PLK1 regulates the PrimPol damage tolerance pathway during the cell cycle

Replication stress and DNA damage stall replication forks and impede genome synthesis. During S phase, damage tolerance pathways allow lesion bypass to ensure efficient genome duplication. One such pathway is repriming, mediated by Primase-Polymerase (PrimPol) in human cells. However, the mechanisms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2021-12, Vol.7 (49), p.eabh1004-eabh1004
Hauptverfasser: Bailey, Laura J, Teague, Rebecca, Kolesar, Peter, Bainbridge, Lewis J, Lindsay, Howard D, Doherty, Aidan J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page eabh1004
container_issue 49
container_start_page eabh1004
container_title Science advances
container_volume 7
creator Bailey, Laura J
Teague, Rebecca
Kolesar, Peter
Bainbridge, Lewis J
Lindsay, Howard D
Doherty, Aidan J
description Replication stress and DNA damage stall replication forks and impede genome synthesis. During S phase, damage tolerance pathways allow lesion bypass to ensure efficient genome duplication. One such pathway is repriming, mediated by Primase-Polymerase (PrimPol) in human cells. However, the mechanisms by which PrimPol is regulated are poorly understood. Here, we demonstrate that PrimPol is phosphorylated by Polo-like kinase 1 (PLK1) at a conserved residue between PrimPol’s RPA binding motifs. This phosphorylation is differentially modified throughout the cell cycle, which prevents aberrant recruitment of PrimPol to chromatin. Phosphorylation can also be delayed and reversed in response to replication stress. The absence of PLK1-dependent regulation of PrimPol induces phenotypes including chromosome breaks, micronuclei, and decreased survival after treatment with camptothecin, olaparib, and UV-C. Together, these findings establish that deregulated repriming leads to genomic instability, highlighting the importance of regulating this damage tolerance pathway following fork stalling and throughout the cell cycle.
doi_str_mv 10.1126/sciadv.abh1004
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8641930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2606933545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-6bc6129871dd48c20ac6ca328e9683b76ad6d5daf326fa9e77e00e7bea50139c3</originalsourceid><addsrcrecordid>eNpVkUlPwzAQhS0EolXplSPKkUuKHcdOckFCFUtFJXqAszWxJwvKUuykqP-elJaqnGak-ebN8gi5ZnTGWCDvnC7BbGaQFozS8IyMAx4JPxBhfH6Sj8jUuU9KKQulFCy5JCMexpIKIcdksVq-Ms9i3lfQofO6Ar2VLetVW3kGasjR69oKLTQavTV0xTdsPdPbssl_WY1V5emtrvCKXGRQOZwe4oR8PD2-z1_85dvzYv6w9DVPaOfLVEsWJHHEjAljHVDQUgMPYkxkzNNIgpFGGMh4IDNIMIqQUoxSBEEZTzSfkPu97rpPazQam85CpdbD0mC3qoVS_a80ZaHydqNiGbKE00Hg9iBg268eXafq0u3ugAbb3qlAUplwLkIxoLM9qm3rnMXsOIZRtbNA7S1QBwuGhpvT5Y7438P5D7PJhO8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2606933545</pqid></control><display><type>article</type><title>PLK1 regulates the PrimPol damage tolerance pathway during the cell cycle</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Bailey, Laura J ; Teague, Rebecca ; Kolesar, Peter ; Bainbridge, Lewis J ; Lindsay, Howard D ; Doherty, Aidan J</creator><creatorcontrib>Bailey, Laura J ; Teague, Rebecca ; Kolesar, Peter ; Bainbridge, Lewis J ; Lindsay, Howard D ; Doherty, Aidan J</creatorcontrib><description>Replication stress and DNA damage stall replication forks and impede genome synthesis. During S phase, damage tolerance pathways allow lesion bypass to ensure efficient genome duplication. One such pathway is repriming, mediated by Primase-Polymerase (PrimPol) in human cells. However, the mechanisms by which PrimPol is regulated are poorly understood. Here, we demonstrate that PrimPol is phosphorylated by Polo-like kinase 1 (PLK1) at a conserved residue between PrimPol’s RPA binding motifs. This phosphorylation is differentially modified throughout the cell cycle, which prevents aberrant recruitment of PrimPol to chromatin. Phosphorylation can also be delayed and reversed in response to replication stress. The absence of PLK1-dependent regulation of PrimPol induces phenotypes including chromosome breaks, micronuclei, and decreased survival after treatment with camptothecin, olaparib, and UV-C. Together, these findings establish that deregulated repriming leads to genomic instability, highlighting the importance of regulating this damage tolerance pathway following fork stalling and throughout the cell cycle.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abh1004</identifier><identifier>PMID: 34860556</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Biomedicine and Life Sciences ; Cell Biology ; SciAdv r-articles ; Signal Transduction</subject><ispartof>Science advances, 2021-12, Vol.7 (49), p.eabh1004-eabh1004</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-6bc6129871dd48c20ac6ca328e9683b76ad6d5daf326fa9e77e00e7bea50139c3</citedby><cites>FETCH-LOGICAL-c390t-6bc6129871dd48c20ac6ca328e9683b76ad6d5daf326fa9e77e00e7bea50139c3</cites><orcidid>0000-0002-4037-9516 ; 0000-0002-6370-1109 ; 0000-0001-9102-4881 ; 0000-0002-3315-3586 ; 0000-0001-5310-2295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8641930/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8641930/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34860556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bailey, Laura J</creatorcontrib><creatorcontrib>Teague, Rebecca</creatorcontrib><creatorcontrib>Kolesar, Peter</creatorcontrib><creatorcontrib>Bainbridge, Lewis J</creatorcontrib><creatorcontrib>Lindsay, Howard D</creatorcontrib><creatorcontrib>Doherty, Aidan J</creatorcontrib><title>PLK1 regulates the PrimPol damage tolerance pathway during the cell cycle</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Replication stress and DNA damage stall replication forks and impede genome synthesis. During S phase, damage tolerance pathways allow lesion bypass to ensure efficient genome duplication. One such pathway is repriming, mediated by Primase-Polymerase (PrimPol) in human cells. However, the mechanisms by which PrimPol is regulated are poorly understood. Here, we demonstrate that PrimPol is phosphorylated by Polo-like kinase 1 (PLK1) at a conserved residue between PrimPol’s RPA binding motifs. This phosphorylation is differentially modified throughout the cell cycle, which prevents aberrant recruitment of PrimPol to chromatin. Phosphorylation can also be delayed and reversed in response to replication stress. The absence of PLK1-dependent regulation of PrimPol induces phenotypes including chromosome breaks, micronuclei, and decreased survival after treatment with camptothecin, olaparib, and UV-C. Together, these findings establish that deregulated repriming leads to genomic instability, highlighting the importance of regulating this damage tolerance pathway following fork stalling and throughout the cell cycle.</description><subject>Biomedicine and Life Sciences</subject><subject>Cell Biology</subject><subject>SciAdv r-articles</subject><subject>Signal Transduction</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkUlPwzAQhS0EolXplSPKkUuKHcdOckFCFUtFJXqAszWxJwvKUuykqP-elJaqnGak-ebN8gi5ZnTGWCDvnC7BbGaQFozS8IyMAx4JPxBhfH6Sj8jUuU9KKQulFCy5JCMexpIKIcdksVq-Ms9i3lfQofO6Ar2VLetVW3kGasjR69oKLTQavTV0xTdsPdPbssl_WY1V5emtrvCKXGRQOZwe4oR8PD2-z1_85dvzYv6w9DVPaOfLVEsWJHHEjAljHVDQUgMPYkxkzNNIgpFGGMh4IDNIMIqQUoxSBEEZTzSfkPu97rpPazQam85CpdbD0mC3qoVS_a80ZaHydqNiGbKE00Hg9iBg268eXafq0u3ugAbb3qlAUplwLkIxoLM9qm3rnMXsOIZRtbNA7S1QBwuGhpvT5Y7438P5D7PJhO8</recordid><startdate>20211203</startdate><enddate>20211203</enddate><creator>Bailey, Laura J</creator><creator>Teague, Rebecca</creator><creator>Kolesar, Peter</creator><creator>Bainbridge, Lewis J</creator><creator>Lindsay, Howard D</creator><creator>Doherty, Aidan J</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4037-9516</orcidid><orcidid>https://orcid.org/0000-0002-6370-1109</orcidid><orcidid>https://orcid.org/0000-0001-9102-4881</orcidid><orcidid>https://orcid.org/0000-0002-3315-3586</orcidid><orcidid>https://orcid.org/0000-0001-5310-2295</orcidid></search><sort><creationdate>20211203</creationdate><title>PLK1 regulates the PrimPol damage tolerance pathway during the cell cycle</title><author>Bailey, Laura J ; Teague, Rebecca ; Kolesar, Peter ; Bainbridge, Lewis J ; Lindsay, Howard D ; Doherty, Aidan J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-6bc6129871dd48c20ac6ca328e9683b76ad6d5daf326fa9e77e00e7bea50139c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedicine and Life Sciences</topic><topic>Cell Biology</topic><topic>SciAdv r-articles</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bailey, Laura J</creatorcontrib><creatorcontrib>Teague, Rebecca</creatorcontrib><creatorcontrib>Kolesar, Peter</creatorcontrib><creatorcontrib>Bainbridge, Lewis J</creatorcontrib><creatorcontrib>Lindsay, Howard D</creatorcontrib><creatorcontrib>Doherty, Aidan J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bailey, Laura J</au><au>Teague, Rebecca</au><au>Kolesar, Peter</au><au>Bainbridge, Lewis J</au><au>Lindsay, Howard D</au><au>Doherty, Aidan J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PLK1 regulates the PrimPol damage tolerance pathway during the cell cycle</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2021-12-03</date><risdate>2021</risdate><volume>7</volume><issue>49</issue><spage>eabh1004</spage><epage>eabh1004</epage><pages>eabh1004-eabh1004</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Replication stress and DNA damage stall replication forks and impede genome synthesis. During S phase, damage tolerance pathways allow lesion bypass to ensure efficient genome duplication. One such pathway is repriming, mediated by Primase-Polymerase (PrimPol) in human cells. However, the mechanisms by which PrimPol is regulated are poorly understood. Here, we demonstrate that PrimPol is phosphorylated by Polo-like kinase 1 (PLK1) at a conserved residue between PrimPol’s RPA binding motifs. This phosphorylation is differentially modified throughout the cell cycle, which prevents aberrant recruitment of PrimPol to chromatin. Phosphorylation can also be delayed and reversed in response to replication stress. The absence of PLK1-dependent regulation of PrimPol induces phenotypes including chromosome breaks, micronuclei, and decreased survival after treatment with camptothecin, olaparib, and UV-C. Together, these findings establish that deregulated repriming leads to genomic instability, highlighting the importance of regulating this damage tolerance pathway following fork stalling and throughout the cell cycle.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>34860556</pmid><doi>10.1126/sciadv.abh1004</doi><orcidid>https://orcid.org/0000-0002-4037-9516</orcidid><orcidid>https://orcid.org/0000-0002-6370-1109</orcidid><orcidid>https://orcid.org/0000-0001-9102-4881</orcidid><orcidid>https://orcid.org/0000-0002-3315-3586</orcidid><orcidid>https://orcid.org/0000-0001-5310-2295</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2021-12, Vol.7 (49), p.eabh1004-eabh1004
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8641930
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Biomedicine and Life Sciences
Cell Biology
SciAdv r-articles
Signal Transduction
title PLK1 regulates the PrimPol damage tolerance pathway during the cell cycle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A19%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PLK1%20regulates%20the%20PrimPol%20damage%20tolerance%20pathway%20during%20the%20cell%20cycle&rft.jtitle=Science%20advances&rft.au=Bailey,%20Laura%20J&rft.date=2021-12-03&rft.volume=7&rft.issue=49&rft.spage=eabh1004&rft.epage=eabh1004&rft.pages=eabh1004-eabh1004&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abh1004&rft_dat=%3Cproquest_pubme%3E2606933545%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2606933545&rft_id=info:pmid/34860556&rfr_iscdi=true