Hepatic Mitochondrial SAB Deletion or Knockdown Alleviates Diet‐Induced Metabolic Syndrome, Steatohepatitis, and Hepatic Fibrosis

Background and Aims The hepatic mitogen‐activated protein kinase (MAPK) cascade leading to c‐Jun N‐terminal kinase (JNK) activation has been implicated in the pathogenesis of nonalcoholic fatty liver (NAFL)/NASH. In acute hepatotoxicity, we previously identified a pivotal role for mitochondrial SH3B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hepatology (Baltimore, Md.) Md.), 2021-12, Vol.74 (6), p.3127-3145
Hauptverfasser: Win, Sanda, Min, Robert W.M., Zhang, Jun, Kanel, Gary, Wanken, Brad, Chen, Yibu, Li, Meng, Wang, Ying, Suzuki, Ayako, Aung, Filbert W.M., Murray, Susan F., Aghajan, Mariam, Than, Tin A., Kaplowitz, Neil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3145
container_issue 6
container_start_page 3127
container_title Hepatology (Baltimore, Md.)
container_volume 74
creator Win, Sanda
Min, Robert W.M.
Zhang, Jun
Kanel, Gary
Wanken, Brad
Chen, Yibu
Li, Meng
Wang, Ying
Suzuki, Ayako
Aung, Filbert W.M.
Murray, Susan F.
Aghajan, Mariam
Than, Tin A.
Kaplowitz, Neil
description Background and Aims The hepatic mitogen‐activated protein kinase (MAPK) cascade leading to c‐Jun N‐terminal kinase (JNK) activation has been implicated in the pathogenesis of nonalcoholic fatty liver (NAFL)/NASH. In acute hepatotoxicity, we previously identified a pivotal role for mitochondrial SH3BP5 (SAB; SH3 homology associated BTK binding protein) as a target of JNK, which sustains its activation through promotion of reactive oxygen species production. Therefore, we assessed the role of hepatic SAB in experimental NASH and metabolic syndrome. Approach and Results In mice fed high‐fat, high‐calorie, high‐fructose (HFHC) diet, SAB expression progressively increased through a sustained JNK/activating transcription factor 2 (ATF2) activation loop. Inducible deletion of hepatic SAB markedly decreased sustained JNK activation and improved systemic energy expenditure at 8 weeks followed by decreased body fat at 16 weeks of HFHC diet. After 30 weeks, mice treated with control–antisense oligonucleotide (control‐ASO) developed steatohepatitis and fibrosis, which was prevented by Sab‐ASO treatment. Phosphorylated JNK (p‐JNK) and phosphorylated ATF2 (p‐ATF2) were markedly attenuated by Sab‐ASO treatment. After 52 weeks of HFHC feeding, control N‐acetylgalactosamine antisense oligonucleotide (GalNAc‐Ctl‐ASO) treated mice fed the HFHC diet exhibited progression of steatohepatitis and fibrosis, but GalNAc‐Sab‐ASO treatment from weeks 40 to 52 reversed these findings while decreasing hepatic SAB, p‐ATF2, and p‐JNK to chow‐fed levels. Conclusions Hepatic SAB expression increases in HFHC diet–fed mice. Deletion or knockdown of SAB inhibited sustained JNK activation and steatohepatitis, fibrosis, and systemic metabolic effects, suggesting that induction of hepatocyte Sab is an important driver of the interplay between the liver and the systemic metabolic consequences of overfeeding. In established NASH, hepatocyte‐targeted GalNAc‐Sab‐ASO treatment reversed steatohepatitis and fibrosis.
doi_str_mv 10.1002/hep.32083
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8639630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604786710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4433-fea257932b6727cc63cacbc48a83159bd8129ffbdfd7362f93cd525d73197ee53</originalsourceid><addsrcrecordid>eNp1kctuEzEUhi0EoqGw4AWQJVZIndaXmfF4gxR6IRWtQAqsLY99hrhM7GA7rbJD4gX6jH0S3KatYMHKsvzp-8_xj9BrSvYpIexgAat9zkjHn6AJbZioOG_IUzQhTJBKUi530IuULgghsmbdc7TDa86pEHKCfs9gpbMz-NzlYBbB2-j0iOfTD_gIRsgueBwi_uSD-WHDlcfTcYRLpzMkfOQg3_y6PvV2bcDic8i6D2NxzTdFE5awh-cZdA6Lu4zs0h7W3uKHyBPXx5BceomeDXpM8Or-3EXfTo6_Hs6qs88fTw-nZ5Wpy7zVAJo1QnLWt4IJY1putOlN3emO00b2tqNMDkNvByt4ywbJjW1YUy5UCoCG76L3W-9q3S_BGvA56lGtolvquFFBO_Xvi3cL9T1cqq7lsuWkCN7eC2L4uYaU1UVYR19mVqwltehaQW-pd1vKlO1ShOExgRJ125cq_6Hu-irsm79HeiQfCirAwRa4ciNs_m9Ss-MvW-Ufrj2i6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604786710</pqid></control><display><type>article</type><title>Hepatic Mitochondrial SAB Deletion or Knockdown Alleviates Diet‐Induced Metabolic Syndrome, Steatohepatitis, and Hepatic Fibrosis</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Win, Sanda ; Min, Robert W.M. ; Zhang, Jun ; Kanel, Gary ; Wanken, Brad ; Chen, Yibu ; Li, Meng ; Wang, Ying ; Suzuki, Ayako ; Aung, Filbert W.M. ; Murray, Susan F. ; Aghajan, Mariam ; Than, Tin A. ; Kaplowitz, Neil</creator><creatorcontrib>Win, Sanda ; Min, Robert W.M. ; Zhang, Jun ; Kanel, Gary ; Wanken, Brad ; Chen, Yibu ; Li, Meng ; Wang, Ying ; Suzuki, Ayako ; Aung, Filbert W.M. ; Murray, Susan F. ; Aghajan, Mariam ; Than, Tin A. ; Kaplowitz, Neil</creatorcontrib><description>Background and Aims The hepatic mitogen‐activated protein kinase (MAPK) cascade leading to c‐Jun N‐terminal kinase (JNK) activation has been implicated in the pathogenesis of nonalcoholic fatty liver (NAFL)/NASH. In acute hepatotoxicity, we previously identified a pivotal role for mitochondrial SH3BP5 (SAB; SH3 homology associated BTK binding protein) as a target of JNK, which sustains its activation through promotion of reactive oxygen species production. Therefore, we assessed the role of hepatic SAB in experimental NASH and metabolic syndrome. Approach and Results In mice fed high‐fat, high‐calorie, high‐fructose (HFHC) diet, SAB expression progressively increased through a sustained JNK/activating transcription factor 2 (ATF2) activation loop. Inducible deletion of hepatic SAB markedly decreased sustained JNK activation and improved systemic energy expenditure at 8 weeks followed by decreased body fat at 16 weeks of HFHC diet. After 30 weeks, mice treated with control–antisense oligonucleotide (control‐ASO) developed steatohepatitis and fibrosis, which was prevented by Sab‐ASO treatment. Phosphorylated JNK (p‐JNK) and phosphorylated ATF2 (p‐ATF2) were markedly attenuated by Sab‐ASO treatment. After 52 weeks of HFHC feeding, control N‐acetylgalactosamine antisense oligonucleotide (GalNAc‐Ctl‐ASO) treated mice fed the HFHC diet exhibited progression of steatohepatitis and fibrosis, but GalNAc‐Sab‐ASO treatment from weeks 40 to 52 reversed these findings while decreasing hepatic SAB, p‐ATF2, and p‐JNK to chow‐fed levels. Conclusions Hepatic SAB expression increases in HFHC diet–fed mice. Deletion or knockdown of SAB inhibited sustained JNK activation and steatohepatitis, fibrosis, and systemic metabolic effects, suggesting that induction of hepatocyte Sab is an important driver of the interplay between the liver and the systemic metabolic consequences of overfeeding. In established NASH, hepatocyte‐targeted GalNAc‐Sab‐ASO treatment reversed steatohepatitis and fibrosis.</description><identifier>ISSN: 0270-9139</identifier><identifier>EISSN: 1527-3350</identifier><identifier>DOI: 10.1002/hep.32083</identifier><identifier>PMID: 34331779</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Activating transcription factor 2 ; Animals ; Antisense oligonucleotides ; Body fat ; Bruton's tyrosine kinase ; Cells, Cultured ; Cytotoxicity ; Diet ; Diet, High-Fat - adverse effects ; Disease Models, Animal ; Energy expenditure ; Fatty liver ; Fibrosis ; Gene Knockdown Techniques ; Hepatocytes - pathology ; Hepatology ; Hepatotoxicity ; Homology ; Humans ; JNK protein ; Kinases ; Liver Cirrhosis - drug therapy ; Liver Cirrhosis - genetics ; Liver Cirrhosis - metabolism ; Liver Cirrhosis - pathology ; Lymphocytes T ; Male ; MAP kinase ; MAP Kinase Signaling System ; Membrane Proteins - antagonists &amp; inhibitors ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Metabolic syndrome ; Metabolic Syndrome - drug therapy ; Metabolic Syndrome - genetics ; Metabolic Syndrome - metabolism ; Metabolic Syndrome - pathology ; Mice ; Mitochondria ; Mitochondrial Proteins - antagonists &amp; inhibitors ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; Non-alcoholic Fatty Liver Disease - drug therapy ; Non-alcoholic Fatty Liver Disease - genetics ; Non-alcoholic Fatty Liver Disease - metabolism ; Non-alcoholic Fatty Liver Disease - pathology ; Oligonucleotides, Antisense - administration &amp; dosage ; Primary Cell Culture ; Protein kinase ; Reactive oxygen species ; Transcription activation</subject><ispartof>Hepatology (Baltimore, Md.), 2021-12, Vol.74 (6), p.3127-3145</ispartof><rights>2021 by the American Association for the Study of Liver Diseases.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4433-fea257932b6727cc63cacbc48a83159bd8129ffbdfd7362f93cd525d73197ee53</citedby><cites>FETCH-LOGICAL-c4433-fea257932b6727cc63cacbc48a83159bd8129ffbdfd7362f93cd525d73197ee53</cites><orcidid>0000-0001-7694-5172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhep.32083$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhep.32083$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34331779$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Win, Sanda</creatorcontrib><creatorcontrib>Min, Robert W.M.</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Kanel, Gary</creatorcontrib><creatorcontrib>Wanken, Brad</creatorcontrib><creatorcontrib>Chen, Yibu</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Suzuki, Ayako</creatorcontrib><creatorcontrib>Aung, Filbert W.M.</creatorcontrib><creatorcontrib>Murray, Susan F.</creatorcontrib><creatorcontrib>Aghajan, Mariam</creatorcontrib><creatorcontrib>Than, Tin A.</creatorcontrib><creatorcontrib>Kaplowitz, Neil</creatorcontrib><title>Hepatic Mitochondrial SAB Deletion or Knockdown Alleviates Diet‐Induced Metabolic Syndrome, Steatohepatitis, and Hepatic Fibrosis</title><title>Hepatology (Baltimore, Md.)</title><addtitle>Hepatology</addtitle><description>Background and Aims The hepatic mitogen‐activated protein kinase (MAPK) cascade leading to c‐Jun N‐terminal kinase (JNK) activation has been implicated in the pathogenesis of nonalcoholic fatty liver (NAFL)/NASH. In acute hepatotoxicity, we previously identified a pivotal role for mitochondrial SH3BP5 (SAB; SH3 homology associated BTK binding protein) as a target of JNK, which sustains its activation through promotion of reactive oxygen species production. Therefore, we assessed the role of hepatic SAB in experimental NASH and metabolic syndrome. Approach and Results In mice fed high‐fat, high‐calorie, high‐fructose (HFHC) diet, SAB expression progressively increased through a sustained JNK/activating transcription factor 2 (ATF2) activation loop. Inducible deletion of hepatic SAB markedly decreased sustained JNK activation and improved systemic energy expenditure at 8 weeks followed by decreased body fat at 16 weeks of HFHC diet. After 30 weeks, mice treated with control–antisense oligonucleotide (control‐ASO) developed steatohepatitis and fibrosis, which was prevented by Sab‐ASO treatment. Phosphorylated JNK (p‐JNK) and phosphorylated ATF2 (p‐ATF2) were markedly attenuated by Sab‐ASO treatment. After 52 weeks of HFHC feeding, control N‐acetylgalactosamine antisense oligonucleotide (GalNAc‐Ctl‐ASO) treated mice fed the HFHC diet exhibited progression of steatohepatitis and fibrosis, but GalNAc‐Sab‐ASO treatment from weeks 40 to 52 reversed these findings while decreasing hepatic SAB, p‐ATF2, and p‐JNK to chow‐fed levels. Conclusions Hepatic SAB expression increases in HFHC diet–fed mice. Deletion or knockdown of SAB inhibited sustained JNK activation and steatohepatitis, fibrosis, and systemic metabolic effects, suggesting that induction of hepatocyte Sab is an important driver of the interplay between the liver and the systemic metabolic consequences of overfeeding. In established NASH, hepatocyte‐targeted GalNAc‐Sab‐ASO treatment reversed steatohepatitis and fibrosis.</description><subject>Activating transcription factor 2</subject><subject>Animals</subject><subject>Antisense oligonucleotides</subject><subject>Body fat</subject><subject>Bruton's tyrosine kinase</subject><subject>Cells, Cultured</subject><subject>Cytotoxicity</subject><subject>Diet</subject><subject>Diet, High-Fat - adverse effects</subject><subject>Disease Models, Animal</subject><subject>Energy expenditure</subject><subject>Fatty liver</subject><subject>Fibrosis</subject><subject>Gene Knockdown Techniques</subject><subject>Hepatocytes - pathology</subject><subject>Hepatology</subject><subject>Hepatotoxicity</subject><subject>Homology</subject><subject>Humans</subject><subject>JNK protein</subject><subject>Kinases</subject><subject>Liver Cirrhosis - drug therapy</subject><subject>Liver Cirrhosis - genetics</subject><subject>Liver Cirrhosis - metabolism</subject><subject>Liver Cirrhosis - pathology</subject><subject>Lymphocytes T</subject><subject>Male</subject><subject>MAP kinase</subject><subject>MAP Kinase Signaling System</subject><subject>Membrane Proteins - antagonists &amp; inhibitors</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Metabolic syndrome</subject><subject>Metabolic Syndrome - drug therapy</subject><subject>Metabolic Syndrome - genetics</subject><subject>Metabolic Syndrome - metabolism</subject><subject>Metabolic Syndrome - pathology</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitochondrial Proteins - antagonists &amp; inhibitors</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Non-alcoholic Fatty Liver Disease - drug therapy</subject><subject>Non-alcoholic Fatty Liver Disease - genetics</subject><subject>Non-alcoholic Fatty Liver Disease - metabolism</subject><subject>Non-alcoholic Fatty Liver Disease - pathology</subject><subject>Oligonucleotides, Antisense - administration &amp; dosage</subject><subject>Primary Cell Culture</subject><subject>Protein kinase</subject><subject>Reactive oxygen species</subject><subject>Transcription activation</subject><issn>0270-9139</issn><issn>1527-3350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctuEzEUhi0EoqGw4AWQJVZIndaXmfF4gxR6IRWtQAqsLY99hrhM7GA7rbJD4gX6jH0S3KatYMHKsvzp-8_xj9BrSvYpIexgAat9zkjHn6AJbZioOG_IUzQhTJBKUi530IuULgghsmbdc7TDa86pEHKCfs9gpbMz-NzlYBbB2-j0iOfTD_gIRsgueBwi_uSD-WHDlcfTcYRLpzMkfOQg3_y6PvV2bcDic8i6D2NxzTdFE5awh-cZdA6Lu4zs0h7W3uKHyBPXx5BceomeDXpM8Or-3EXfTo6_Hs6qs88fTw-nZ5Wpy7zVAJo1QnLWt4IJY1putOlN3emO00b2tqNMDkNvByt4ywbJjW1YUy5UCoCG76L3W-9q3S_BGvA56lGtolvquFFBO_Xvi3cL9T1cqq7lsuWkCN7eC2L4uYaU1UVYR19mVqwltehaQW-pd1vKlO1ShOExgRJ125cq_6Hu-irsm79HeiQfCirAwRa4ciNs_m9Ss-MvW-Ufrj2i6g</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Win, Sanda</creator><creator>Min, Robert W.M.</creator><creator>Zhang, Jun</creator><creator>Kanel, Gary</creator><creator>Wanken, Brad</creator><creator>Chen, Yibu</creator><creator>Li, Meng</creator><creator>Wang, Ying</creator><creator>Suzuki, Ayako</creator><creator>Aung, Filbert W.M.</creator><creator>Murray, Susan F.</creator><creator>Aghajan, Mariam</creator><creator>Than, Tin A.</creator><creator>Kaplowitz, Neil</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7694-5172</orcidid></search><sort><creationdate>202112</creationdate><title>Hepatic Mitochondrial SAB Deletion or Knockdown Alleviates Diet‐Induced Metabolic Syndrome, Steatohepatitis, and Hepatic Fibrosis</title><author>Win, Sanda ; Min, Robert W.M. ; Zhang, Jun ; Kanel, Gary ; Wanken, Brad ; Chen, Yibu ; Li, Meng ; Wang, Ying ; Suzuki, Ayako ; Aung, Filbert W.M. ; Murray, Susan F. ; Aghajan, Mariam ; Than, Tin A. ; Kaplowitz, Neil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4433-fea257932b6727cc63cacbc48a83159bd8129ffbdfd7362f93cd525d73197ee53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activating transcription factor 2</topic><topic>Animals</topic><topic>Antisense oligonucleotides</topic><topic>Body fat</topic><topic>Bruton's tyrosine kinase</topic><topic>Cells, Cultured</topic><topic>Cytotoxicity</topic><topic>Diet</topic><topic>Diet, High-Fat - adverse effects</topic><topic>Disease Models, Animal</topic><topic>Energy expenditure</topic><topic>Fatty liver</topic><topic>Fibrosis</topic><topic>Gene Knockdown Techniques</topic><topic>Hepatocytes - pathology</topic><topic>Hepatology</topic><topic>Hepatotoxicity</topic><topic>Homology</topic><topic>Humans</topic><topic>JNK protein</topic><topic>Kinases</topic><topic>Liver Cirrhosis - drug therapy</topic><topic>Liver Cirrhosis - genetics</topic><topic>Liver Cirrhosis - metabolism</topic><topic>Liver Cirrhosis - pathology</topic><topic>Lymphocytes T</topic><topic>Male</topic><topic>MAP kinase</topic><topic>MAP Kinase Signaling System</topic><topic>Membrane Proteins - antagonists &amp; inhibitors</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Metabolic syndrome</topic><topic>Metabolic Syndrome - drug therapy</topic><topic>Metabolic Syndrome - genetics</topic><topic>Metabolic Syndrome - metabolism</topic><topic>Metabolic Syndrome - pathology</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitochondrial Proteins - antagonists &amp; inhibitors</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Non-alcoholic Fatty Liver Disease - drug therapy</topic><topic>Non-alcoholic Fatty Liver Disease - genetics</topic><topic>Non-alcoholic Fatty Liver Disease - metabolism</topic><topic>Non-alcoholic Fatty Liver Disease - pathology</topic><topic>Oligonucleotides, Antisense - administration &amp; dosage</topic><topic>Primary Cell Culture</topic><topic>Protein kinase</topic><topic>Reactive oxygen species</topic><topic>Transcription activation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Win, Sanda</creatorcontrib><creatorcontrib>Min, Robert W.M.</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Kanel, Gary</creatorcontrib><creatorcontrib>Wanken, Brad</creatorcontrib><creatorcontrib>Chen, Yibu</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Suzuki, Ayako</creatorcontrib><creatorcontrib>Aung, Filbert W.M.</creatorcontrib><creatorcontrib>Murray, Susan F.</creatorcontrib><creatorcontrib>Aghajan, Mariam</creatorcontrib><creatorcontrib>Than, Tin A.</creatorcontrib><creatorcontrib>Kaplowitz, Neil</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Hepatology (Baltimore, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Win, Sanda</au><au>Min, Robert W.M.</au><au>Zhang, Jun</au><au>Kanel, Gary</au><au>Wanken, Brad</au><au>Chen, Yibu</au><au>Li, Meng</au><au>Wang, Ying</au><au>Suzuki, Ayako</au><au>Aung, Filbert W.M.</au><au>Murray, Susan F.</au><au>Aghajan, Mariam</au><au>Than, Tin A.</au><au>Kaplowitz, Neil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hepatic Mitochondrial SAB Deletion or Knockdown Alleviates Diet‐Induced Metabolic Syndrome, Steatohepatitis, and Hepatic Fibrosis</atitle><jtitle>Hepatology (Baltimore, Md.)</jtitle><addtitle>Hepatology</addtitle><date>2021-12</date><risdate>2021</risdate><volume>74</volume><issue>6</issue><spage>3127</spage><epage>3145</epage><pages>3127-3145</pages><issn>0270-9139</issn><eissn>1527-3350</eissn><abstract>Background and Aims The hepatic mitogen‐activated protein kinase (MAPK) cascade leading to c‐Jun N‐terminal kinase (JNK) activation has been implicated in the pathogenesis of nonalcoholic fatty liver (NAFL)/NASH. In acute hepatotoxicity, we previously identified a pivotal role for mitochondrial SH3BP5 (SAB; SH3 homology associated BTK binding protein) as a target of JNK, which sustains its activation through promotion of reactive oxygen species production. Therefore, we assessed the role of hepatic SAB in experimental NASH and metabolic syndrome. Approach and Results In mice fed high‐fat, high‐calorie, high‐fructose (HFHC) diet, SAB expression progressively increased through a sustained JNK/activating transcription factor 2 (ATF2) activation loop. Inducible deletion of hepatic SAB markedly decreased sustained JNK activation and improved systemic energy expenditure at 8 weeks followed by decreased body fat at 16 weeks of HFHC diet. After 30 weeks, mice treated with control–antisense oligonucleotide (control‐ASO) developed steatohepatitis and fibrosis, which was prevented by Sab‐ASO treatment. Phosphorylated JNK (p‐JNK) and phosphorylated ATF2 (p‐ATF2) were markedly attenuated by Sab‐ASO treatment. After 52 weeks of HFHC feeding, control N‐acetylgalactosamine antisense oligonucleotide (GalNAc‐Ctl‐ASO) treated mice fed the HFHC diet exhibited progression of steatohepatitis and fibrosis, but GalNAc‐Sab‐ASO treatment from weeks 40 to 52 reversed these findings while decreasing hepatic SAB, p‐ATF2, and p‐JNK to chow‐fed levels. Conclusions Hepatic SAB expression increases in HFHC diet–fed mice. Deletion or knockdown of SAB inhibited sustained JNK activation and steatohepatitis, fibrosis, and systemic metabolic effects, suggesting that induction of hepatocyte Sab is an important driver of the interplay between the liver and the systemic metabolic consequences of overfeeding. In established NASH, hepatocyte‐targeted GalNAc‐Sab‐ASO treatment reversed steatohepatitis and fibrosis.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34331779</pmid><doi>10.1002/hep.32083</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7694-5172</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-9139
ispartof Hepatology (Baltimore, Md.), 2021-12, Vol.74 (6), p.3127-3145
issn 0270-9139
1527-3350
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8639630
source MEDLINE; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals
subjects Activating transcription factor 2
Animals
Antisense oligonucleotides
Body fat
Bruton's tyrosine kinase
Cells, Cultured
Cytotoxicity
Diet
Diet, High-Fat - adverse effects
Disease Models, Animal
Energy expenditure
Fatty liver
Fibrosis
Gene Knockdown Techniques
Hepatocytes - pathology
Hepatology
Hepatotoxicity
Homology
Humans
JNK protein
Kinases
Liver Cirrhosis - drug therapy
Liver Cirrhosis - genetics
Liver Cirrhosis - metabolism
Liver Cirrhosis - pathology
Lymphocytes T
Male
MAP kinase
MAP Kinase Signaling System
Membrane Proteins - antagonists & inhibitors
Membrane Proteins - genetics
Membrane Proteins - metabolism
Metabolic syndrome
Metabolic Syndrome - drug therapy
Metabolic Syndrome - genetics
Metabolic Syndrome - metabolism
Metabolic Syndrome - pathology
Mice
Mitochondria
Mitochondrial Proteins - antagonists & inhibitors
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
Non-alcoholic Fatty Liver Disease - drug therapy
Non-alcoholic Fatty Liver Disease - genetics
Non-alcoholic Fatty Liver Disease - metabolism
Non-alcoholic Fatty Liver Disease - pathology
Oligonucleotides, Antisense - administration & dosage
Primary Cell Culture
Protein kinase
Reactive oxygen species
Transcription activation
title Hepatic Mitochondrial SAB Deletion or Knockdown Alleviates Diet‐Induced Metabolic Syndrome, Steatohepatitis, and Hepatic Fibrosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hepatic%20Mitochondrial%20SAB%20Deletion%20or%20Knockdown%20Alleviates%20Diet%E2%80%90Induced%20Metabolic%20Syndrome,%20Steatohepatitis,%20and%20Hepatic%20Fibrosis&rft.jtitle=Hepatology%20(Baltimore,%20Md.)&rft.au=Win,%20Sanda&rft.date=2021-12&rft.volume=74&rft.issue=6&rft.spage=3127&rft.epage=3145&rft.pages=3127-3145&rft.issn=0270-9139&rft.eissn=1527-3350&rft_id=info:doi/10.1002/hep.32083&rft_dat=%3Cproquest_pubme%3E2604786710%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604786710&rft_id=info:pmid/34331779&rfr_iscdi=true