Molecular mechanisms of sperm motility are conserved in an early-branching metazoan

Efficient and targeted sperm motility is essential for animal reproductive success. Sperm from mammals and echinoderms utilize a highly conserved signaling mechanism in which sperm motility is stimulated by pH-dependent activation of the cAMP-producing enzyme soluble adenylyl cyclase (sAC). However,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-11, Vol.118 (48), p.1-9
Hauptverfasser: Speer, Kelsey F., Allen-Waller, Luella, Novikov, Dana R., Barott, Katie L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 48
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Speer, Kelsey F.
Allen-Waller, Luella
Novikov, Dana R.
Barott, Katie L.
description Efficient and targeted sperm motility is essential for animal reproductive success. Sperm from mammals and echinoderms utilize a highly conserved signaling mechanism in which sperm motility is stimulated by pH-dependent activation of the cAMP-producing enzyme soluble adenylyl cyclase (sAC). However, the presence of this pathway in early-branching metazoans has remained unexplored. Here, we found that elevating cytoplasmic pH induced a rapid burst of cAMP signaling and triggered the onset of motility in sperm from the reef-building coral Montipora capitata in a sAC-dependent manner. Expression of sAC in the mitochondrial-rich midpiece and flagellum of coral sperm support a dual role for this molecular pH sensor in regulating mitochondrial respiration and flagellar beating and thus motility. In addition, we found that additional members of the homologous signaling pathway described in echinoderms, both upstream and downstream of sAC, are expressed in coral sperm. These include the Na⁺/H⁺ exchanger SLC9C1, protein kinase A, and the CatSper Ca2+ channel conserved even in mammalian sperm. Indeed, the onset of motility corresponded with increased protein kinase A activity. Our discovery of this pathway in an early-branching metazoan species highlights the ancient origin of the pH-sAC-cAMP signaling node in sperm physiology and suggests that it may be present in many other marine invertebrate taxa for which sperm motility mechanisms remain unexplored. These results emphasize the need to better understand the role of pH-dependent signaling in the reproductive success of marine animals, particularly as climate change stressors continue to alter the physiology of corals and other marine invertebrates.
doi_str_mv 10.1073/pnas.2109993118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8640785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27094080</jstor_id><sourcerecordid>27094080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-c176a65f320d89021b87be5f5daa743a5c3ca03e42ae30c265a2df755090c5643</originalsourceid><addsrcrecordid>eNpVkctLxDAQxoMouj7OnpSA5-rk1aYXQcQXKB7Uc5hN090ubbImXWH9663suuppBuY333zMR8gxg3MGhbiYe0znnEFZloIxvUVGQ8-yXJawTUYAvMi05HKP7Kc0A4BSadgle0JqBjwXI_LyFFpnFy1G2jk7Rd-kLtFQ0zR3saNd6Ju26ZcUo6M2-OTih6to4yl66jC2y2wc0dtp4yeDQI-fAf0h2amxTe5oXQ_I2-3N6_V99vh893B99ZhZBWWfWVbkmKtacKh0CZyNdTF2qlYVYiEFKissgnCSoxNgea6QV3WhhmWwKpfigFyudOeLcecq63wfsTXz2HQYlyZgY_5PfDM1k_BhdC6h0GoQOFsLxPC-cKk3s7CIfvBseA5KgNSCDdTFirIxpBRdvbnAwHynYL5TML8pDBunf41t-J-3D8DJCpilPsTNnBdQStAgvgAMdI5v</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605304831</pqid></control><display><type>article</type><title>Molecular mechanisms of sperm motility are conserved in an early-branching metazoan</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Speer, Kelsey F. ; Allen-Waller, Luella ; Novikov, Dana R. ; Barott, Katie L.</creator><creatorcontrib>Speer, Kelsey F. ; Allen-Waller, Luella ; Novikov, Dana R. ; Barott, Katie L.</creatorcontrib><description>Efficient and targeted sperm motility is essential for animal reproductive success. Sperm from mammals and echinoderms utilize a highly conserved signaling mechanism in which sperm motility is stimulated by pH-dependent activation of the cAMP-producing enzyme soluble adenylyl cyclase (sAC). However, the presence of this pathway in early-branching metazoans has remained unexplored. Here, we found that elevating cytoplasmic pH induced a rapid burst of cAMP signaling and triggered the onset of motility in sperm from the reef-building coral Montipora capitata in a sAC-dependent manner. Expression of sAC in the mitochondrial-rich midpiece and flagellum of coral sperm support a dual role for this molecular pH sensor in regulating mitochondrial respiration and flagellar beating and thus motility. In addition, we found that additional members of the homologous signaling pathway described in echinoderms, both upstream and downstream of sAC, are expressed in coral sperm. These include the Na⁺/H⁺ exchanger SLC9C1, protein kinase A, and the CatSper Ca2+ channel conserved even in mammalian sperm. Indeed, the onset of motility corresponded with increased protein kinase A activity. Our discovery of this pathway in an early-branching metazoan species highlights the ancient origin of the pH-sAC-cAMP signaling node in sperm physiology and suggests that it may be present in many other marine invertebrate taxa for which sperm motility mechanisms remain unexplored. These results emphasize the need to better understand the role of pH-dependent signaling in the reproductive success of marine animals, particularly as climate change stressors continue to alter the physiology of corals and other marine invertebrates.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2109993118</identifier><identifier>PMID: 34810263</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenylate cyclase ; Adenylyl Cyclases - metabolism ; Animal reproduction ; Animals ; Anthozoa - metabolism ; Anthozoa - physiology ; Biodiversity ; Biological Sciences ; Branching ; Breeding success ; Calcium - metabolism ; Calcium ions ; Climate change ; Corals ; Cyclic AMP ; Cyclic AMP - metabolism ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Echinodermata ; Flagella ; Flagella - metabolism ; Homeostasis ; Homology ; Hydrogen-Ion Concentration ; Invertebrates ; Kinases ; Male ; Mammals ; Marine animals ; Marine invertebrates ; Marine organisms ; Mitochondria ; Molecular modelling ; Motility ; Na+/H+-exchanging ATPase ; pH effects ; pH sensors ; Phosphorylation ; Phylogeny ; Physiology ; Protein kinase A ; Proteins ; Reproduction ; Signal transduction ; Signaling ; Sperm ; Sperm Motility - physiology ; Spermatozoa - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-11, Vol.118 (48), p.1-9</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Nov 30, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-c176a65f320d89021b87be5f5daa743a5c3ca03e42ae30c265a2df755090c5643</citedby><cites>FETCH-LOGICAL-c509t-c176a65f320d89021b87be5f5daa743a5c3ca03e42ae30c265a2df755090c5643</cites><orcidid>0000-0002-9828-1888 ; 0000-0002-7057-3926 ; 0000-0002-1388-9270 ; 0000-0001-7371-4870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27094080$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27094080$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,801,883,27907,27908,53774,53776,58000,58233</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34810263$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Speer, Kelsey F.</creatorcontrib><creatorcontrib>Allen-Waller, Luella</creatorcontrib><creatorcontrib>Novikov, Dana R.</creatorcontrib><creatorcontrib>Barott, Katie L.</creatorcontrib><title>Molecular mechanisms of sperm motility are conserved in an early-branching metazoan</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Efficient and targeted sperm motility is essential for animal reproductive success. Sperm from mammals and echinoderms utilize a highly conserved signaling mechanism in which sperm motility is stimulated by pH-dependent activation of the cAMP-producing enzyme soluble adenylyl cyclase (sAC). However, the presence of this pathway in early-branching metazoans has remained unexplored. Here, we found that elevating cytoplasmic pH induced a rapid burst of cAMP signaling and triggered the onset of motility in sperm from the reef-building coral Montipora capitata in a sAC-dependent manner. Expression of sAC in the mitochondrial-rich midpiece and flagellum of coral sperm support a dual role for this molecular pH sensor in regulating mitochondrial respiration and flagellar beating and thus motility. In addition, we found that additional members of the homologous signaling pathway described in echinoderms, both upstream and downstream of sAC, are expressed in coral sperm. These include the Na⁺/H⁺ exchanger SLC9C1, protein kinase A, and the CatSper Ca2+ channel conserved even in mammalian sperm. Indeed, the onset of motility corresponded with increased protein kinase A activity. Our discovery of this pathway in an early-branching metazoan species highlights the ancient origin of the pH-sAC-cAMP signaling node in sperm physiology and suggests that it may be present in many other marine invertebrate taxa for which sperm motility mechanisms remain unexplored. These results emphasize the need to better understand the role of pH-dependent signaling in the reproductive success of marine animals, particularly as climate change stressors continue to alter the physiology of corals and other marine invertebrates.</description><subject>Adenylate cyclase</subject><subject>Adenylyl Cyclases - metabolism</subject><subject>Animal reproduction</subject><subject>Animals</subject><subject>Anthozoa - metabolism</subject><subject>Anthozoa - physiology</subject><subject>Biodiversity</subject><subject>Biological Sciences</subject><subject>Branching</subject><subject>Breeding success</subject><subject>Calcium - metabolism</subject><subject>Calcium ions</subject><subject>Climate change</subject><subject>Corals</subject><subject>Cyclic AMP</subject><subject>Cyclic AMP - metabolism</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Echinodermata</subject><subject>Flagella</subject><subject>Flagella - metabolism</subject><subject>Homeostasis</subject><subject>Homology</subject><subject>Hydrogen-Ion Concentration</subject><subject>Invertebrates</subject><subject>Kinases</subject><subject>Male</subject><subject>Mammals</subject><subject>Marine animals</subject><subject>Marine invertebrates</subject><subject>Marine organisms</subject><subject>Mitochondria</subject><subject>Molecular modelling</subject><subject>Motility</subject><subject>Na+/H+-exchanging ATPase</subject><subject>pH effects</subject><subject>pH sensors</subject><subject>Phosphorylation</subject><subject>Phylogeny</subject><subject>Physiology</subject><subject>Protein kinase A</subject><subject>Proteins</subject><subject>Reproduction</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Sperm</subject><subject>Sperm Motility - physiology</subject><subject>Spermatozoa - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkctLxDAQxoMouj7OnpSA5-rk1aYXQcQXKB7Uc5hN090ubbImXWH9663suuppBuY333zMR8gxg3MGhbiYe0znnEFZloIxvUVGQ8-yXJawTUYAvMi05HKP7Kc0A4BSadgle0JqBjwXI_LyFFpnFy1G2jk7Rd-kLtFQ0zR3saNd6Ju26ZcUo6M2-OTih6to4yl66jC2y2wc0dtp4yeDQI-fAf0h2amxTe5oXQ_I2-3N6_V99vh893B99ZhZBWWfWVbkmKtacKh0CZyNdTF2qlYVYiEFKissgnCSoxNgea6QV3WhhmWwKpfigFyudOeLcecq63wfsTXz2HQYlyZgY_5PfDM1k_BhdC6h0GoQOFsLxPC-cKk3s7CIfvBseA5KgNSCDdTFirIxpBRdvbnAwHynYL5TML8pDBunf41t-J-3D8DJCpilPsTNnBdQStAgvgAMdI5v</recordid><startdate>20211130</startdate><enddate>20211130</enddate><creator>Speer, Kelsey F.</creator><creator>Allen-Waller, Luella</creator><creator>Novikov, Dana R.</creator><creator>Barott, Katie L.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9828-1888</orcidid><orcidid>https://orcid.org/0000-0002-7057-3926</orcidid><orcidid>https://orcid.org/0000-0002-1388-9270</orcidid><orcidid>https://orcid.org/0000-0001-7371-4870</orcidid></search><sort><creationdate>20211130</creationdate><title>Molecular mechanisms of sperm motility are conserved in an early-branching metazoan</title><author>Speer, Kelsey F. ; Allen-Waller, Luella ; Novikov, Dana R. ; Barott, Katie L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-c176a65f320d89021b87be5f5daa743a5c3ca03e42ae30c265a2df755090c5643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenylate cyclase</topic><topic>Adenylyl Cyclases - metabolism</topic><topic>Animal reproduction</topic><topic>Animals</topic><topic>Anthozoa - metabolism</topic><topic>Anthozoa - physiology</topic><topic>Biodiversity</topic><topic>Biological Sciences</topic><topic>Branching</topic><topic>Breeding success</topic><topic>Calcium - metabolism</topic><topic>Calcium ions</topic><topic>Climate change</topic><topic>Corals</topic><topic>Cyclic AMP</topic><topic>Cyclic AMP - metabolism</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Echinodermata</topic><topic>Flagella</topic><topic>Flagella - metabolism</topic><topic>Homeostasis</topic><topic>Homology</topic><topic>Hydrogen-Ion Concentration</topic><topic>Invertebrates</topic><topic>Kinases</topic><topic>Male</topic><topic>Mammals</topic><topic>Marine animals</topic><topic>Marine invertebrates</topic><topic>Marine organisms</topic><topic>Mitochondria</topic><topic>Molecular modelling</topic><topic>Motility</topic><topic>Na+/H+-exchanging ATPase</topic><topic>pH effects</topic><topic>pH sensors</topic><topic>Phosphorylation</topic><topic>Phylogeny</topic><topic>Physiology</topic><topic>Protein kinase A</topic><topic>Proteins</topic><topic>Reproduction</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Sperm</topic><topic>Sperm Motility - physiology</topic><topic>Spermatozoa - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Speer, Kelsey F.</creatorcontrib><creatorcontrib>Allen-Waller, Luella</creatorcontrib><creatorcontrib>Novikov, Dana R.</creatorcontrib><creatorcontrib>Barott, Katie L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Speer, Kelsey F.</au><au>Allen-Waller, Luella</au><au>Novikov, Dana R.</au><au>Barott, Katie L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular mechanisms of sperm motility are conserved in an early-branching metazoan</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-11-30</date><risdate>2021</risdate><volume>118</volume><issue>48</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Efficient and targeted sperm motility is essential for animal reproductive success. Sperm from mammals and echinoderms utilize a highly conserved signaling mechanism in which sperm motility is stimulated by pH-dependent activation of the cAMP-producing enzyme soluble adenylyl cyclase (sAC). However, the presence of this pathway in early-branching metazoans has remained unexplored. Here, we found that elevating cytoplasmic pH induced a rapid burst of cAMP signaling and triggered the onset of motility in sperm from the reef-building coral Montipora capitata in a sAC-dependent manner. Expression of sAC in the mitochondrial-rich midpiece and flagellum of coral sperm support a dual role for this molecular pH sensor in regulating mitochondrial respiration and flagellar beating and thus motility. In addition, we found that additional members of the homologous signaling pathway described in echinoderms, both upstream and downstream of sAC, are expressed in coral sperm. These include the Na⁺/H⁺ exchanger SLC9C1, protein kinase A, and the CatSper Ca2+ channel conserved even in mammalian sperm. Indeed, the onset of motility corresponded with increased protein kinase A activity. Our discovery of this pathway in an early-branching metazoan species highlights the ancient origin of the pH-sAC-cAMP signaling node in sperm physiology and suggests that it may be present in many other marine invertebrate taxa for which sperm motility mechanisms remain unexplored. These results emphasize the need to better understand the role of pH-dependent signaling in the reproductive success of marine animals, particularly as climate change stressors continue to alter the physiology of corals and other marine invertebrates.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34810263</pmid><doi>10.1073/pnas.2109993118</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9828-1888</orcidid><orcidid>https://orcid.org/0000-0002-7057-3926</orcidid><orcidid>https://orcid.org/0000-0002-1388-9270</orcidid><orcidid>https://orcid.org/0000-0001-7371-4870</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-11, Vol.118 (48), p.1-9
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8640785
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adenylate cyclase
Adenylyl Cyclases - metabolism
Animal reproduction
Animals
Anthozoa - metabolism
Anthozoa - physiology
Biodiversity
Biological Sciences
Branching
Breeding success
Calcium - metabolism
Calcium ions
Climate change
Corals
Cyclic AMP
Cyclic AMP - metabolism
Cyclic AMP-Dependent Protein Kinases - metabolism
Echinodermata
Flagella
Flagella - metabolism
Homeostasis
Homology
Hydrogen-Ion Concentration
Invertebrates
Kinases
Male
Mammals
Marine animals
Marine invertebrates
Marine organisms
Mitochondria
Molecular modelling
Motility
Na+/H+-exchanging ATPase
pH effects
pH sensors
Phosphorylation
Phylogeny
Physiology
Protein kinase A
Proteins
Reproduction
Signal transduction
Signaling
Sperm
Sperm Motility - physiology
Spermatozoa - metabolism
title Molecular mechanisms of sperm motility are conserved in an early-branching metazoan
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A10%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20mechanisms%20of%20sperm%20motility%20are%20conserved%20in%20an%20early-branching%20metazoan&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Speer,%20Kelsey%20F.&rft.date=2021-11-30&rft.volume=118&rft.issue=48&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2109993118&rft_dat=%3Cjstor_pubme%3E27094080%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605304831&rft_id=info:pmid/34810263&rft_jstor_id=27094080&rfr_iscdi=true