Molecular mechanisms of sperm motility are conserved in an early-branching metazoan
Efficient and targeted sperm motility is essential for animal reproductive success. Sperm from mammals and echinoderms utilize a highly conserved signaling mechanism in which sperm motility is stimulated by pH-dependent activation of the cAMP-producing enzyme soluble adenylyl cyclase (sAC). However,...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-11, Vol.118 (48), p.1-9 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 48 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Speer, Kelsey F. Allen-Waller, Luella Novikov, Dana R. Barott, Katie L. |
description | Efficient and targeted sperm motility is essential for animal reproductive success. Sperm from mammals and echinoderms utilize a highly conserved signaling mechanism in which sperm motility is stimulated by pH-dependent activation of the cAMP-producing enzyme soluble adenylyl cyclase (sAC). However, the presence of this pathway in early-branching metazoans has remained unexplored. Here, we found that elevating cytoplasmic pH induced a rapid burst of cAMP signaling and triggered the onset of motility in sperm from the reef-building coral Montipora capitata in a sAC-dependent manner. Expression of sAC in the mitochondrial-rich midpiece and flagellum of coral sperm support a dual role for this molecular pH sensor in regulating mitochondrial respiration and flagellar beating and thus motility. In addition, we found that additional members of the homologous signaling pathway described in echinoderms, both upstream and downstream of sAC, are expressed in coral sperm. These include the Na⁺/H⁺ exchanger SLC9C1, protein kinase A, and the CatSper Ca2+ channel conserved even in mammalian sperm. Indeed, the onset of motility corresponded with increased protein kinase A activity. Our discovery of this pathway in an early-branching metazoan species highlights the ancient origin of the pH-sAC-cAMP signaling node in sperm physiology and suggests that it may be present in many other marine invertebrate taxa for which sperm motility mechanisms remain unexplored. These results emphasize the need to better understand the role of pH-dependent signaling in the reproductive success of marine animals, particularly as climate change stressors continue to alter the physiology of corals and other marine invertebrates. |
doi_str_mv | 10.1073/pnas.2109993118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8640785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27094080</jstor_id><sourcerecordid>27094080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-c176a65f320d89021b87be5f5daa743a5c3ca03e42ae30c265a2df755090c5643</originalsourceid><addsrcrecordid>eNpVkctLxDAQxoMouj7OnpSA5-rk1aYXQcQXKB7Uc5hN090ubbImXWH9663suuppBuY333zMR8gxg3MGhbiYe0znnEFZloIxvUVGQ8-yXJawTUYAvMi05HKP7Kc0A4BSadgle0JqBjwXI_LyFFpnFy1G2jk7Rd-kLtFQ0zR3saNd6Ju26ZcUo6M2-OTih6to4yl66jC2y2wc0dtp4yeDQI-fAf0h2amxTe5oXQ_I2-3N6_V99vh893B99ZhZBWWfWVbkmKtacKh0CZyNdTF2qlYVYiEFKissgnCSoxNgea6QV3WhhmWwKpfigFyudOeLcecq63wfsTXz2HQYlyZgY_5PfDM1k_BhdC6h0GoQOFsLxPC-cKk3s7CIfvBseA5KgNSCDdTFirIxpBRdvbnAwHynYL5TML8pDBunf41t-J-3D8DJCpilPsTNnBdQStAgvgAMdI5v</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605304831</pqid></control><display><type>article</type><title>Molecular mechanisms of sperm motility are conserved in an early-branching metazoan</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Speer, Kelsey F. ; Allen-Waller, Luella ; Novikov, Dana R. ; Barott, Katie L.</creator><creatorcontrib>Speer, Kelsey F. ; Allen-Waller, Luella ; Novikov, Dana R. ; Barott, Katie L.</creatorcontrib><description>Efficient and targeted sperm motility is essential for animal reproductive success. Sperm from mammals and echinoderms utilize a highly conserved signaling mechanism in which sperm motility is stimulated by pH-dependent activation of the cAMP-producing enzyme soluble adenylyl cyclase (sAC). However, the presence of this pathway in early-branching metazoans has remained unexplored. Here, we found that elevating cytoplasmic pH induced a rapid burst of cAMP signaling and triggered the onset of motility in sperm from the reef-building coral Montipora capitata in a sAC-dependent manner. Expression of sAC in the mitochondrial-rich midpiece and flagellum of coral sperm support a dual role for this molecular pH sensor in regulating mitochondrial respiration and flagellar beating and thus motility. In addition, we found that additional members of the homologous signaling pathway described in echinoderms, both upstream and downstream of sAC, are expressed in coral sperm. These include the Na⁺/H⁺ exchanger SLC9C1, protein kinase A, and the CatSper Ca2+ channel conserved even in mammalian sperm. Indeed, the onset of motility corresponded with increased protein kinase A activity. Our discovery of this pathway in an early-branching metazoan species highlights the ancient origin of the pH-sAC-cAMP signaling node in sperm physiology and suggests that it may be present in many other marine invertebrate taxa for which sperm motility mechanisms remain unexplored. These results emphasize the need to better understand the role of pH-dependent signaling in the reproductive success of marine animals, particularly as climate change stressors continue to alter the physiology of corals and other marine invertebrates.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2109993118</identifier><identifier>PMID: 34810263</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenylate cyclase ; Adenylyl Cyclases - metabolism ; Animal reproduction ; Animals ; Anthozoa - metabolism ; Anthozoa - physiology ; Biodiversity ; Biological Sciences ; Branching ; Breeding success ; Calcium - metabolism ; Calcium ions ; Climate change ; Corals ; Cyclic AMP ; Cyclic AMP - metabolism ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Echinodermata ; Flagella ; Flagella - metabolism ; Homeostasis ; Homology ; Hydrogen-Ion Concentration ; Invertebrates ; Kinases ; Male ; Mammals ; Marine animals ; Marine invertebrates ; Marine organisms ; Mitochondria ; Molecular modelling ; Motility ; Na+/H+-exchanging ATPase ; pH effects ; pH sensors ; Phosphorylation ; Phylogeny ; Physiology ; Protein kinase A ; Proteins ; Reproduction ; Signal transduction ; Signaling ; Sperm ; Sperm Motility - physiology ; Spermatozoa - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-11, Vol.118 (48), p.1-9</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Nov 30, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-c176a65f320d89021b87be5f5daa743a5c3ca03e42ae30c265a2df755090c5643</citedby><cites>FETCH-LOGICAL-c509t-c176a65f320d89021b87be5f5daa743a5c3ca03e42ae30c265a2df755090c5643</cites><orcidid>0000-0002-9828-1888 ; 0000-0002-7057-3926 ; 0000-0002-1388-9270 ; 0000-0001-7371-4870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27094080$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27094080$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,801,883,27907,27908,53774,53776,58000,58233</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34810263$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Speer, Kelsey F.</creatorcontrib><creatorcontrib>Allen-Waller, Luella</creatorcontrib><creatorcontrib>Novikov, Dana R.</creatorcontrib><creatorcontrib>Barott, Katie L.</creatorcontrib><title>Molecular mechanisms of sperm motility are conserved in an early-branching metazoan</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Efficient and targeted sperm motility is essential for animal reproductive success. Sperm from mammals and echinoderms utilize a highly conserved signaling mechanism in which sperm motility is stimulated by pH-dependent activation of the cAMP-producing enzyme soluble adenylyl cyclase (sAC). However, the presence of this pathway in early-branching metazoans has remained unexplored. Here, we found that elevating cytoplasmic pH induced a rapid burst of cAMP signaling and triggered the onset of motility in sperm from the reef-building coral Montipora capitata in a sAC-dependent manner. Expression of sAC in the mitochondrial-rich midpiece and flagellum of coral sperm support a dual role for this molecular pH sensor in regulating mitochondrial respiration and flagellar beating and thus motility. In addition, we found that additional members of the homologous signaling pathway described in echinoderms, both upstream and downstream of sAC, are expressed in coral sperm. These include the Na⁺/H⁺ exchanger SLC9C1, protein kinase A, and the CatSper Ca2+ channel conserved even in mammalian sperm. Indeed, the onset of motility corresponded with increased protein kinase A activity. Our discovery of this pathway in an early-branching metazoan species highlights the ancient origin of the pH-sAC-cAMP signaling node in sperm physiology and suggests that it may be present in many other marine invertebrate taxa for which sperm motility mechanisms remain unexplored. These results emphasize the need to better understand the role of pH-dependent signaling in the reproductive success of marine animals, particularly as climate change stressors continue to alter the physiology of corals and other marine invertebrates.</description><subject>Adenylate cyclase</subject><subject>Adenylyl Cyclases - metabolism</subject><subject>Animal reproduction</subject><subject>Animals</subject><subject>Anthozoa - metabolism</subject><subject>Anthozoa - physiology</subject><subject>Biodiversity</subject><subject>Biological Sciences</subject><subject>Branching</subject><subject>Breeding success</subject><subject>Calcium - metabolism</subject><subject>Calcium ions</subject><subject>Climate change</subject><subject>Corals</subject><subject>Cyclic AMP</subject><subject>Cyclic AMP - metabolism</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Echinodermata</subject><subject>Flagella</subject><subject>Flagella - metabolism</subject><subject>Homeostasis</subject><subject>Homology</subject><subject>Hydrogen-Ion Concentration</subject><subject>Invertebrates</subject><subject>Kinases</subject><subject>Male</subject><subject>Mammals</subject><subject>Marine animals</subject><subject>Marine invertebrates</subject><subject>Marine organisms</subject><subject>Mitochondria</subject><subject>Molecular modelling</subject><subject>Motility</subject><subject>Na+/H+-exchanging ATPase</subject><subject>pH effects</subject><subject>pH sensors</subject><subject>Phosphorylation</subject><subject>Phylogeny</subject><subject>Physiology</subject><subject>Protein kinase A</subject><subject>Proteins</subject><subject>Reproduction</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Sperm</subject><subject>Sperm Motility - physiology</subject><subject>Spermatozoa - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkctLxDAQxoMouj7OnpSA5-rk1aYXQcQXKB7Uc5hN090ubbImXWH9663suuppBuY333zMR8gxg3MGhbiYe0znnEFZloIxvUVGQ8-yXJawTUYAvMi05HKP7Kc0A4BSadgle0JqBjwXI_LyFFpnFy1G2jk7Rd-kLtFQ0zR3saNd6Ju26ZcUo6M2-OTih6to4yl66jC2y2wc0dtp4yeDQI-fAf0h2amxTe5oXQ_I2-3N6_V99vh893B99ZhZBWWfWVbkmKtacKh0CZyNdTF2qlYVYiEFKissgnCSoxNgea6QV3WhhmWwKpfigFyudOeLcecq63wfsTXz2HQYlyZgY_5PfDM1k_BhdC6h0GoQOFsLxPC-cKk3s7CIfvBseA5KgNSCDdTFirIxpBRdvbnAwHynYL5TML8pDBunf41t-J-3D8DJCpilPsTNnBdQStAgvgAMdI5v</recordid><startdate>20211130</startdate><enddate>20211130</enddate><creator>Speer, Kelsey F.</creator><creator>Allen-Waller, Luella</creator><creator>Novikov, Dana R.</creator><creator>Barott, Katie L.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9828-1888</orcidid><orcidid>https://orcid.org/0000-0002-7057-3926</orcidid><orcidid>https://orcid.org/0000-0002-1388-9270</orcidid><orcidid>https://orcid.org/0000-0001-7371-4870</orcidid></search><sort><creationdate>20211130</creationdate><title>Molecular mechanisms of sperm motility are conserved in an early-branching metazoan</title><author>Speer, Kelsey F. ; Allen-Waller, Luella ; Novikov, Dana R. ; Barott, Katie L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-c176a65f320d89021b87be5f5daa743a5c3ca03e42ae30c265a2df755090c5643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenylate cyclase</topic><topic>Adenylyl Cyclases - metabolism</topic><topic>Animal reproduction</topic><topic>Animals</topic><topic>Anthozoa - metabolism</topic><topic>Anthozoa - physiology</topic><topic>Biodiversity</topic><topic>Biological Sciences</topic><topic>Branching</topic><topic>Breeding success</topic><topic>Calcium - metabolism</topic><topic>Calcium ions</topic><topic>Climate change</topic><topic>Corals</topic><topic>Cyclic AMP</topic><topic>Cyclic AMP - metabolism</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Echinodermata</topic><topic>Flagella</topic><topic>Flagella - metabolism</topic><topic>Homeostasis</topic><topic>Homology</topic><topic>Hydrogen-Ion Concentration</topic><topic>Invertebrates</topic><topic>Kinases</topic><topic>Male</topic><topic>Mammals</topic><topic>Marine animals</topic><topic>Marine invertebrates</topic><topic>Marine organisms</topic><topic>Mitochondria</topic><topic>Molecular modelling</topic><topic>Motility</topic><topic>Na+/H+-exchanging ATPase</topic><topic>pH effects</topic><topic>pH sensors</topic><topic>Phosphorylation</topic><topic>Phylogeny</topic><topic>Physiology</topic><topic>Protein kinase A</topic><topic>Proteins</topic><topic>Reproduction</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Sperm</topic><topic>Sperm Motility - physiology</topic><topic>Spermatozoa - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Speer, Kelsey F.</creatorcontrib><creatorcontrib>Allen-Waller, Luella</creatorcontrib><creatorcontrib>Novikov, Dana R.</creatorcontrib><creatorcontrib>Barott, Katie L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Speer, Kelsey F.</au><au>Allen-Waller, Luella</au><au>Novikov, Dana R.</au><au>Barott, Katie L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular mechanisms of sperm motility are conserved in an early-branching metazoan</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-11-30</date><risdate>2021</risdate><volume>118</volume><issue>48</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Efficient and targeted sperm motility is essential for animal reproductive success. Sperm from mammals and echinoderms utilize a highly conserved signaling mechanism in which sperm motility is stimulated by pH-dependent activation of the cAMP-producing enzyme soluble adenylyl cyclase (sAC). However, the presence of this pathway in early-branching metazoans has remained unexplored. Here, we found that elevating cytoplasmic pH induced a rapid burst of cAMP signaling and triggered the onset of motility in sperm from the reef-building coral Montipora capitata in a sAC-dependent manner. Expression of sAC in the mitochondrial-rich midpiece and flagellum of coral sperm support a dual role for this molecular pH sensor in regulating mitochondrial respiration and flagellar beating and thus motility. In addition, we found that additional members of the homologous signaling pathway described in echinoderms, both upstream and downstream of sAC, are expressed in coral sperm. These include the Na⁺/H⁺ exchanger SLC9C1, protein kinase A, and the CatSper Ca2+ channel conserved even in mammalian sperm. Indeed, the onset of motility corresponded with increased protein kinase A activity. Our discovery of this pathway in an early-branching metazoan species highlights the ancient origin of the pH-sAC-cAMP signaling node in sperm physiology and suggests that it may be present in many other marine invertebrate taxa for which sperm motility mechanisms remain unexplored. These results emphasize the need to better understand the role of pH-dependent signaling in the reproductive success of marine animals, particularly as climate change stressors continue to alter the physiology of corals and other marine invertebrates.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34810263</pmid><doi>10.1073/pnas.2109993118</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9828-1888</orcidid><orcidid>https://orcid.org/0000-0002-7057-3926</orcidid><orcidid>https://orcid.org/0000-0002-1388-9270</orcidid><orcidid>https://orcid.org/0000-0001-7371-4870</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-11, Vol.118 (48), p.1-9 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8640785 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adenylate cyclase Adenylyl Cyclases - metabolism Animal reproduction Animals Anthozoa - metabolism Anthozoa - physiology Biodiversity Biological Sciences Branching Breeding success Calcium - metabolism Calcium ions Climate change Corals Cyclic AMP Cyclic AMP - metabolism Cyclic AMP-Dependent Protein Kinases - metabolism Echinodermata Flagella Flagella - metabolism Homeostasis Homology Hydrogen-Ion Concentration Invertebrates Kinases Male Mammals Marine animals Marine invertebrates Marine organisms Mitochondria Molecular modelling Motility Na+/H+-exchanging ATPase pH effects pH sensors Phosphorylation Phylogeny Physiology Protein kinase A Proteins Reproduction Signal transduction Signaling Sperm Sperm Motility - physiology Spermatozoa - metabolism |
title | Molecular mechanisms of sperm motility are conserved in an early-branching metazoan |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A10%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20mechanisms%20of%20sperm%20motility%20are%20conserved%20in%20an%20early-branching%20metazoan&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Speer,%20Kelsey%20F.&rft.date=2021-11-30&rft.volume=118&rft.issue=48&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2109993118&rft_dat=%3Cjstor_pubme%3E27094080%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605304831&rft_id=info:pmid/34810263&rft_jstor_id=27094080&rfr_iscdi=true |