Glucan, Water‐Dikinase 1 (GWD1), an ideal biotechnological target for potential improving yield and quality in rice
Summary The source–sink relationship determines the overall agronomic performance of rice. Cloning and characterizing key genes involved in the regulation of source and sink dynamics is imperative for improving rice yield. However, few source genes with potential application in rice have been identi...
Gespeichert in:
Veröffentlicht in: | Plant biotechnology journal 2021-12, Vol.19 (12), p.2606-2618 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2618 |
---|---|
container_issue | 12 |
container_start_page | 2606 |
container_title | Plant biotechnology journal |
container_volume | 19 |
creator | Wang, Zhen Wei, Ke Xiong, Min Wang, Jin‐Dong Zhang, Chang‐Quan Fan, Xiao‐Lei Huang, Li‐Chun Zhao, Dong‐Sheng Liu, Qiao‐Quan Li, Qian‐Feng |
description | Summary
The source–sink relationship determines the overall agronomic performance of rice. Cloning and characterizing key genes involved in the regulation of source and sink dynamics is imperative for improving rice yield. However, few source genes with potential application in rice have been identified. Glucan, Water‐Dikinase 1 (GWD1) is an essential enzyme that plays a pivotal role in the first step of transitory starch degradation in source tissues. In the present study, we successfully generated gwd1 weak mutants by promoter editing using CRISPR/Cas9 system, and also leaf‐dominant overexpression lines of GWD1 driven by Osl2 promoter. Analysis of the gwd1 plants indicated that promoter editing mediated down‐regulation of GWD1 caused no observable effects on rice growth and development, but only mildly modified its grain transparency and seed germination. However, the transgenic pOsl2::GWD1 overexpression lines showed improvements in multiple key traits, including rice yield, grain shape, rice quality, seed germination and stress tolerance. Therefore, our study shows that GWD1 is not only involved in transitory starch degradation in source tissues, but also plays key roles in the seeds, which is a sink tissue. In conclusion, we find that GWD1 is an ideal biotechnological target with promising potential for the breeding of elite rice cultivars via genetic engineering. |
doi_str_mv | 10.1111/pbi.13686 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8633486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563425367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5096-daddde9e1cc657dc6e0e8ecb6faa95d46782eca907ca77eb47003678c55213053</originalsourceid><addsrcrecordid>eNp1kdFuFCEUhonR2Lp64QsYEm_apNvCDDAzNyba6tqkiV5oekkYOLs9lYUpzNTsnY_gM_okUrdu1EQugJzz8fOf_IQ85-yYl3Uy9HjMa9WqB2SfC9XMGyWrh7u7EHvkSc7XjFVcSfWY7NVCcMVUu0-mhZ-sCUf00oyQfnz7foZfMJgMlNODxeUZPzyiJlB0YDztMY5gr0L0cYW2FEaTVjDSZUx0KK0wYiniekjxFsOKbhC8K88dvZmMx3FDMdCEFp6SR0vjMzy7P2fk87u3n07fzy8-LM5PX1_MrWSdmjvjnIMOuLVKNs4qYNCC7dXSmE66Ml1bgTUda6xpGuhFw1hdilbKitdM1jPyaqs7TP0anC0Ok_F6SLg2aaOjQf13J-CVXsVb3aq6FmWbkYN7gRRvJsijXmO24L0JEKesK6lqUcnyaUFf_oNexymFMp6uFBNKdXV3Rx1uKZtizgmWOzOc6bswdQlT_wqzsC_-dL8jf6dXgJMt8BU9bP6vpD--Od9K_gS00Krm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604669397</pqid></control><display><type>article</type><title>Glucan, Water‐Dikinase 1 (GWD1), an ideal biotechnological target for potential improving yield and quality in rice</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wang, Zhen ; Wei, Ke ; Xiong, Min ; Wang, Jin‐Dong ; Zhang, Chang‐Quan ; Fan, Xiao‐Lei ; Huang, Li‐Chun ; Zhao, Dong‐Sheng ; Liu, Qiao‐Quan ; Li, Qian‐Feng</creator><creatorcontrib>Wang, Zhen ; Wei, Ke ; Xiong, Min ; Wang, Jin‐Dong ; Zhang, Chang‐Quan ; Fan, Xiao‐Lei ; Huang, Li‐Chun ; Zhao, Dong‐Sheng ; Liu, Qiao‐Quan ; Li, Qian‐Feng</creatorcontrib><description>Summary
The source–sink relationship determines the overall agronomic performance of rice. Cloning and characterizing key genes involved in the regulation of source and sink dynamics is imperative for improving rice yield. However, few source genes with potential application in rice have been identified. Glucan, Water‐Dikinase 1 (GWD1) is an essential enzyme that plays a pivotal role in the first step of transitory starch degradation in source tissues. In the present study, we successfully generated gwd1 weak mutants by promoter editing using CRISPR/Cas9 system, and also leaf‐dominant overexpression lines of GWD1 driven by Osl2 promoter. Analysis of the gwd1 plants indicated that promoter editing mediated down‐regulation of GWD1 caused no observable effects on rice growth and development, but only mildly modified its grain transparency and seed germination. However, the transgenic pOsl2::GWD1 overexpression lines showed improvements in multiple key traits, including rice yield, grain shape, rice quality, seed germination and stress tolerance. Therefore, our study shows that GWD1 is not only involved in transitory starch degradation in source tissues, but also plays key roles in the seeds, which is a sink tissue. In conclusion, we find that GWD1 is an ideal biotechnological target with promising potential for the breeding of elite rice cultivars via genetic engineering.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.13686</identifier><identifier>PMID: 34416068</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Adenosine ; Agricultural production ; Biotechnology ; Carbohydrates ; Cell division ; Cloning ; CRISPR ; Crop yield ; Crops ; Cultivars ; Degradation ; eating and cooking quality ; Editing ; Gene regulation ; Genes ; Genetic engineering ; Genetically altered foods ; Germination ; Glucan ; Glucans - metabolism ; Grain ; GWD1 ; Metabolism ; Mutation ; Oryza - metabolism ; Osl2 promoter ; Phosphorylation ; Plant Breeding ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Rice ; rice yield ; Seed germination ; Seeds ; Seeds - genetics ; Senescence ; Source-sink relationships ; Starch ; Starch - metabolism ; stress tolerance ; Water - metabolism</subject><ispartof>Plant biotechnology journal, 2021-12, Vol.19 (12), p.2606-2618</ispartof><rights>2021 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2021 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5096-daddde9e1cc657dc6e0e8ecb6faa95d46782eca907ca77eb47003678c55213053</citedby><cites>FETCH-LOGICAL-c5096-daddde9e1cc657dc6e0e8ecb6faa95d46782eca907ca77eb47003678c55213053</cites><orcidid>0000-0001-5543-5798 ; 0000-0001-9488-414X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.13686$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.13686$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34416068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Wei, Ke</creatorcontrib><creatorcontrib>Xiong, Min</creatorcontrib><creatorcontrib>Wang, Jin‐Dong</creatorcontrib><creatorcontrib>Zhang, Chang‐Quan</creatorcontrib><creatorcontrib>Fan, Xiao‐Lei</creatorcontrib><creatorcontrib>Huang, Li‐Chun</creatorcontrib><creatorcontrib>Zhao, Dong‐Sheng</creatorcontrib><creatorcontrib>Liu, Qiao‐Quan</creatorcontrib><creatorcontrib>Li, Qian‐Feng</creatorcontrib><title>Glucan, Water‐Dikinase 1 (GWD1), an ideal biotechnological target for potential improving yield and quality in rice</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary
The source–sink relationship determines the overall agronomic performance of rice. Cloning and characterizing key genes involved in the regulation of source and sink dynamics is imperative for improving rice yield. However, few source genes with potential application in rice have been identified. Glucan, Water‐Dikinase 1 (GWD1) is an essential enzyme that plays a pivotal role in the first step of transitory starch degradation in source tissues. In the present study, we successfully generated gwd1 weak mutants by promoter editing using CRISPR/Cas9 system, and also leaf‐dominant overexpression lines of GWD1 driven by Osl2 promoter. Analysis of the gwd1 plants indicated that promoter editing mediated down‐regulation of GWD1 caused no observable effects on rice growth and development, but only mildly modified its grain transparency and seed germination. However, the transgenic pOsl2::GWD1 overexpression lines showed improvements in multiple key traits, including rice yield, grain shape, rice quality, seed germination and stress tolerance. Therefore, our study shows that GWD1 is not only involved in transitory starch degradation in source tissues, but also plays key roles in the seeds, which is a sink tissue. In conclusion, we find that GWD1 is an ideal biotechnological target with promising potential for the breeding of elite rice cultivars via genetic engineering.</description><subject>Adenosine</subject><subject>Agricultural production</subject><subject>Biotechnology</subject><subject>Carbohydrates</subject><subject>Cell division</subject><subject>Cloning</subject><subject>CRISPR</subject><subject>Crop yield</subject><subject>Crops</subject><subject>Cultivars</subject><subject>Degradation</subject><subject>eating and cooking quality</subject><subject>Editing</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Genetically altered foods</subject><subject>Germination</subject><subject>Glucan</subject><subject>Glucans - metabolism</subject><subject>Grain</subject><subject>GWD1</subject><subject>Metabolism</subject><subject>Mutation</subject><subject>Oryza - metabolism</subject><subject>Osl2 promoter</subject><subject>Phosphorylation</subject><subject>Plant Breeding</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Rice</subject><subject>rice yield</subject><subject>Seed germination</subject><subject>Seeds</subject><subject>Seeds - genetics</subject><subject>Senescence</subject><subject>Source-sink relationships</subject><subject>Starch</subject><subject>Starch - metabolism</subject><subject>stress tolerance</subject><subject>Water - metabolism</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kdFuFCEUhonR2Lp64QsYEm_apNvCDDAzNyba6tqkiV5oekkYOLs9lYUpzNTsnY_gM_okUrdu1EQugJzz8fOf_IQ85-yYl3Uy9HjMa9WqB2SfC9XMGyWrh7u7EHvkSc7XjFVcSfWY7NVCcMVUu0-mhZ-sCUf00oyQfnz7foZfMJgMlNODxeUZPzyiJlB0YDztMY5gr0L0cYW2FEaTVjDSZUx0KK0wYiniekjxFsOKbhC8K88dvZmMx3FDMdCEFp6SR0vjMzy7P2fk87u3n07fzy8-LM5PX1_MrWSdmjvjnIMOuLVKNs4qYNCC7dXSmE66Ml1bgTUda6xpGuhFw1hdilbKitdM1jPyaqs7TP0anC0Ok_F6SLg2aaOjQf13J-CVXsVb3aq6FmWbkYN7gRRvJsijXmO24L0JEKesK6lqUcnyaUFf_oNexymFMp6uFBNKdXV3Rx1uKZtizgmWOzOc6bswdQlT_wqzsC_-dL8jf6dXgJMt8BU9bP6vpD--Od9K_gS00Krm</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Wang, Zhen</creator><creator>Wei, Ke</creator><creator>Xiong, Min</creator><creator>Wang, Jin‐Dong</creator><creator>Zhang, Chang‐Quan</creator><creator>Fan, Xiao‐Lei</creator><creator>Huang, Li‐Chun</creator><creator>Zhao, Dong‐Sheng</creator><creator>Liu, Qiao‐Quan</creator><creator>Li, Qian‐Feng</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5543-5798</orcidid><orcidid>https://orcid.org/0000-0001-9488-414X</orcidid></search><sort><creationdate>202112</creationdate><title>Glucan, Water‐Dikinase 1 (GWD1), an ideal biotechnological target for potential improving yield and quality in rice</title><author>Wang, Zhen ; Wei, Ke ; Xiong, Min ; Wang, Jin‐Dong ; Zhang, Chang‐Quan ; Fan, Xiao‐Lei ; Huang, Li‐Chun ; Zhao, Dong‐Sheng ; Liu, Qiao‐Quan ; Li, Qian‐Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5096-daddde9e1cc657dc6e0e8ecb6faa95d46782eca907ca77eb47003678c55213053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenosine</topic><topic>Agricultural production</topic><topic>Biotechnology</topic><topic>Carbohydrates</topic><topic>Cell division</topic><topic>Cloning</topic><topic>CRISPR</topic><topic>Crop yield</topic><topic>Crops</topic><topic>Cultivars</topic><topic>Degradation</topic><topic>eating and cooking quality</topic><topic>Editing</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Genetically altered foods</topic><topic>Germination</topic><topic>Glucan</topic><topic>Glucans - metabolism</topic><topic>Grain</topic><topic>GWD1</topic><topic>Metabolism</topic><topic>Mutation</topic><topic>Oryza - metabolism</topic><topic>Osl2 promoter</topic><topic>Phosphorylation</topic><topic>Plant Breeding</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Rice</topic><topic>rice yield</topic><topic>Seed germination</topic><topic>Seeds</topic><topic>Seeds - genetics</topic><topic>Senescence</topic><topic>Source-sink relationships</topic><topic>Starch</topic><topic>Starch - metabolism</topic><topic>stress tolerance</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Wei, Ke</creatorcontrib><creatorcontrib>Xiong, Min</creatorcontrib><creatorcontrib>Wang, Jin‐Dong</creatorcontrib><creatorcontrib>Zhang, Chang‐Quan</creatorcontrib><creatorcontrib>Fan, Xiao‐Lei</creatorcontrib><creatorcontrib>Huang, Li‐Chun</creatorcontrib><creatorcontrib>Zhao, Dong‐Sheng</creatorcontrib><creatorcontrib>Liu, Qiao‐Quan</creatorcontrib><creatorcontrib>Li, Qian‐Feng</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhen</au><au>Wei, Ke</au><au>Xiong, Min</au><au>Wang, Jin‐Dong</au><au>Zhang, Chang‐Quan</au><au>Fan, Xiao‐Lei</au><au>Huang, Li‐Chun</au><au>Zhao, Dong‐Sheng</au><au>Liu, Qiao‐Quan</au><au>Li, Qian‐Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucan, Water‐Dikinase 1 (GWD1), an ideal biotechnological target for potential improving yield and quality in rice</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2021-12</date><risdate>2021</risdate><volume>19</volume><issue>12</issue><spage>2606</spage><epage>2618</epage><pages>2606-2618</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary
The source–sink relationship determines the overall agronomic performance of rice. Cloning and characterizing key genes involved in the regulation of source and sink dynamics is imperative for improving rice yield. However, few source genes with potential application in rice have been identified. Glucan, Water‐Dikinase 1 (GWD1) is an essential enzyme that plays a pivotal role in the first step of transitory starch degradation in source tissues. In the present study, we successfully generated gwd1 weak mutants by promoter editing using CRISPR/Cas9 system, and also leaf‐dominant overexpression lines of GWD1 driven by Osl2 promoter. Analysis of the gwd1 plants indicated that promoter editing mediated down‐regulation of GWD1 caused no observable effects on rice growth and development, but only mildly modified its grain transparency and seed germination. However, the transgenic pOsl2::GWD1 overexpression lines showed improvements in multiple key traits, including rice yield, grain shape, rice quality, seed germination and stress tolerance. Therefore, our study shows that GWD1 is not only involved in transitory starch degradation in source tissues, but also plays key roles in the seeds, which is a sink tissue. In conclusion, we find that GWD1 is an ideal biotechnological target with promising potential for the breeding of elite rice cultivars via genetic engineering.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>34416068</pmid><doi>10.1111/pbi.13686</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5543-5798</orcidid><orcidid>https://orcid.org/0000-0001-9488-414X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1467-7644 |
ispartof | Plant biotechnology journal, 2021-12, Vol.19 (12), p.2606-2618 |
issn | 1467-7644 1467-7652 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8633486 |
source | MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adenosine Agricultural production Biotechnology Carbohydrates Cell division Cloning CRISPR Crop yield Crops Cultivars Degradation eating and cooking quality Editing Gene regulation Genes Genetic engineering Genetically altered foods Germination Glucan Glucans - metabolism Grain GWD1 Metabolism Mutation Oryza - metabolism Osl2 promoter Phosphorylation Plant Breeding Plants, Genetically Modified - genetics Plants, Genetically Modified - metabolism Rice rice yield Seed germination Seeds Seeds - genetics Senescence Source-sink relationships Starch Starch - metabolism stress tolerance Water - metabolism |
title | Glucan, Water‐Dikinase 1 (GWD1), an ideal biotechnological target for potential improving yield and quality in rice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucan,%20Water%E2%80%90Dikinase%201%20(GWD1),%20an%20ideal%20biotechnological%20target%20for%20potential%20improving%20yield%20and%20quality%20in%20rice&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Wang,%20Zhen&rft.date=2021-12&rft.volume=19&rft.issue=12&rft.spage=2606&rft.epage=2618&rft.pages=2606-2618&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.13686&rft_dat=%3Cproquest_pubme%3E2563425367%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604669397&rft_id=info:pmid/34416068&rfr_iscdi=true |