvwZhjMOYUzLBw_a-5M_09CfkXHo2O-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580015162</pqid></control><display><type>article</type><title>Two plastid POLLUX ion channel-like proteins are required for stress-triggered stromal Ca2+release</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Völkner, Carsten ; Holzner, Lorenz Josef ; Day, Philip M ; Ashok, Amra Dhabalia ; Vries, Jan de ; Bölter, Bettina ; Kunz, Hans-Henning</creator><creatorcontrib>Völkner, Carsten ; Holzner, Lorenz Josef ; Day, Philip M ; Ashok, Amra Dhabalia ; Vries, Jan de ; Bölter, Bettina ; Kunz, Hans-Henning</creatorcontrib><description>Two decades ago, large cation currents were discovered in the envelope membranes of Pisum sativum L. (pea) chloroplasts. The deduced K+-permeable channel was coined fast-activating chloroplast cation channel but its molecular identity remained elusive. To reveal candidates, we mined proteomic datasets of isolated pea envelopes. Our search uncovered distant members of the nuclear POLLUX ion channel family. Since pea is not amenable to molecular genetics, we used Arabidopsis thaliana to characterize the two gene homologs. Using several independent approaches, we show that both candidates localize to the chloroplast envelope membrane. The proteins, designated PLASTID ENVELOPE ION CHANNELS (PEC1/2), form oligomers with regulator of K+ conductance domains protruding into the intermembrane space. Heterologous expression of PEC1/2 rescues yeast mutants deficient in K+ uptake. Nuclear POLLUX ion channels cofunction with Ca2+ channels to generate Ca2+ signals, critical for establishing mycorrhizal symbiosis and root development. Chloroplasts also exhibit Ca2+ transients in the stroma, probably to relay abiotic and biotic cues between plastids and the nucleus via the cytosol. Our results show that pec1pec2 loss-of-function double mutants fail to trigger the characteristic stromal Ca2+ release observed in wild-type plants exposed to external stress stimuli. Besides this molecular abnormality, pec1pec2 double mutants do not show obvious phenotypes. Future studies of PEC proteins will help to decipher the plant's stress-related Ca2+ signaling network and the role of plastids. More importantly, the discovery of PECs in the envelope membrane is another critical step towards completing the chloroplast ion transport protein inventory.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1093/plphys/kiab424</identifier><identifier>PMID: 34618095</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Adaptation, Physiological - genetics ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Crops, Agricultural - genetics ; Crops, Agricultural - metabolism ; Focus Issue on Transport and Signaling ; Gene Expression Regulation, Plant ; Genes, Plant ; Intracellular Membranes - metabolism ; Ion Channels - genetics ; Phylogeny ; Pisum sativum - genetics ; Pisum sativum - metabolism ; Plastids - genetics ; Proteomics</subject><ispartof>Plant physiology (Bethesda), 2021-12, Vol.187 (4), p.2110-2125</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of American Society of Plant Biologists.</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of American Society of Plant Biologists. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-13f92a51b0a3d7c5b4ed55a0006571fdf8a138afa03beb757edf533c7ef2dcd33</citedby><cites>FETCH-LOGICAL-c320t-13f92a51b0a3d7c5b4ed55a0006571fdf8a138afa03beb757edf533c7ef2dcd33</cites><orcidid>0000-0001-8000-0817 ; 0000-0002-1938-2307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34618095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Völkner, Carsten</creatorcontrib><creatorcontrib>Holzner, Lorenz Josef</creatorcontrib><creatorcontrib>Day, Philip M</creatorcontrib><creatorcontrib>Ashok, Amra Dhabalia</creatorcontrib><creatorcontrib>Vries, Jan de</creatorcontrib><creatorcontrib>Bölter, Bettina</creatorcontrib><creatorcontrib>Kunz, Hans-Henning</creatorcontrib><title>Two plastid POLLUX ion channel-like proteins are required for stress-triggered stromal Ca2+release</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Two decades ago, large cation currents were discovered in the envelope membranes of Pisum sativum L. (pea) chloroplasts. The deduced K+-permeable channel was coined fast-activating chloroplast cation channel but its molecular identity remained elusive. To reveal candidates, we mined proteomic datasets of isolated pea envelopes. Our search uncovered distant members of the nuclear POLLUX ion channel family. Since pea is not amenable to molecular genetics, we used Arabidopsis thaliana to characterize the two gene homologs. Using several independent approaches, we show that both candidates localize to the chloroplast envelope membrane. The proteins, designated PLASTID ENVELOPE ION CHANNELS (PEC1/2), form oligomers with regulator of K+ conductance domains protruding into the intermembrane space. Heterologous expression of PEC1/2 rescues yeast mutants deficient in K+ uptake. Nuclear POLLUX ion channels cofunction with Ca2+ channels to generate Ca2+ signals, critical for establishing mycorrhizal symbiosis and root development. Chloroplasts also exhibit Ca2+ transients in the stroma, probably to relay abiotic and biotic cues between plastids and the nucleus via the cytosol. Our results show that pec1pec2 loss-of-function double mutants fail to trigger the characteristic stromal Ca2+ release observed in wild-type plants exposed to external stress stimuli. Besides this molecular abnormality, pec1pec2 double mutants do not show obvious phenotypes. Future studies of PEC proteins will help to decipher the plant's stress-related Ca2+ signaling network and the role of plastids. More importantly, the discovery of PECs in the envelope membrane is another critical step towards completing the chloroplast ion transport protein inventory.</description><subject>Adaptation, Physiological - genetics</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Crops, Agricultural - genetics</subject><subject>Crops, Agricultural - metabolism</subject><subject>Focus Issue on Transport and Signaling</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes, Plant</subject><subject>Intracellular Membranes - metabolism</subject><subject>Ion Channels - genetics</subject><subject>Phylogeny</subject><subject>Pisum sativum - genetics</subject><subject>Pisum sativum - metabolism</subject><subject>Plastids - genetics</subject><subject>Proteomics</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1rGzEQFSWldtJeeww6BsrG-lh55UsgmDYpGNyDA72J2dXIViyvNtI6xf--G-yY9jTDmzdvHvMI-crZLWczOelCtznkydZDXYryAxlzJUUhVKkvyJixoWdaz0bkMudnxhiXvPxERrKccs1makzq1Z9IuwC595b-Wi4WT7-pjy1tNtC2GIrgt0i7FHv0baaQkCZ82fuElrqYaO4T5lz0ya_X-AYOQNxBoHMQ3xIGhIyfyUcHIeOXU70iTz--r-aPxWL58HN-vygaKVhfcOlmAhSvGUhbNaou0SoFg-mpqrizTgOXGhwwWWNdqQqtU1I2FTphGyvlFbk76nb7eoe2wbZPEEyX_A7SwUTw5v9J6zdmHV-Nnpal0noQuDkJpPiyx9ybnc8NhgAtxn02Qunhg4pPxUC9PVKbFHNO6M5nODNvwZhjMOYUzLBw_a-5M_09CfkXHo2O-g</recordid><startdate>20211204</startdate><enddate>20211204</enddate><creator>Völkner, Carsten</creator><creator>Holzner, Lorenz Josef</creator><creator>Day, Philip M</creator><creator>Ashok, Amra Dhabalia</creator><creator>Vries, Jan de</creator><creator>Bölter, Bettina</creator><creator>Kunz, Hans-Henning</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8000-0817</orcidid><orcidid>https://orcid.org/0000-0002-1938-2307</orcidid></search><sort><creationdate>20211204</creationdate><title>Two plastid POLLUX ion channel-like proteins are required for stress-triggered stromal Ca2+release</title><author>Völkner, Carsten ; Holzner, Lorenz Josef ; Day, Philip M ; Ashok, Amra Dhabalia ; Vries, Jan de ; Bölter, Bettina ; Kunz, Hans-Henning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-13f92a51b0a3d7c5b4ed55a0006571fdf8a138afa03beb757edf533c7ef2dcd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation, Physiological - genetics</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Crops, Agricultural - genetics</topic><topic>Crops, Agricultural - metabolism</topic><topic>Focus Issue on Transport and Signaling</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes, Plant</topic><topic>Intracellular Membranes - metabolism</topic><topic>Ion Channels - genetics</topic><topic>Phylogeny</topic><topic>Pisum sativum - genetics</topic><topic>Pisum sativum - metabolism</topic><topic>Plastids - genetics</topic><topic>Proteomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Völkner, Carsten</creatorcontrib><creatorcontrib>Holzner, Lorenz Josef</creatorcontrib><creatorcontrib>Day, Philip M</creatorcontrib><creatorcontrib>Ashok, Amra Dhabalia</creatorcontrib><creatorcontrib>Vries, Jan de</creatorcontrib><creatorcontrib>Bölter, Bettina</creatorcontrib><creatorcontrib>Kunz, Hans-Henning</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Völkner, Carsten</au><au>Holzner, Lorenz Josef</au><au>Day, Philip M</au><au>Ashok, Amra Dhabalia</au><au>Vries, Jan de</au><au>Bölter, Bettina</au><au>Kunz, Hans-Henning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two plastid POLLUX ion channel-like proteins are required for stress-triggered stromal Ca2+release</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2021-12-04</date><risdate>2021</risdate><volume>187</volume><issue>4</issue><spage>2110</spage><epage>2125</epage><pages>2110-2125</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Two decades ago, large cation currents were discovered in the envelope membranes of Pisum sativum L. (pea) chloroplasts. The deduced K+-permeable channel was coined fast-activating chloroplast cation channel but its molecular identity remained elusive. To reveal candidates, we mined proteomic datasets of isolated pea envelopes. Our search uncovered distant members of the nuclear POLLUX ion channel family. Since pea is not amenable to molecular genetics, we used Arabidopsis thaliana to characterize the two gene homologs. Using several independent approaches, we show that both candidates localize to the chloroplast envelope membrane. The proteins, designated PLASTID ENVELOPE ION CHANNELS (PEC1/2), form oligomers with regulator of K+ conductance domains protruding into the intermembrane space. Heterologous expression of PEC1/2 rescues yeast mutants deficient in K+ uptake. Nuclear POLLUX ion channels cofunction with Ca2+ channels to generate Ca2+ signals, critical for establishing mycorrhizal symbiosis and root development. Chloroplasts also exhibit Ca2+ transients in the stroma, probably to relay abiotic and biotic cues between plastids and the nucleus via the cytosol. Our results show that pec1pec2 loss-of-function double mutants fail to trigger the characteristic stromal Ca2+ release observed in wild-type plants exposed to external stress stimuli. Besides this molecular abnormality, pec1pec2 double mutants do not show obvious phenotypes. Future studies of PEC proteins will help to decipher the plant's stress-related Ca2+ signaling network and the role of plastids. More importantly, the discovery of PECs in the envelope membrane is another critical step towards completing the chloroplast ion transport protein inventory.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>34618095</pmid><doi>10.1093/plphys/kiab424</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8000-0817</orcidid><orcidid>https://orcid.org/0000-0002-1938-2307</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2021-12, Vol.187 (4), p.2110-2125
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8644588
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptation, Physiological - genetics
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Crops, Agricultural - genetics
Crops, Agricultural - metabolism
Focus Issue on Transport and Signaling
Gene Expression Regulation, Plant
Genes, Plant
Intracellular Membranes - metabolism
Ion Channels - genetics
Phylogeny
Pisum sativum - genetics
Pisum sativum - metabolism
Plastids - genetics
Proteomics
title Two plastid POLLUX ion channel-like proteins are required for stress-triggered stromal Ca2+release
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A28%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20plastid%20POLLUX%20ion%20channel-like%20proteins%20are%20required%20for%20stress-triggered%20stromal%20Ca2+release&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=V%C3%B6lkner,%20Carsten&rft.date=2021-12-04&rft.volume=187&rft.issue=4&rft.spage=2110&rft.epage=2125&rft.pages=2110-2125&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1093/plphys/kiab424&rft_dat=%3Cproquest_pubme%3E2580015162%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580015162&rft_id=info:pmid/34618095&rfr_iscdi=true