Hepatic Mitochondrial SAB Deletion or Knockdown Alleviates Diet‐Induced Metabolic Syndrome, Steatohepatitis, and Hepatic Fibrosis
Background and Aims The hepatic mitogen‐activated protein kinase (MAPK) cascade leading to c‐Jun N‐terminal kinase (JNK) activation has been implicated in the pathogenesis of nonalcoholic fatty liver (NAFL)/NASH. In acute hepatotoxicity, we previously identified a pivotal role for mitochondrial SH3B...
Gespeichert in:
Veröffentlicht in: | Hepatology (Baltimore, Md.) Md.), 2021-12, Vol.74 (6), p.3127-3145 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3145 |
---|---|
container_issue | 6 |
container_start_page | 3127 |
container_title | Hepatology (Baltimore, Md.) |
container_volume | 74 |
creator | Win, Sanda Min, Robert W.M. Zhang, Jun Kanel, Gary Wanken, Brad Chen, Yibu Li, Meng Wang, Ying Suzuki, Ayako Aung, Filbert W.M. Murray, Susan F. Aghajan, Mariam Than, Tin A. Kaplowitz, Neil |
description | Background and Aims
The hepatic mitogen‐activated protein kinase (MAPK) cascade leading to c‐Jun N‐terminal kinase (JNK) activation has been implicated in the pathogenesis of nonalcoholic fatty liver (NAFL)/NASH. In acute hepatotoxicity, we previously identified a pivotal role for mitochondrial SH3BP5 (SAB; SH3 homology associated BTK binding protein) as a target of JNK, which sustains its activation through promotion of reactive oxygen species production. Therefore, we assessed the role of hepatic SAB in experimental NASH and metabolic syndrome.
Approach and Results
In mice fed high‐fat, high‐calorie, high‐fructose (HFHC) diet, SAB expression progressively increased through a sustained JNK/activating transcription factor 2 (ATF2) activation loop. Inducible deletion of hepatic SAB markedly decreased sustained JNK activation and improved systemic energy expenditure at 8 weeks followed by decreased body fat at 16 weeks of HFHC diet. After 30 weeks, mice treated with control–antisense oligonucleotide (control‐ASO) developed steatohepatitis and fibrosis, which was prevented by Sab‐ASO treatment. Phosphorylated JNK (p‐JNK) and phosphorylated ATF2 (p‐ATF2) were markedly attenuated by Sab‐ASO treatment. After 52 weeks of HFHC feeding, control N‐acetylgalactosamine antisense oligonucleotide (GalNAc‐Ctl‐ASO) treated mice fed the HFHC diet exhibited progression of steatohepatitis and fibrosis, but GalNAc‐Sab‐ASO treatment from weeks 40 to 52 reversed these findings while decreasing hepatic SAB, p‐ATF2, and p‐JNK to chow‐fed levels.
Conclusions
Hepatic SAB expression increases in HFHC diet–fed mice. Deletion or knockdown of SAB inhibited sustained JNK activation and steatohepatitis, fibrosis, and systemic metabolic effects, suggesting that induction of hepatocyte Sab is an important driver of the interplay between the liver and the systemic metabolic consequences of overfeeding. In established NASH, hepatocyte‐targeted GalNAc‐Sab‐ASO treatment reversed steatohepatitis and fibrosis. |
doi_str_mv | 10.1002/hep.32083 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8639630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604786710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4433-fea257932b6727cc63cacbc48a83159bd8129ffbdfd7362f93cd525d73197ee53</originalsourceid><addsrcrecordid>eNp1kctuEzEUhi0EoqGw4AWQJVZIndaXmfF4gxR6IRWtQAqsLY99hrhM7GA7rbJD4gX6jH0S3KatYMHKsvzp-8_xj9BrSvYpIexgAat9zkjHn6AJbZioOG_IUzQhTJBKUi530IuULgghsmbdc7TDa86pEHKCfs9gpbMz-NzlYBbB2-j0iOfTD_gIRsgueBwi_uSD-WHDlcfTcYRLpzMkfOQg3_y6PvV2bcDic8i6D2NxzTdFE5awh-cZdA6Lu4zs0h7W3uKHyBPXx5BceomeDXpM8Or-3EXfTo6_Hs6qs88fTw-nZ5Wpy7zVAJo1QnLWt4IJY1putOlN3emO00b2tqNMDkNvByt4ywbJjW1YUy5UCoCG76L3W-9q3S_BGvA56lGtolvquFFBO_Xvi3cL9T1cqq7lsuWkCN7eC2L4uYaU1UVYR19mVqwltehaQW-pd1vKlO1ShOExgRJ125cq_6Hu-irsm79HeiQfCirAwRa4ciNs_m9Ss-MvW-Ufrj2i6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604786710</pqid></control><display><type>article</type><title>Hepatic Mitochondrial SAB Deletion or Knockdown Alleviates Diet‐Induced Metabolic Syndrome, Steatohepatitis, and Hepatic Fibrosis</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Win, Sanda ; Min, Robert W.M. ; Zhang, Jun ; Kanel, Gary ; Wanken, Brad ; Chen, Yibu ; Li, Meng ; Wang, Ying ; Suzuki, Ayako ; Aung, Filbert W.M. ; Murray, Susan F. ; Aghajan, Mariam ; Than, Tin A. ; Kaplowitz, Neil</creator><creatorcontrib>Win, Sanda ; Min, Robert W.M. ; Zhang, Jun ; Kanel, Gary ; Wanken, Brad ; Chen, Yibu ; Li, Meng ; Wang, Ying ; Suzuki, Ayako ; Aung, Filbert W.M. ; Murray, Susan F. ; Aghajan, Mariam ; Than, Tin A. ; Kaplowitz, Neil</creatorcontrib><description>Background and Aims
The hepatic mitogen‐activated protein kinase (MAPK) cascade leading to c‐Jun N‐terminal kinase (JNK) activation has been implicated in the pathogenesis of nonalcoholic fatty liver (NAFL)/NASH. In acute hepatotoxicity, we previously identified a pivotal role for mitochondrial SH3BP5 (SAB; SH3 homology associated BTK binding protein) as a target of JNK, which sustains its activation through promotion of reactive oxygen species production. Therefore, we assessed the role of hepatic SAB in experimental NASH and metabolic syndrome.
Approach and Results
In mice fed high‐fat, high‐calorie, high‐fructose (HFHC) diet, SAB expression progressively increased through a sustained JNK/activating transcription factor 2 (ATF2) activation loop. Inducible deletion of hepatic SAB markedly decreased sustained JNK activation and improved systemic energy expenditure at 8 weeks followed by decreased body fat at 16 weeks of HFHC diet. After 30 weeks, mice treated with control–antisense oligonucleotide (control‐ASO) developed steatohepatitis and fibrosis, which was prevented by Sab‐ASO treatment. Phosphorylated JNK (p‐JNK) and phosphorylated ATF2 (p‐ATF2) were markedly attenuated by Sab‐ASO treatment. After 52 weeks of HFHC feeding, control N‐acetylgalactosamine antisense oligonucleotide (GalNAc‐Ctl‐ASO) treated mice fed the HFHC diet exhibited progression of steatohepatitis and fibrosis, but GalNAc‐Sab‐ASO treatment from weeks 40 to 52 reversed these findings while decreasing hepatic SAB, p‐ATF2, and p‐JNK to chow‐fed levels.
Conclusions
Hepatic SAB expression increases in HFHC diet–fed mice. Deletion or knockdown of SAB inhibited sustained JNK activation and steatohepatitis, fibrosis, and systemic metabolic effects, suggesting that induction of hepatocyte Sab is an important driver of the interplay between the liver and the systemic metabolic consequences of overfeeding. In established NASH, hepatocyte‐targeted GalNAc‐Sab‐ASO treatment reversed steatohepatitis and fibrosis.</description><identifier>ISSN: 0270-9139</identifier><identifier>EISSN: 1527-3350</identifier><identifier>DOI: 10.1002/hep.32083</identifier><identifier>PMID: 34331779</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Activating transcription factor 2 ; Animals ; Antisense oligonucleotides ; Body fat ; Bruton's tyrosine kinase ; Cells, Cultured ; Cytotoxicity ; Diet ; Diet, High-Fat - adverse effects ; Disease Models, Animal ; Energy expenditure ; Fatty liver ; Fibrosis ; Gene Knockdown Techniques ; Hepatocytes - pathology ; Hepatology ; Hepatotoxicity ; Homology ; Humans ; JNK protein ; Kinases ; Liver Cirrhosis - drug therapy ; Liver Cirrhosis - genetics ; Liver Cirrhosis - metabolism ; Liver Cirrhosis - pathology ; Lymphocytes T ; Male ; MAP kinase ; MAP Kinase Signaling System ; Membrane Proteins - antagonists & inhibitors ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Metabolic syndrome ; Metabolic Syndrome - drug therapy ; Metabolic Syndrome - genetics ; Metabolic Syndrome - metabolism ; Metabolic Syndrome - pathology ; Mice ; Mitochondria ; Mitochondrial Proteins - antagonists & inhibitors ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; Non-alcoholic Fatty Liver Disease - drug therapy ; Non-alcoholic Fatty Liver Disease - genetics ; Non-alcoholic Fatty Liver Disease - metabolism ; Non-alcoholic Fatty Liver Disease - pathology ; Oligonucleotides, Antisense - administration & dosage ; Primary Cell Culture ; Protein kinase ; Reactive oxygen species ; Transcription activation</subject><ispartof>Hepatology (Baltimore, Md.), 2021-12, Vol.74 (6), p.3127-3145</ispartof><rights>2021 by the American Association for the Study of Liver Diseases.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4433-fea257932b6727cc63cacbc48a83159bd8129ffbdfd7362f93cd525d73197ee53</citedby><cites>FETCH-LOGICAL-c4433-fea257932b6727cc63cacbc48a83159bd8129ffbdfd7362f93cd525d73197ee53</cites><orcidid>0000-0001-7694-5172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhep.32083$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhep.32083$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34331779$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Win, Sanda</creatorcontrib><creatorcontrib>Min, Robert W.M.</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Kanel, Gary</creatorcontrib><creatorcontrib>Wanken, Brad</creatorcontrib><creatorcontrib>Chen, Yibu</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Suzuki, Ayako</creatorcontrib><creatorcontrib>Aung, Filbert W.M.</creatorcontrib><creatorcontrib>Murray, Susan F.</creatorcontrib><creatorcontrib>Aghajan, Mariam</creatorcontrib><creatorcontrib>Than, Tin A.</creatorcontrib><creatorcontrib>Kaplowitz, Neil</creatorcontrib><title>Hepatic Mitochondrial SAB Deletion or Knockdown Alleviates Diet‐Induced Metabolic Syndrome, Steatohepatitis, and Hepatic Fibrosis</title><title>Hepatology (Baltimore, Md.)</title><addtitle>Hepatology</addtitle><description>Background and Aims
The hepatic mitogen‐activated protein kinase (MAPK) cascade leading to c‐Jun N‐terminal kinase (JNK) activation has been implicated in the pathogenesis of nonalcoholic fatty liver (NAFL)/NASH. In acute hepatotoxicity, we previously identified a pivotal role for mitochondrial SH3BP5 (SAB; SH3 homology associated BTK binding protein) as a target of JNK, which sustains its activation through promotion of reactive oxygen species production. Therefore, we assessed the role of hepatic SAB in experimental NASH and metabolic syndrome.
Approach and Results
In mice fed high‐fat, high‐calorie, high‐fructose (HFHC) diet, SAB expression progressively increased through a sustained JNK/activating transcription factor 2 (ATF2) activation loop. Inducible deletion of hepatic SAB markedly decreased sustained JNK activation and improved systemic energy expenditure at 8 weeks followed by decreased body fat at 16 weeks of HFHC diet. After 30 weeks, mice treated with control–antisense oligonucleotide (control‐ASO) developed steatohepatitis and fibrosis, which was prevented by Sab‐ASO treatment. Phosphorylated JNK (p‐JNK) and phosphorylated ATF2 (p‐ATF2) were markedly attenuated by Sab‐ASO treatment. After 52 weeks of HFHC feeding, control N‐acetylgalactosamine antisense oligonucleotide (GalNAc‐Ctl‐ASO) treated mice fed the HFHC diet exhibited progression of steatohepatitis and fibrosis, but GalNAc‐Sab‐ASO treatment from weeks 40 to 52 reversed these findings while decreasing hepatic SAB, p‐ATF2, and p‐JNK to chow‐fed levels.
Conclusions
Hepatic SAB expression increases in HFHC diet–fed mice. Deletion or knockdown of SAB inhibited sustained JNK activation and steatohepatitis, fibrosis, and systemic metabolic effects, suggesting that induction of hepatocyte Sab is an important driver of the interplay between the liver and the systemic metabolic consequences of overfeeding. In established NASH, hepatocyte‐targeted GalNAc‐Sab‐ASO treatment reversed steatohepatitis and fibrosis.</description><subject>Activating transcription factor 2</subject><subject>Animals</subject><subject>Antisense oligonucleotides</subject><subject>Body fat</subject><subject>Bruton's tyrosine kinase</subject><subject>Cells, Cultured</subject><subject>Cytotoxicity</subject><subject>Diet</subject><subject>Diet, High-Fat - adverse effects</subject><subject>Disease Models, Animal</subject><subject>Energy expenditure</subject><subject>Fatty liver</subject><subject>Fibrosis</subject><subject>Gene Knockdown Techniques</subject><subject>Hepatocytes - pathology</subject><subject>Hepatology</subject><subject>Hepatotoxicity</subject><subject>Homology</subject><subject>Humans</subject><subject>JNK protein</subject><subject>Kinases</subject><subject>Liver Cirrhosis - drug therapy</subject><subject>Liver Cirrhosis - genetics</subject><subject>Liver Cirrhosis - metabolism</subject><subject>Liver Cirrhosis - pathology</subject><subject>Lymphocytes T</subject><subject>Male</subject><subject>MAP kinase</subject><subject>MAP Kinase Signaling System</subject><subject>Membrane Proteins - antagonists & inhibitors</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Metabolic syndrome</subject><subject>Metabolic Syndrome - drug therapy</subject><subject>Metabolic Syndrome - genetics</subject><subject>Metabolic Syndrome - metabolism</subject><subject>Metabolic Syndrome - pathology</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitochondrial Proteins - antagonists & inhibitors</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Non-alcoholic Fatty Liver Disease - drug therapy</subject><subject>Non-alcoholic Fatty Liver Disease - genetics</subject><subject>Non-alcoholic Fatty Liver Disease - metabolism</subject><subject>Non-alcoholic Fatty Liver Disease - pathology</subject><subject>Oligonucleotides, Antisense - administration & dosage</subject><subject>Primary Cell Culture</subject><subject>Protein kinase</subject><subject>Reactive oxygen species</subject><subject>Transcription activation</subject><issn>0270-9139</issn><issn>1527-3350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctuEzEUhi0EoqGw4AWQJVZIndaXmfF4gxR6IRWtQAqsLY99hrhM7GA7rbJD4gX6jH0S3KatYMHKsvzp-8_xj9BrSvYpIexgAat9zkjHn6AJbZioOG_IUzQhTJBKUi530IuULgghsmbdc7TDa86pEHKCfs9gpbMz-NzlYBbB2-j0iOfTD_gIRsgueBwi_uSD-WHDlcfTcYRLpzMkfOQg3_y6PvV2bcDic8i6D2NxzTdFE5awh-cZdA6Lu4zs0h7W3uKHyBPXx5BceomeDXpM8Or-3EXfTo6_Hs6qs88fTw-nZ5Wpy7zVAJo1QnLWt4IJY1putOlN3emO00b2tqNMDkNvByt4ywbJjW1YUy5UCoCG76L3W-9q3S_BGvA56lGtolvquFFBO_Xvi3cL9T1cqq7lsuWkCN7eC2L4uYaU1UVYR19mVqwltehaQW-pd1vKlO1ShOExgRJ125cq_6Hu-irsm79HeiQfCirAwRa4ciNs_m9Ss-MvW-Ufrj2i6g</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Win, Sanda</creator><creator>Min, Robert W.M.</creator><creator>Zhang, Jun</creator><creator>Kanel, Gary</creator><creator>Wanken, Brad</creator><creator>Chen, Yibu</creator><creator>Li, Meng</creator><creator>Wang, Ying</creator><creator>Suzuki, Ayako</creator><creator>Aung, Filbert W.M.</creator><creator>Murray, Susan F.</creator><creator>Aghajan, Mariam</creator><creator>Than, Tin A.</creator><creator>Kaplowitz, Neil</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7694-5172</orcidid></search><sort><creationdate>202112</creationdate><title>Hepatic Mitochondrial SAB Deletion or Knockdown Alleviates Diet‐Induced Metabolic Syndrome, Steatohepatitis, and Hepatic Fibrosis</title><author>Win, Sanda ; Min, Robert W.M. ; Zhang, Jun ; Kanel, Gary ; Wanken, Brad ; Chen, Yibu ; Li, Meng ; Wang, Ying ; Suzuki, Ayako ; Aung, Filbert W.M. ; Murray, Susan F. ; Aghajan, Mariam ; Than, Tin A. ; Kaplowitz, Neil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4433-fea257932b6727cc63cacbc48a83159bd8129ffbdfd7362f93cd525d73197ee53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activating transcription factor 2</topic><topic>Animals</topic><topic>Antisense oligonucleotides</topic><topic>Body fat</topic><topic>Bruton's tyrosine kinase</topic><topic>Cells, Cultured</topic><topic>Cytotoxicity</topic><topic>Diet</topic><topic>Diet, High-Fat - adverse effects</topic><topic>Disease Models, Animal</topic><topic>Energy expenditure</topic><topic>Fatty liver</topic><topic>Fibrosis</topic><topic>Gene Knockdown Techniques</topic><topic>Hepatocytes - pathology</topic><topic>Hepatology</topic><topic>Hepatotoxicity</topic><topic>Homology</topic><topic>Humans</topic><topic>JNK protein</topic><topic>Kinases</topic><topic>Liver Cirrhosis - drug therapy</topic><topic>Liver Cirrhosis - genetics</topic><topic>Liver Cirrhosis - metabolism</topic><topic>Liver Cirrhosis - pathology</topic><topic>Lymphocytes T</topic><topic>Male</topic><topic>MAP kinase</topic><topic>MAP Kinase Signaling System</topic><topic>Membrane Proteins - antagonists & inhibitors</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Metabolic syndrome</topic><topic>Metabolic Syndrome - drug therapy</topic><topic>Metabolic Syndrome - genetics</topic><topic>Metabolic Syndrome - metabolism</topic><topic>Metabolic Syndrome - pathology</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitochondrial Proteins - antagonists & inhibitors</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Non-alcoholic Fatty Liver Disease - drug therapy</topic><topic>Non-alcoholic Fatty Liver Disease - genetics</topic><topic>Non-alcoholic Fatty Liver Disease - metabolism</topic><topic>Non-alcoholic Fatty Liver Disease - pathology</topic><topic>Oligonucleotides, Antisense - administration & dosage</topic><topic>Primary Cell Culture</topic><topic>Protein kinase</topic><topic>Reactive oxygen species</topic><topic>Transcription activation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Win, Sanda</creatorcontrib><creatorcontrib>Min, Robert W.M.</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Kanel, Gary</creatorcontrib><creatorcontrib>Wanken, Brad</creatorcontrib><creatorcontrib>Chen, Yibu</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Suzuki, Ayako</creatorcontrib><creatorcontrib>Aung, Filbert W.M.</creatorcontrib><creatorcontrib>Murray, Susan F.</creatorcontrib><creatorcontrib>Aghajan, Mariam</creatorcontrib><creatorcontrib>Than, Tin A.</creatorcontrib><creatorcontrib>Kaplowitz, Neil</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Hepatology (Baltimore, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Win, Sanda</au><au>Min, Robert W.M.</au><au>Zhang, Jun</au><au>Kanel, Gary</au><au>Wanken, Brad</au><au>Chen, Yibu</au><au>Li, Meng</au><au>Wang, Ying</au><au>Suzuki, Ayako</au><au>Aung, Filbert W.M.</au><au>Murray, Susan F.</au><au>Aghajan, Mariam</au><au>Than, Tin A.</au><au>Kaplowitz, Neil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hepatic Mitochondrial SAB Deletion or Knockdown Alleviates Diet‐Induced Metabolic Syndrome, Steatohepatitis, and Hepatic Fibrosis</atitle><jtitle>Hepatology (Baltimore, Md.)</jtitle><addtitle>Hepatology</addtitle><date>2021-12</date><risdate>2021</risdate><volume>74</volume><issue>6</issue><spage>3127</spage><epage>3145</epage><pages>3127-3145</pages><issn>0270-9139</issn><eissn>1527-3350</eissn><abstract>Background and Aims
The hepatic mitogen‐activated protein kinase (MAPK) cascade leading to c‐Jun N‐terminal kinase (JNK) activation has been implicated in the pathogenesis of nonalcoholic fatty liver (NAFL)/NASH. In acute hepatotoxicity, we previously identified a pivotal role for mitochondrial SH3BP5 (SAB; SH3 homology associated BTK binding protein) as a target of JNK, which sustains its activation through promotion of reactive oxygen species production. Therefore, we assessed the role of hepatic SAB in experimental NASH and metabolic syndrome.
Approach and Results
In mice fed high‐fat, high‐calorie, high‐fructose (HFHC) diet, SAB expression progressively increased through a sustained JNK/activating transcription factor 2 (ATF2) activation loop. Inducible deletion of hepatic SAB markedly decreased sustained JNK activation and improved systemic energy expenditure at 8 weeks followed by decreased body fat at 16 weeks of HFHC diet. After 30 weeks, mice treated with control–antisense oligonucleotide (control‐ASO) developed steatohepatitis and fibrosis, which was prevented by Sab‐ASO treatment. Phosphorylated JNK (p‐JNK) and phosphorylated ATF2 (p‐ATF2) were markedly attenuated by Sab‐ASO treatment. After 52 weeks of HFHC feeding, control N‐acetylgalactosamine antisense oligonucleotide (GalNAc‐Ctl‐ASO) treated mice fed the HFHC diet exhibited progression of steatohepatitis and fibrosis, but GalNAc‐Sab‐ASO treatment from weeks 40 to 52 reversed these findings while decreasing hepatic SAB, p‐ATF2, and p‐JNK to chow‐fed levels.
Conclusions
Hepatic SAB expression increases in HFHC diet–fed mice. Deletion or knockdown of SAB inhibited sustained JNK activation and steatohepatitis, fibrosis, and systemic metabolic effects, suggesting that induction of hepatocyte Sab is an important driver of the interplay between the liver and the systemic metabolic consequences of overfeeding. In established NASH, hepatocyte‐targeted GalNAc‐Sab‐ASO treatment reversed steatohepatitis and fibrosis.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34331779</pmid><doi>10.1002/hep.32083</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7694-5172</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-9139 |
ispartof | Hepatology (Baltimore, Md.), 2021-12, Vol.74 (6), p.3127-3145 |
issn | 0270-9139 1527-3350 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8639630 |
source | MEDLINE; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals |
subjects | Activating transcription factor 2 Animals Antisense oligonucleotides Body fat Bruton's tyrosine kinase Cells, Cultured Cytotoxicity Diet Diet, High-Fat - adverse effects Disease Models, Animal Energy expenditure Fatty liver Fibrosis Gene Knockdown Techniques Hepatocytes - pathology Hepatology Hepatotoxicity Homology Humans JNK protein Kinases Liver Cirrhosis - drug therapy Liver Cirrhosis - genetics Liver Cirrhosis - metabolism Liver Cirrhosis - pathology Lymphocytes T Male MAP kinase MAP Kinase Signaling System Membrane Proteins - antagonists & inhibitors Membrane Proteins - genetics Membrane Proteins - metabolism Metabolic syndrome Metabolic Syndrome - drug therapy Metabolic Syndrome - genetics Metabolic Syndrome - metabolism Metabolic Syndrome - pathology Mice Mitochondria Mitochondrial Proteins - antagonists & inhibitors Mitochondrial Proteins - genetics Mitochondrial Proteins - metabolism Non-alcoholic Fatty Liver Disease - drug therapy Non-alcoholic Fatty Liver Disease - genetics Non-alcoholic Fatty Liver Disease - metabolism Non-alcoholic Fatty Liver Disease - pathology Oligonucleotides, Antisense - administration & dosage Primary Cell Culture Protein kinase Reactive oxygen species Transcription activation |
title | Hepatic Mitochondrial SAB Deletion or Knockdown Alleviates Diet‐Induced Metabolic Syndrome, Steatohepatitis, and Hepatic Fibrosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hepatic%20Mitochondrial%20SAB%20Deletion%20or%20Knockdown%20Alleviates%20Diet%E2%80%90Induced%20Metabolic%20Syndrome,%20Steatohepatitis,%20and%20Hepatic%20Fibrosis&rft.jtitle=Hepatology%20(Baltimore,%20Md.)&rft.au=Win,%20Sanda&rft.date=2021-12&rft.volume=74&rft.issue=6&rft.spage=3127&rft.epage=3145&rft.pages=3127-3145&rft.issn=0270-9139&rft.eissn=1527-3350&rft_id=info:doi/10.1002/hep.32083&rft_dat=%3Cproquest_pubme%3E2604786710%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604786710&rft_id=info:pmid/34331779&rfr_iscdi=true |