Reconciling temperature-dependent factors affecting mass transport losses in polymer electrolyte membrane electrolyzers

[Display omitted] •Increasing the temperature leads to reduced mass transport overpotential.•Increasing the temperature leads to increased anode oxygen gas.•Increasing the temperature leads to enhanced reactant distribution in the anode.•Decreasing water viscosity dominates the resulting mass transp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2020-06, Vol.213, p.112797, Article 112797
Hauptverfasser: Lee, ChungHyuk, Lee, Jason K., George, Michael G., Fahy, Kieran F., LaManna, Jacob M., Baltic, Elias, Hussey, Daniel S., Jacobson, David L., Bazylak, Aimy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 112797
container_title Energy conversion and management
container_volume 213
creator Lee, ChungHyuk
Lee, Jason K.
George, Michael G.
Fahy, Kieran F.
LaManna, Jacob M.
Baltic, Elias
Hussey, Daniel S.
Jacobson, David L.
Bazylak, Aimy
description [Display omitted] •Increasing the temperature leads to reduced mass transport overpotential.•Increasing the temperature leads to increased anode oxygen gas.•Increasing the temperature leads to enhanced reactant distribution in the anode.•Decreasing water viscosity dominates the resulting mass transport overpotential. In this work, we investigated the impact of temperature on two-phase transport in low temperature (LT)-polymer electrolyte membrane (PEM) electrolyzer anode flow channels via in operando neutron imaging and observed a decrease in mass transport overpotential with increasing temperature. We observed an increase in anode oxygen gas content with increasing temperature, which was counterintuitive to the trends in mass transport overpotential. We attributed this counterintuitive decrease in mass transport overpotential to the enhanced reactant distribution in the flow channels as a result of the temperature increase, determined via a one-dimensional analytical model. We further determined that gas accumulation and fluid property changes are competing temperature-dependent contributors to mass transport overpotential; however, liquid water viscosity changes led to the dominant enhancement of reactant water distributions in the anode. We present this temperature-dependent mass transport overpotential as a great opportunity for further increasing the voltage efficiency of PEM electrolyzers.
doi_str_mv 10.1016/j.enconman.2020.112797
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8634519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890420303356</els_id><sourcerecordid>2440491437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-d4b74c80a420f36c3fd268a8437efd30ee46321c0292f575bd78929ea625a3ff3</originalsourceid><addsrcrecordid>eNqFkV1rFTEQhoMo9rT6F2TBG2_2mK_Nx40opa1CQSj1OuRkJzWH3WRNspX6683hVEVvvAqZeeZl3nkRekXwlmAi3u63EF2Ks41bimkrEiq1fII2REndU0rlU7TBRIteacxP0Gkpe4wxG7B4jk4YV4PUCm_Q9xtoMi5MId51FeYFsq1rhn6EBeIIsXbeuppy6az34OqBm20pXc02liXl2k2pFChdiN2SpocZcgdTI3P7VOhmmHcNhT_FH5DLC_TM26nAy8f3DH25vLg9_9hff776dP7hundcitqPfCe5U9hyij0TjvmRCmUVZxL8yDAAF4wSh6mmfpDDbpRKUw1W0MEy79kZenfUXdbdDKNrhrKdzJLDbPODSTaYvzsxfDV36d4owfhAdBN48yiQ07cVSjVzKA6mqVlKazFUYKEZ5gNr6Ot_0H1ac2z2DOUcc03a2o0SR8rldrcM_vcyBJtDtmZvfmVrDtmaY7Zt8P1xENq97gNkU1xoJIwht8uaMYX_SfwEXWazTg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440491437</pqid></control><display><type>article</type><title>Reconciling temperature-dependent factors affecting mass transport losses in polymer electrolyte membrane electrolyzers</title><source>Elsevier ScienceDirect Journals</source><creator>Lee, ChungHyuk ; Lee, Jason K. ; George, Michael G. ; Fahy, Kieran F. ; LaManna, Jacob M. ; Baltic, Elias ; Hussey, Daniel S. ; Jacobson, David L. ; Bazylak, Aimy</creator><creatorcontrib>Lee, ChungHyuk ; Lee, Jason K. ; George, Michael G. ; Fahy, Kieran F. ; LaManna, Jacob M. ; Baltic, Elias ; Hussey, Daniel S. ; Jacobson, David L. ; Bazylak, Aimy</creatorcontrib><description>[Display omitted] •Increasing the temperature leads to reduced mass transport overpotential.•Increasing the temperature leads to increased anode oxygen gas.•Increasing the temperature leads to enhanced reactant distribution in the anode.•Decreasing water viscosity dominates the resulting mass transport overpotential. In this work, we investigated the impact of temperature on two-phase transport in low temperature (LT)-polymer electrolyte membrane (PEM) electrolyzer anode flow channels via in operando neutron imaging and observed a decrease in mass transport overpotential with increasing temperature. We observed an increase in anode oxygen gas content with increasing temperature, which was counterintuitive to the trends in mass transport overpotential. We attributed this counterintuitive decrease in mass transport overpotential to the enhanced reactant distribution in the flow channels as a result of the temperature increase, determined via a one-dimensional analytical model. We further determined that gas accumulation and fluid property changes are competing temperature-dependent contributors to mass transport overpotential; however, liquid water viscosity changes led to the dominant enhancement of reactant water distributions in the anode. We present this temperature-dependent mass transport overpotential as a great opportunity for further increasing the voltage efficiency of PEM electrolyzers.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2020.112797</identifier><identifier>PMID: 34857980</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Anode flow channels ; Anodes ; Channels ; Dimensional analysis ; Electrolytes ; Flow channels ; Hydrogen ; Low temperature ; Mass transport ; Membranes ; Operating temperature ; Polymer electrolyte membrane electrolyzer ; Polymers ; Temperature dependence ; Temperature effects ; Two-phase pressure drop ; Water</subject><ispartof>Energy conversion and management, 2020-06, Vol.213, p.112797, Article 112797</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jun 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-d4b74c80a420f36c3fd268a8437efd30ee46321c0292f575bd78929ea625a3ff3</citedby><cites>FETCH-LOGICAL-c476t-d4b74c80a420f36c3fd268a8437efd30ee46321c0292f575bd78929ea625a3ff3</cites><orcidid>0000-0002-9594-4930 ; 0000-0002-8428-1502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0196890420303356$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Lee, ChungHyuk</creatorcontrib><creatorcontrib>Lee, Jason K.</creatorcontrib><creatorcontrib>George, Michael G.</creatorcontrib><creatorcontrib>Fahy, Kieran F.</creatorcontrib><creatorcontrib>LaManna, Jacob M.</creatorcontrib><creatorcontrib>Baltic, Elias</creatorcontrib><creatorcontrib>Hussey, Daniel S.</creatorcontrib><creatorcontrib>Jacobson, David L.</creatorcontrib><creatorcontrib>Bazylak, Aimy</creatorcontrib><title>Reconciling temperature-dependent factors affecting mass transport losses in polymer electrolyte membrane electrolyzers</title><title>Energy conversion and management</title><description>[Display omitted] •Increasing the temperature leads to reduced mass transport overpotential.•Increasing the temperature leads to increased anode oxygen gas.•Increasing the temperature leads to enhanced reactant distribution in the anode.•Decreasing water viscosity dominates the resulting mass transport overpotential. In this work, we investigated the impact of temperature on two-phase transport in low temperature (LT)-polymer electrolyte membrane (PEM) electrolyzer anode flow channels via in operando neutron imaging and observed a decrease in mass transport overpotential with increasing temperature. We observed an increase in anode oxygen gas content with increasing temperature, which was counterintuitive to the trends in mass transport overpotential. We attributed this counterintuitive decrease in mass transport overpotential to the enhanced reactant distribution in the flow channels as a result of the temperature increase, determined via a one-dimensional analytical model. We further determined that gas accumulation and fluid property changes are competing temperature-dependent contributors to mass transport overpotential; however, liquid water viscosity changes led to the dominant enhancement of reactant water distributions in the anode. We present this temperature-dependent mass transport overpotential as a great opportunity for further increasing the voltage efficiency of PEM electrolyzers.</description><subject>Anode flow channels</subject><subject>Anodes</subject><subject>Channels</subject><subject>Dimensional analysis</subject><subject>Electrolytes</subject><subject>Flow channels</subject><subject>Hydrogen</subject><subject>Low temperature</subject><subject>Mass transport</subject><subject>Membranes</subject><subject>Operating temperature</subject><subject>Polymer electrolyte membrane electrolyzer</subject><subject>Polymers</subject><subject>Temperature dependence</subject><subject>Temperature effects</subject><subject>Two-phase pressure drop</subject><subject>Water</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkV1rFTEQhoMo9rT6F2TBG2_2mK_Nx40opa1CQSj1OuRkJzWH3WRNspX6683hVEVvvAqZeeZl3nkRekXwlmAi3u63EF2Ks41bimkrEiq1fII2REndU0rlU7TBRIteacxP0Gkpe4wxG7B4jk4YV4PUCm_Q9xtoMi5MId51FeYFsq1rhn6EBeIIsXbeuppy6az34OqBm20pXc02liXl2k2pFChdiN2SpocZcgdTI3P7VOhmmHcNhT_FH5DLC_TM26nAy8f3DH25vLg9_9hff776dP7hundcitqPfCe5U9hyij0TjvmRCmUVZxL8yDAAF4wSh6mmfpDDbpRKUw1W0MEy79kZenfUXdbdDKNrhrKdzJLDbPODSTaYvzsxfDV36d4owfhAdBN48yiQ07cVSjVzKA6mqVlKazFUYKEZ5gNr6Ot_0H1ac2z2DOUcc03a2o0SR8rldrcM_vcyBJtDtmZvfmVrDtmaY7Zt8P1xENq97gNkU1xoJIwht8uaMYX_SfwEXWazTg</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Lee, ChungHyuk</creator><creator>Lee, Jason K.</creator><creator>George, Michael G.</creator><creator>Fahy, Kieran F.</creator><creator>LaManna, Jacob M.</creator><creator>Baltic, Elias</creator><creator>Hussey, Daniel S.</creator><creator>Jacobson, David L.</creator><creator>Bazylak, Aimy</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9594-4930</orcidid><orcidid>https://orcid.org/0000-0002-8428-1502</orcidid></search><sort><creationdate>20200601</creationdate><title>Reconciling temperature-dependent factors affecting mass transport losses in polymer electrolyte membrane electrolyzers</title><author>Lee, ChungHyuk ; Lee, Jason K. ; George, Michael G. ; Fahy, Kieran F. ; LaManna, Jacob M. ; Baltic, Elias ; Hussey, Daniel S. ; Jacobson, David L. ; Bazylak, Aimy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-d4b74c80a420f36c3fd268a8437efd30ee46321c0292f575bd78929ea625a3ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anode flow channels</topic><topic>Anodes</topic><topic>Channels</topic><topic>Dimensional analysis</topic><topic>Electrolytes</topic><topic>Flow channels</topic><topic>Hydrogen</topic><topic>Low temperature</topic><topic>Mass transport</topic><topic>Membranes</topic><topic>Operating temperature</topic><topic>Polymer electrolyte membrane electrolyzer</topic><topic>Polymers</topic><topic>Temperature dependence</topic><topic>Temperature effects</topic><topic>Two-phase pressure drop</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, ChungHyuk</creatorcontrib><creatorcontrib>Lee, Jason K.</creatorcontrib><creatorcontrib>George, Michael G.</creatorcontrib><creatorcontrib>Fahy, Kieran F.</creatorcontrib><creatorcontrib>LaManna, Jacob M.</creatorcontrib><creatorcontrib>Baltic, Elias</creatorcontrib><creatorcontrib>Hussey, Daniel S.</creatorcontrib><creatorcontrib>Jacobson, David L.</creatorcontrib><creatorcontrib>Bazylak, Aimy</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, ChungHyuk</au><au>Lee, Jason K.</au><au>George, Michael G.</au><au>Fahy, Kieran F.</au><au>LaManna, Jacob M.</au><au>Baltic, Elias</au><au>Hussey, Daniel S.</au><au>Jacobson, David L.</au><au>Bazylak, Aimy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconciling temperature-dependent factors affecting mass transport losses in polymer electrolyte membrane electrolyzers</atitle><jtitle>Energy conversion and management</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>213</volume><spage>112797</spage><pages>112797-</pages><artnum>112797</artnum><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>[Display omitted] •Increasing the temperature leads to reduced mass transport overpotential.•Increasing the temperature leads to increased anode oxygen gas.•Increasing the temperature leads to enhanced reactant distribution in the anode.•Decreasing water viscosity dominates the resulting mass transport overpotential. In this work, we investigated the impact of temperature on two-phase transport in low temperature (LT)-polymer electrolyte membrane (PEM) electrolyzer anode flow channels via in operando neutron imaging and observed a decrease in mass transport overpotential with increasing temperature. We observed an increase in anode oxygen gas content with increasing temperature, which was counterintuitive to the trends in mass transport overpotential. We attributed this counterintuitive decrease in mass transport overpotential to the enhanced reactant distribution in the flow channels as a result of the temperature increase, determined via a one-dimensional analytical model. We further determined that gas accumulation and fluid property changes are competing temperature-dependent contributors to mass transport overpotential; however, liquid water viscosity changes led to the dominant enhancement of reactant water distributions in the anode. We present this temperature-dependent mass transport overpotential as a great opportunity for further increasing the voltage efficiency of PEM electrolyzers.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>34857980</pmid><doi>10.1016/j.enconman.2020.112797</doi><orcidid>https://orcid.org/0000-0002-9594-4930</orcidid><orcidid>https://orcid.org/0000-0002-8428-1502</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2020-06, Vol.213, p.112797, Article 112797
issn 0196-8904
1879-2227
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8634519
source Elsevier ScienceDirect Journals
subjects Anode flow channels
Anodes
Channels
Dimensional analysis
Electrolytes
Flow channels
Hydrogen
Low temperature
Mass transport
Membranes
Operating temperature
Polymer electrolyte membrane electrolyzer
Polymers
Temperature dependence
Temperature effects
Two-phase pressure drop
Water
title Reconciling temperature-dependent factors affecting mass transport losses in polymer electrolyte membrane electrolyzers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A23%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconciling%20temperature-dependent%20factors%20affecting%20mass%20transport%20losses%20in%20polymer%20electrolyte%20membrane%20electrolyzers&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Lee,%20ChungHyuk&rft.date=2020-06-01&rft.volume=213&rft.spage=112797&rft.pages=112797-&rft.artnum=112797&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2020.112797&rft_dat=%3Cproquest_pubme%3E2440491437%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440491437&rft_id=info:pmid/34857980&rft_els_id=S0196890420303356&rfr_iscdi=true