PLK1 regulates the PrimPol damage tolerance pathway during the cell cycle
Replication stress and DNA damage stall replication forks and impede genome synthesis. During S phase, damage tolerance pathways allow lesion bypass to ensure efficient genome duplication. One such pathway is repriming, mediated by Primase-Polymerase (PrimPol) in human cells. However, the mechanisms...
Gespeichert in:
Veröffentlicht in: | Science advances 2021-12, Vol.7 (49), p.eabh1004-eabh1004 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | eabh1004 |
---|---|
container_issue | 49 |
container_start_page | eabh1004 |
container_title | Science advances |
container_volume | 7 |
creator | Bailey, Laura J Teague, Rebecca Kolesar, Peter Bainbridge, Lewis J Lindsay, Howard D Doherty, Aidan J |
description | Replication stress and DNA damage stall replication forks and impede genome synthesis. During S phase, damage tolerance pathways allow lesion bypass to ensure efficient genome duplication. One such pathway is repriming, mediated by Primase-Polymerase (PrimPol) in human cells. However, the mechanisms by which PrimPol is regulated are poorly understood. Here, we demonstrate that PrimPol is phosphorylated by Polo-like kinase 1 (PLK1) at a conserved residue between PrimPol’s RPA binding motifs. This phosphorylation is differentially modified throughout the cell cycle, which prevents aberrant recruitment of PrimPol to chromatin. Phosphorylation can also be delayed and reversed in response to replication stress. The absence of PLK1-dependent regulation of PrimPol induces phenotypes including chromosome breaks, micronuclei, and decreased survival after treatment with camptothecin, olaparib, and UV-C. Together, these findings establish that deregulated repriming leads to genomic instability, highlighting the importance of regulating this damage tolerance pathway following fork stalling and throughout the cell cycle. |
doi_str_mv | 10.1126/sciadv.abh1004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8641930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2606933545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-6bc6129871dd48c20ac6ca328e9683b76ad6d5daf326fa9e77e00e7bea50139c3</originalsourceid><addsrcrecordid>eNpVkUlPwzAQhS0EolXplSPKkUuKHcdOckFCFUtFJXqAszWxJwvKUuykqP-elJaqnGak-ebN8gi5ZnTGWCDvnC7BbGaQFozS8IyMAx4JPxBhfH6Sj8jUuU9KKQulFCy5JCMexpIKIcdksVq-Ms9i3lfQofO6Ar2VLetVW3kGasjR69oKLTQavTV0xTdsPdPbssl_WY1V5emtrvCKXGRQOZwe4oR8PD2-z1_85dvzYv6w9DVPaOfLVEsWJHHEjAljHVDQUgMPYkxkzNNIgpFGGMh4IDNIMIqQUoxSBEEZTzSfkPu97rpPazQam85CpdbD0mC3qoVS_a80ZaHydqNiGbKE00Hg9iBg268eXafq0u3ugAbb3qlAUplwLkIxoLM9qm3rnMXsOIZRtbNA7S1QBwuGhpvT5Y7438P5D7PJhO8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2606933545</pqid></control><display><type>article</type><title>PLK1 regulates the PrimPol damage tolerance pathway during the cell cycle</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Bailey, Laura J ; Teague, Rebecca ; Kolesar, Peter ; Bainbridge, Lewis J ; Lindsay, Howard D ; Doherty, Aidan J</creator><creatorcontrib>Bailey, Laura J ; Teague, Rebecca ; Kolesar, Peter ; Bainbridge, Lewis J ; Lindsay, Howard D ; Doherty, Aidan J</creatorcontrib><description>Replication stress and DNA damage stall replication forks and impede genome synthesis. During S phase, damage tolerance pathways allow lesion bypass to ensure efficient genome duplication. One such pathway is repriming, mediated by Primase-Polymerase (PrimPol) in human cells. However, the mechanisms by which PrimPol is regulated are poorly understood. Here, we demonstrate that PrimPol is phosphorylated by Polo-like kinase 1 (PLK1) at a conserved residue between PrimPol’s RPA binding motifs. This phosphorylation is differentially modified throughout the cell cycle, which prevents aberrant recruitment of PrimPol to chromatin. Phosphorylation can also be delayed and reversed in response to replication stress. The absence of PLK1-dependent regulation of PrimPol induces phenotypes including chromosome breaks, micronuclei, and decreased survival after treatment with camptothecin, olaparib, and UV-C. Together, these findings establish that deregulated repriming leads to genomic instability, highlighting the importance of regulating this damage tolerance pathway following fork stalling and throughout the cell cycle.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abh1004</identifier><identifier>PMID: 34860556</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Biomedicine and Life Sciences ; Cell Biology ; SciAdv r-articles ; Signal Transduction</subject><ispartof>Science advances, 2021-12, Vol.7 (49), p.eabh1004-eabh1004</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-6bc6129871dd48c20ac6ca328e9683b76ad6d5daf326fa9e77e00e7bea50139c3</citedby><cites>FETCH-LOGICAL-c390t-6bc6129871dd48c20ac6ca328e9683b76ad6d5daf326fa9e77e00e7bea50139c3</cites><orcidid>0000-0002-4037-9516 ; 0000-0002-6370-1109 ; 0000-0001-9102-4881 ; 0000-0002-3315-3586 ; 0000-0001-5310-2295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8641930/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8641930/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34860556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bailey, Laura J</creatorcontrib><creatorcontrib>Teague, Rebecca</creatorcontrib><creatorcontrib>Kolesar, Peter</creatorcontrib><creatorcontrib>Bainbridge, Lewis J</creatorcontrib><creatorcontrib>Lindsay, Howard D</creatorcontrib><creatorcontrib>Doherty, Aidan J</creatorcontrib><title>PLK1 regulates the PrimPol damage tolerance pathway during the cell cycle</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Replication stress and DNA damage stall replication forks and impede genome synthesis. During S phase, damage tolerance pathways allow lesion bypass to ensure efficient genome duplication. One such pathway is repriming, mediated by Primase-Polymerase (PrimPol) in human cells. However, the mechanisms by which PrimPol is regulated are poorly understood. Here, we demonstrate that PrimPol is phosphorylated by Polo-like kinase 1 (PLK1) at a conserved residue between PrimPol’s RPA binding motifs. This phosphorylation is differentially modified throughout the cell cycle, which prevents aberrant recruitment of PrimPol to chromatin. Phosphorylation can also be delayed and reversed in response to replication stress. The absence of PLK1-dependent regulation of PrimPol induces phenotypes including chromosome breaks, micronuclei, and decreased survival after treatment with camptothecin, olaparib, and UV-C. Together, these findings establish that deregulated repriming leads to genomic instability, highlighting the importance of regulating this damage tolerance pathway following fork stalling and throughout the cell cycle.</description><subject>Biomedicine and Life Sciences</subject><subject>Cell Biology</subject><subject>SciAdv r-articles</subject><subject>Signal Transduction</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkUlPwzAQhS0EolXplSPKkUuKHcdOckFCFUtFJXqAszWxJwvKUuykqP-elJaqnGak-ebN8gi5ZnTGWCDvnC7BbGaQFozS8IyMAx4JPxBhfH6Sj8jUuU9KKQulFCy5JCMexpIKIcdksVq-Ms9i3lfQofO6Ar2VLetVW3kGasjR69oKLTQavTV0xTdsPdPbssl_WY1V5emtrvCKXGRQOZwe4oR8PD2-z1_85dvzYv6w9DVPaOfLVEsWJHHEjAljHVDQUgMPYkxkzNNIgpFGGMh4IDNIMIqQUoxSBEEZTzSfkPu97rpPazQam85CpdbD0mC3qoVS_a80ZaHydqNiGbKE00Hg9iBg268eXafq0u3ugAbb3qlAUplwLkIxoLM9qm3rnMXsOIZRtbNA7S1QBwuGhpvT5Y7438P5D7PJhO8</recordid><startdate>20211203</startdate><enddate>20211203</enddate><creator>Bailey, Laura J</creator><creator>Teague, Rebecca</creator><creator>Kolesar, Peter</creator><creator>Bainbridge, Lewis J</creator><creator>Lindsay, Howard D</creator><creator>Doherty, Aidan J</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4037-9516</orcidid><orcidid>https://orcid.org/0000-0002-6370-1109</orcidid><orcidid>https://orcid.org/0000-0001-9102-4881</orcidid><orcidid>https://orcid.org/0000-0002-3315-3586</orcidid><orcidid>https://orcid.org/0000-0001-5310-2295</orcidid></search><sort><creationdate>20211203</creationdate><title>PLK1 regulates the PrimPol damage tolerance pathway during the cell cycle</title><author>Bailey, Laura J ; Teague, Rebecca ; Kolesar, Peter ; Bainbridge, Lewis J ; Lindsay, Howard D ; Doherty, Aidan J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-6bc6129871dd48c20ac6ca328e9683b76ad6d5daf326fa9e77e00e7bea50139c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedicine and Life Sciences</topic><topic>Cell Biology</topic><topic>SciAdv r-articles</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bailey, Laura J</creatorcontrib><creatorcontrib>Teague, Rebecca</creatorcontrib><creatorcontrib>Kolesar, Peter</creatorcontrib><creatorcontrib>Bainbridge, Lewis J</creatorcontrib><creatorcontrib>Lindsay, Howard D</creatorcontrib><creatorcontrib>Doherty, Aidan J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bailey, Laura J</au><au>Teague, Rebecca</au><au>Kolesar, Peter</au><au>Bainbridge, Lewis J</au><au>Lindsay, Howard D</au><au>Doherty, Aidan J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PLK1 regulates the PrimPol damage tolerance pathway during the cell cycle</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2021-12-03</date><risdate>2021</risdate><volume>7</volume><issue>49</issue><spage>eabh1004</spage><epage>eabh1004</epage><pages>eabh1004-eabh1004</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Replication stress and DNA damage stall replication forks and impede genome synthesis. During S phase, damage tolerance pathways allow lesion bypass to ensure efficient genome duplication. One such pathway is repriming, mediated by Primase-Polymerase (PrimPol) in human cells. However, the mechanisms by which PrimPol is regulated are poorly understood. Here, we demonstrate that PrimPol is phosphorylated by Polo-like kinase 1 (PLK1) at a conserved residue between PrimPol’s RPA binding motifs. This phosphorylation is differentially modified throughout the cell cycle, which prevents aberrant recruitment of PrimPol to chromatin. Phosphorylation can also be delayed and reversed in response to replication stress. The absence of PLK1-dependent regulation of PrimPol induces phenotypes including chromosome breaks, micronuclei, and decreased survival after treatment with camptothecin, olaparib, and UV-C. Together, these findings establish that deregulated repriming leads to genomic instability, highlighting the importance of regulating this damage tolerance pathway following fork stalling and throughout the cell cycle.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>34860556</pmid><doi>10.1126/sciadv.abh1004</doi><orcidid>https://orcid.org/0000-0002-4037-9516</orcidid><orcidid>https://orcid.org/0000-0002-6370-1109</orcidid><orcidid>https://orcid.org/0000-0001-9102-4881</orcidid><orcidid>https://orcid.org/0000-0002-3315-3586</orcidid><orcidid>https://orcid.org/0000-0001-5310-2295</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2021-12, Vol.7 (49), p.eabh1004-eabh1004 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8641930 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Biomedicine and Life Sciences Cell Biology SciAdv r-articles Signal Transduction |
title | PLK1 regulates the PrimPol damage tolerance pathway during the cell cycle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A19%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PLK1%20regulates%20the%20PrimPol%20damage%20tolerance%20pathway%20during%20the%20cell%20cycle&rft.jtitle=Science%20advances&rft.au=Bailey,%20Laura%20J&rft.date=2021-12-03&rft.volume=7&rft.issue=49&rft.spage=eabh1004&rft.epage=eabh1004&rft.pages=eabh1004-eabh1004&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abh1004&rft_dat=%3Cproquest_pubme%3E2606933545%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2606933545&rft_id=info:pmid/34860556&rfr_iscdi=true |