A dry lunar mantle reservoir for young mare basalts of Chang’e-5
The distribution of water in the Moon’s interior carries implications for the origin of the Moon 1 , the crystallization of the lunar magma ocean 2 and the duration of lunar volcanism 2 . The Chang’e-5 mission returned some of the youngest mare basalt samples reported so far, dated at 2.0 billion ye...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2021-12, Vol.600 (7887), p.49-53 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 53 |
---|---|
container_issue | 7887 |
container_start_page | 49 |
container_title | Nature (London) |
container_volume | 600 |
creator | Hu, Sen He, Huicun Ji, Jianglong Lin, Yangting Hui, Hejiu Anand, Mahesh Tartèse, Romain Yan, Yihong Hao, Jialong Li, Ruiying Gu, Lixin Guo, Qian He, Huaiyu Ouyang, Ziyuan |
description | The distribution of water in the Moon’s interior carries implications for the origin of the Moon
1
, the crystallization of the lunar magma ocean
2
and the duration of lunar volcanism
2
. The Chang’e-5 mission returned some of the youngest mare basalt samples reported so far, dated at 2.0 billion years ago (Ga)
3
, from the northwestern Procellarum KREEP Terrane, providing a probe into the spatiotemporal evolution of lunar water. Here we report the water abundances and hydrogen isotope compositions of apatite and ilmenite-hosted melt inclusions from the Chang’e-5 basalts. We derive a maximum water abundance of 283 ± 22 μg g
−1
and a deuterium/hydrogen ratio of (1.06 ± 0.25) × 10
–
4
for the parent magma. Accounting for low-degree partial melting of the depleted mantle followed by extensive magma fractional crystallization
4
, we estimate a maximum mantle water abundance of 1–5 μg g
−1
, suggesting that the Moon’s youngest volcanism was not driven by abundant water in its mantle source. Such a modest water content for the Chang’e-5 basalt mantle source region is at the low end of the range estimated from mare basalts that erupted from around 4.0 Ga to 2.8 Ga (refs.
5
,
6
), suggesting that the mantle source of the Chang’e-5 basalts had become dehydrated by 2.0 Ga through previous melt extraction from the Procellarum KREEP Terrane mantle during prolonged volcanic activity.
Water abundance and hydrogen isotope compositions of two-billion-year-old basalt samples returned from the Moon by the Chang’e-5 mission suggest that the samples came from a relatively dry mantle source. |
doi_str_mv | 10.1038/s41586-021-04107-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8636271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584015746</sourcerecordid><originalsourceid>FETCH-LOGICAL-a497t-feece31965bd004ca3ab6d6bb3b94754ac49ede96dbfaa245a3b6d316fa7c2f63</originalsourceid><addsrcrecordid>eNp9kctOHDEQRS2UKExIfoAFspRNNg5-td3eIMGIPCSkbJK1Vd1dPTTqscHuRpodv8Hv5UswDOGRRVa1uLdu1dUhZF_wL4Kr-jBrUdWGcSkY14Jb5nbIQmhrmDa1fUMWnMua8VqZXfI-5wvOeSWsfkd2lTbGKGUX5OSYdmlDxzlAomsI04g0YcZ0HYdE-5joJs5hVaSEtIEM45Rp7OnyHMLqz80tsuoDedvDmPHj49wjv7-e_lp-Z2c_v_1YHp8x0M5OrEdsUQlnqqbjXLegoDGdaRrVOG0rDa122KEzXdMDSF2BKroSpgfbyt6oPXK0zb2cmzV2LYYpwegv01Ce2_gIg3-thOHcr-K1r40y0ooS8PkxIMWrGfPk10NucRwhYJyzl1Wtuaisvr_16R_rRZxTKPW8NNwI54Ssi0tuXW2KOSfsn54R3N8j8ltEviDyD4i8K0sHL2s8rfxlUgxqa8hFCitMz7f_E3sHEtid5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2606199128</pqid></control><display><type>article</type><title>A dry lunar mantle reservoir for young mare basalts of Chang’e-5</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Hu, Sen ; He, Huicun ; Ji, Jianglong ; Lin, Yangting ; Hui, Hejiu ; Anand, Mahesh ; Tartèse, Romain ; Yan, Yihong ; Hao, Jialong ; Li, Ruiying ; Gu, Lixin ; Guo, Qian ; He, Huaiyu ; Ouyang, Ziyuan</creator><creatorcontrib>Hu, Sen ; He, Huicun ; Ji, Jianglong ; Lin, Yangting ; Hui, Hejiu ; Anand, Mahesh ; Tartèse, Romain ; Yan, Yihong ; Hao, Jialong ; Li, Ruiying ; Gu, Lixin ; Guo, Qian ; He, Huaiyu ; Ouyang, Ziyuan</creatorcontrib><description>The distribution of water in the Moon’s interior carries implications for the origin of the Moon
1
, the crystallization of the lunar magma ocean
2
and the duration of lunar volcanism
2
. The Chang’e-5 mission returned some of the youngest mare basalt samples reported so far, dated at 2.0 billion years ago (Ga)
3
, from the northwestern Procellarum KREEP Terrane, providing a probe into the spatiotemporal evolution of lunar water. Here we report the water abundances and hydrogen isotope compositions of apatite and ilmenite-hosted melt inclusions from the Chang’e-5 basalts. We derive a maximum water abundance of 283 ± 22 μg g
−1
and a deuterium/hydrogen ratio of (1.06 ± 0.25) × 10
–
4
for the parent magma. Accounting for low-degree partial melting of the depleted mantle followed by extensive magma fractional crystallization
4
, we estimate a maximum mantle water abundance of 1–5 μg g
−1
, suggesting that the Moon’s youngest volcanism was not driven by abundant water in its mantle source. Such a modest water content for the Chang’e-5 basalt mantle source region is at the low end of the range estimated from mare basalts that erupted from around 4.0 Ga to 2.8 Ga (refs.
5
,
6
), suggesting that the mantle source of the Chang’e-5 basalts had become dehydrated by 2.0 Ga through previous melt extraction from the Procellarum KREEP Terrane mantle during prolonged volcanic activity.
Water abundance and hydrogen isotope compositions of two-billion-year-old basalt samples returned from the Moon by the Chang’e-5 mission suggest that the samples came from a relatively dry mantle source.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-04107-9</identifier><identifier>PMID: 34666337</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/445/209 ; 704/445/431 ; Abundance ; Apatite ; Basalt ; Cosmic rays ; Crystallization ; Dehydration ; Deuterium ; Estimates ; Humanities and Social Sciences ; Hydrogen ; Hydrogen isotopes ; Ilmenite ; Inclusions ; Isotope composition ; Kreep ; Lunar evolution ; Lunar exploration ; Lunar mantle ; Magma ; Moisture content ; Moon ; multidisciplinary ; Science ; Science (multidisciplinary) ; Space missions ; Volcanic activity ; Water content</subject><ispartof>Nature (London), 2021-12, Vol.600 (7887), p.49-53</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>Copyright Nature Publishing Group Dec 2, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a497t-feece31965bd004ca3ab6d6bb3b94754ac49ede96dbfaa245a3b6d316fa7c2f63</citedby><cites>FETCH-LOGICAL-a497t-feece31965bd004ca3ab6d6bb3b94754ac49ede96dbfaa245a3b6d316fa7c2f63</cites><orcidid>0000-0002-0187-6069 ; 0000-0002-7852-6147 ; 0000-0003-4509-8876 ; 0000-0001-9813-5330 ; 0000-0002-1254-8693 ; 0000-0003-2170-3349 ; 0000-0002-3407-4329 ; 0000-0001-9708-6901 ; 0000-0003-4026-4476 ; 0000-0002-4887-5274 ; 0000-0002-3490-9875 ; 0000-0003-2707-4977 ; 0000-0003-4898-1023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-021-04107-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-021-04107-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34666337$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Sen</creatorcontrib><creatorcontrib>He, Huicun</creatorcontrib><creatorcontrib>Ji, Jianglong</creatorcontrib><creatorcontrib>Lin, Yangting</creatorcontrib><creatorcontrib>Hui, Hejiu</creatorcontrib><creatorcontrib>Anand, Mahesh</creatorcontrib><creatorcontrib>Tartèse, Romain</creatorcontrib><creatorcontrib>Yan, Yihong</creatorcontrib><creatorcontrib>Hao, Jialong</creatorcontrib><creatorcontrib>Li, Ruiying</creatorcontrib><creatorcontrib>Gu, Lixin</creatorcontrib><creatorcontrib>Guo, Qian</creatorcontrib><creatorcontrib>He, Huaiyu</creatorcontrib><creatorcontrib>Ouyang, Ziyuan</creatorcontrib><title>A dry lunar mantle reservoir for young mare basalts of Chang’e-5</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The distribution of water in the Moon’s interior carries implications for the origin of the Moon
1
, the crystallization of the lunar magma ocean
2
and the duration of lunar volcanism
2
. The Chang’e-5 mission returned some of the youngest mare basalt samples reported so far, dated at 2.0 billion years ago (Ga)
3
, from the northwestern Procellarum KREEP Terrane, providing a probe into the spatiotemporal evolution of lunar water. Here we report the water abundances and hydrogen isotope compositions of apatite and ilmenite-hosted melt inclusions from the Chang’e-5 basalts. We derive a maximum water abundance of 283 ± 22 μg g
−1
and a deuterium/hydrogen ratio of (1.06 ± 0.25) × 10
–
4
for the parent magma. Accounting for low-degree partial melting of the depleted mantle followed by extensive magma fractional crystallization
4
, we estimate a maximum mantle water abundance of 1–5 μg g
−1
, suggesting that the Moon’s youngest volcanism was not driven by abundant water in its mantle source. Such a modest water content for the Chang’e-5 basalt mantle source region is at the low end of the range estimated from mare basalts that erupted from around 4.0 Ga to 2.8 Ga (refs.
5
,
6
), suggesting that the mantle source of the Chang’e-5 basalts had become dehydrated by 2.0 Ga through previous melt extraction from the Procellarum KREEP Terrane mantle during prolonged volcanic activity.
Water abundance and hydrogen isotope compositions of two-billion-year-old basalt samples returned from the Moon by the Chang’e-5 mission suggest that the samples came from a relatively dry mantle source.</description><subject>704/445/209</subject><subject>704/445/431</subject><subject>Abundance</subject><subject>Apatite</subject><subject>Basalt</subject><subject>Cosmic rays</subject><subject>Crystallization</subject><subject>Dehydration</subject><subject>Deuterium</subject><subject>Estimates</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen</subject><subject>Hydrogen isotopes</subject><subject>Ilmenite</subject><subject>Inclusions</subject><subject>Isotope composition</subject><subject>Kreep</subject><subject>Lunar evolution</subject><subject>Lunar exploration</subject><subject>Lunar mantle</subject><subject>Magma</subject><subject>Moisture content</subject><subject>Moon</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Space missions</subject><subject>Volcanic activity</subject><subject>Water content</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kctOHDEQRS2UKExIfoAFspRNNg5-td3eIMGIPCSkbJK1Vd1dPTTqscHuRpodv8Hv5UswDOGRRVa1uLdu1dUhZF_wL4Kr-jBrUdWGcSkY14Jb5nbIQmhrmDa1fUMWnMua8VqZXfI-5wvOeSWsfkd2lTbGKGUX5OSYdmlDxzlAomsI04g0YcZ0HYdE-5joJs5hVaSEtIEM45Rp7OnyHMLqz80tsuoDedvDmPHj49wjv7-e_lp-Z2c_v_1YHp8x0M5OrEdsUQlnqqbjXLegoDGdaRrVOG0rDa122KEzXdMDSF2BKroSpgfbyt6oPXK0zb2cmzV2LYYpwegv01Ce2_gIg3-thOHcr-K1r40y0ooS8PkxIMWrGfPk10NucRwhYJyzl1Wtuaisvr_16R_rRZxTKPW8NNwI54Ssi0tuXW2KOSfsn54R3N8j8ltEviDyD4i8K0sHL2s8rfxlUgxqa8hFCitMz7f_E3sHEtid5g</recordid><startdate>20211202</startdate><enddate>20211202</enddate><creator>Hu, Sen</creator><creator>He, Huicun</creator><creator>Ji, Jianglong</creator><creator>Lin, Yangting</creator><creator>Hui, Hejiu</creator><creator>Anand, Mahesh</creator><creator>Tartèse, Romain</creator><creator>Yan, Yihong</creator><creator>Hao, Jialong</creator><creator>Li, Ruiying</creator><creator>Gu, Lixin</creator><creator>Guo, Qian</creator><creator>He, Huaiyu</creator><creator>Ouyang, Ziyuan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0187-6069</orcidid><orcidid>https://orcid.org/0000-0002-7852-6147</orcidid><orcidid>https://orcid.org/0000-0003-4509-8876</orcidid><orcidid>https://orcid.org/0000-0001-9813-5330</orcidid><orcidid>https://orcid.org/0000-0002-1254-8693</orcidid><orcidid>https://orcid.org/0000-0003-2170-3349</orcidid><orcidid>https://orcid.org/0000-0002-3407-4329</orcidid><orcidid>https://orcid.org/0000-0001-9708-6901</orcidid><orcidid>https://orcid.org/0000-0003-4026-4476</orcidid><orcidid>https://orcid.org/0000-0002-4887-5274</orcidid><orcidid>https://orcid.org/0000-0002-3490-9875</orcidid><orcidid>https://orcid.org/0000-0003-2707-4977</orcidid><orcidid>https://orcid.org/0000-0003-4898-1023</orcidid></search><sort><creationdate>20211202</creationdate><title>A dry lunar mantle reservoir for young mare basalts of Chang’e-5</title><author>Hu, Sen ; He, Huicun ; Ji, Jianglong ; Lin, Yangting ; Hui, Hejiu ; Anand, Mahesh ; Tartèse, Romain ; Yan, Yihong ; Hao, Jialong ; Li, Ruiying ; Gu, Lixin ; Guo, Qian ; He, Huaiyu ; Ouyang, Ziyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a497t-feece31965bd004ca3ab6d6bb3b94754ac49ede96dbfaa245a3b6d316fa7c2f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>704/445/209</topic><topic>704/445/431</topic><topic>Abundance</topic><topic>Apatite</topic><topic>Basalt</topic><topic>Cosmic rays</topic><topic>Crystallization</topic><topic>Dehydration</topic><topic>Deuterium</topic><topic>Estimates</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen</topic><topic>Hydrogen isotopes</topic><topic>Ilmenite</topic><topic>Inclusions</topic><topic>Isotope composition</topic><topic>Kreep</topic><topic>Lunar evolution</topic><topic>Lunar exploration</topic><topic>Lunar mantle</topic><topic>Magma</topic><topic>Moisture content</topic><topic>Moon</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Space missions</topic><topic>Volcanic activity</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Sen</creatorcontrib><creatorcontrib>He, Huicun</creatorcontrib><creatorcontrib>Ji, Jianglong</creatorcontrib><creatorcontrib>Lin, Yangting</creatorcontrib><creatorcontrib>Hui, Hejiu</creatorcontrib><creatorcontrib>Anand, Mahesh</creatorcontrib><creatorcontrib>Tartèse, Romain</creatorcontrib><creatorcontrib>Yan, Yihong</creatorcontrib><creatorcontrib>Hao, Jialong</creatorcontrib><creatorcontrib>Li, Ruiying</creatorcontrib><creatorcontrib>Gu, Lixin</creatorcontrib><creatorcontrib>Guo, Qian</creatorcontrib><creatorcontrib>He, Huaiyu</creatorcontrib><creatorcontrib>Ouyang, Ziyuan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Sen</au><au>He, Huicun</au><au>Ji, Jianglong</au><au>Lin, Yangting</au><au>Hui, Hejiu</au><au>Anand, Mahesh</au><au>Tartèse, Romain</au><au>Yan, Yihong</au><au>Hao, Jialong</au><au>Li, Ruiying</au><au>Gu, Lixin</au><au>Guo, Qian</au><au>He, Huaiyu</au><au>Ouyang, Ziyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dry lunar mantle reservoir for young mare basalts of Chang’e-5</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-12-02</date><risdate>2021</risdate><volume>600</volume><issue>7887</issue><spage>49</spage><epage>53</epage><pages>49-53</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The distribution of water in the Moon’s interior carries implications for the origin of the Moon
1
, the crystallization of the lunar magma ocean
2
and the duration of lunar volcanism
2
. The Chang’e-5 mission returned some of the youngest mare basalt samples reported so far, dated at 2.0 billion years ago (Ga)
3
, from the northwestern Procellarum KREEP Terrane, providing a probe into the spatiotemporal evolution of lunar water. Here we report the water abundances and hydrogen isotope compositions of apatite and ilmenite-hosted melt inclusions from the Chang’e-5 basalts. We derive a maximum water abundance of 283 ± 22 μg g
−1
and a deuterium/hydrogen ratio of (1.06 ± 0.25) × 10
–
4
for the parent magma. Accounting for low-degree partial melting of the depleted mantle followed by extensive magma fractional crystallization
4
, we estimate a maximum mantle water abundance of 1–5 μg g
−1
, suggesting that the Moon’s youngest volcanism was not driven by abundant water in its mantle source. Such a modest water content for the Chang’e-5 basalt mantle source region is at the low end of the range estimated from mare basalts that erupted from around 4.0 Ga to 2.8 Ga (refs.
5
,
6
), suggesting that the mantle source of the Chang’e-5 basalts had become dehydrated by 2.0 Ga through previous melt extraction from the Procellarum KREEP Terrane mantle during prolonged volcanic activity.
Water abundance and hydrogen isotope compositions of two-billion-year-old basalt samples returned from the Moon by the Chang’e-5 mission suggest that the samples came from a relatively dry mantle source.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34666337</pmid><doi>10.1038/s41586-021-04107-9</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0187-6069</orcidid><orcidid>https://orcid.org/0000-0002-7852-6147</orcidid><orcidid>https://orcid.org/0000-0003-4509-8876</orcidid><orcidid>https://orcid.org/0000-0001-9813-5330</orcidid><orcidid>https://orcid.org/0000-0002-1254-8693</orcidid><orcidid>https://orcid.org/0000-0003-2170-3349</orcidid><orcidid>https://orcid.org/0000-0002-3407-4329</orcidid><orcidid>https://orcid.org/0000-0001-9708-6901</orcidid><orcidid>https://orcid.org/0000-0003-4026-4476</orcidid><orcidid>https://orcid.org/0000-0002-4887-5274</orcidid><orcidid>https://orcid.org/0000-0002-3490-9875</orcidid><orcidid>https://orcid.org/0000-0003-2707-4977</orcidid><orcidid>https://orcid.org/0000-0003-4898-1023</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2021-12, Vol.600 (7887), p.49-53 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8636271 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 704/445/209 704/445/431 Abundance Apatite Basalt Cosmic rays Crystallization Dehydration Deuterium Estimates Humanities and Social Sciences Hydrogen Hydrogen isotopes Ilmenite Inclusions Isotope composition Kreep Lunar evolution Lunar exploration Lunar mantle Magma Moisture content Moon multidisciplinary Science Science (multidisciplinary) Space missions Volcanic activity Water content |
title | A dry lunar mantle reservoir for young mare basalts of Chang’e-5 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A32%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dry%20lunar%20mantle%20reservoir%20for%20young%20mare%20basalts%20of%20Chang%E2%80%99e-5&rft.jtitle=Nature%20(London)&rft.au=Hu,%20Sen&rft.date=2021-12-02&rft.volume=600&rft.issue=7887&rft.spage=49&rft.epage=53&rft.pages=49-53&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-04107-9&rft_dat=%3Cproquest_pubme%3E2584015746%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2606199128&rft_id=info:pmid/34666337&rfr_iscdi=true |