Glucan, Water‐Dikinase 1 (GWD1), an ideal biotechnological target for potential improving yield and quality in rice

Summary The source–sink relationship determines the overall agronomic performance of rice. Cloning and characterizing key genes involved in the regulation of source and sink dynamics is imperative for improving rice yield. However, few source genes with potential application in rice have been identi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biotechnology journal 2021-12, Vol.19 (12), p.2606-2618
Hauptverfasser: Wang, Zhen, Wei, Ke, Xiong, Min, Wang, Jin‐Dong, Zhang, Chang‐Quan, Fan, Xiao‐Lei, Huang, Li‐Chun, Zhao, Dong‐Sheng, Liu, Qiao‐Quan, Li, Qian‐Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2618
container_issue 12
container_start_page 2606
container_title Plant biotechnology journal
container_volume 19
creator Wang, Zhen
Wei, Ke
Xiong, Min
Wang, Jin‐Dong
Zhang, Chang‐Quan
Fan, Xiao‐Lei
Huang, Li‐Chun
Zhao, Dong‐Sheng
Liu, Qiao‐Quan
Li, Qian‐Feng
description Summary The source–sink relationship determines the overall agronomic performance of rice. Cloning and characterizing key genes involved in the regulation of source and sink dynamics is imperative for improving rice yield. However, few source genes with potential application in rice have been identified. Glucan, Water‐Dikinase 1 (GWD1) is an essential enzyme that plays a pivotal role in the first step of transitory starch degradation in source tissues. In the present study, we successfully generated gwd1 weak mutants by promoter editing using CRISPR/Cas9 system, and also leaf‐dominant overexpression lines of GWD1 driven by Osl2 promoter. Analysis of the gwd1 plants indicated that promoter editing mediated down‐regulation of GWD1 caused no observable effects on rice growth and development, but only mildly modified its grain transparency and seed germination. However, the transgenic pOsl2::GWD1 overexpression lines showed improvements in multiple key traits, including rice yield, grain shape, rice quality, seed germination and stress tolerance. Therefore, our study shows that GWD1 is not only involved in transitory starch degradation in source tissues, but also plays key roles in the seeds, which is a sink tissue. In conclusion, we find that GWD1 is an ideal biotechnological target with promising potential for the breeding of elite rice cultivars via genetic engineering.
doi_str_mv 10.1111/pbi.13686
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8633486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563425367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5096-daddde9e1cc657dc6e0e8ecb6faa95d46782eca907ca77eb47003678c55213053</originalsourceid><addsrcrecordid>eNp1kdFuFCEUhonR2Lp64QsYEm_apNvCDDAzNyba6tqkiV5oekkYOLs9lYUpzNTsnY_gM_okUrdu1EQugJzz8fOf_IQ85-yYl3Uy9HjMa9WqB2SfC9XMGyWrh7u7EHvkSc7XjFVcSfWY7NVCcMVUu0-mhZ-sCUf00oyQfnz7foZfMJgMlNODxeUZPzyiJlB0YDztMY5gr0L0cYW2FEaTVjDSZUx0KK0wYiniekjxFsOKbhC8K88dvZmMx3FDMdCEFp6SR0vjMzy7P2fk87u3n07fzy8-LM5PX1_MrWSdmjvjnIMOuLVKNs4qYNCC7dXSmE66Ml1bgTUda6xpGuhFw1hdilbKitdM1jPyaqs7TP0anC0Ok_F6SLg2aaOjQf13J-CVXsVb3aq6FmWbkYN7gRRvJsijXmO24L0JEKesK6lqUcnyaUFf_oNexymFMp6uFBNKdXV3Rx1uKZtizgmWOzOc6bswdQlT_wqzsC_-dL8jf6dXgJMt8BU9bP6vpD--Od9K_gS00Krm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604669397</pqid></control><display><type>article</type><title>Glucan, Water‐Dikinase 1 (GWD1), an ideal biotechnological target for potential improving yield and quality in rice</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wang, Zhen ; Wei, Ke ; Xiong, Min ; Wang, Jin‐Dong ; Zhang, Chang‐Quan ; Fan, Xiao‐Lei ; Huang, Li‐Chun ; Zhao, Dong‐Sheng ; Liu, Qiao‐Quan ; Li, Qian‐Feng</creator><creatorcontrib>Wang, Zhen ; Wei, Ke ; Xiong, Min ; Wang, Jin‐Dong ; Zhang, Chang‐Quan ; Fan, Xiao‐Lei ; Huang, Li‐Chun ; Zhao, Dong‐Sheng ; Liu, Qiao‐Quan ; Li, Qian‐Feng</creatorcontrib><description>Summary The source–sink relationship determines the overall agronomic performance of rice. Cloning and characterizing key genes involved in the regulation of source and sink dynamics is imperative for improving rice yield. However, few source genes with potential application in rice have been identified. Glucan, Water‐Dikinase 1 (GWD1) is an essential enzyme that plays a pivotal role in the first step of transitory starch degradation in source tissues. In the present study, we successfully generated gwd1 weak mutants by promoter editing using CRISPR/Cas9 system, and also leaf‐dominant overexpression lines of GWD1 driven by Osl2 promoter. Analysis of the gwd1 plants indicated that promoter editing mediated down‐regulation of GWD1 caused no observable effects on rice growth and development, but only mildly modified its grain transparency and seed germination. However, the transgenic pOsl2::GWD1 overexpression lines showed improvements in multiple key traits, including rice yield, grain shape, rice quality, seed germination and stress tolerance. Therefore, our study shows that GWD1 is not only involved in transitory starch degradation in source tissues, but also plays key roles in the seeds, which is a sink tissue. In conclusion, we find that GWD1 is an ideal biotechnological target with promising potential for the breeding of elite rice cultivars via genetic engineering.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.13686</identifier><identifier>PMID: 34416068</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Adenosine ; Agricultural production ; Biotechnology ; Carbohydrates ; Cell division ; Cloning ; CRISPR ; Crop yield ; Crops ; Cultivars ; Degradation ; eating and cooking quality ; Editing ; Gene regulation ; Genes ; Genetic engineering ; Genetically altered foods ; Germination ; Glucan ; Glucans - metabolism ; Grain ; GWD1 ; Metabolism ; Mutation ; Oryza - metabolism ; Osl2 promoter ; Phosphorylation ; Plant Breeding ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Rice ; rice yield ; Seed germination ; Seeds ; Seeds - genetics ; Senescence ; Source-sink relationships ; Starch ; Starch - metabolism ; stress tolerance ; Water - metabolism</subject><ispartof>Plant biotechnology journal, 2021-12, Vol.19 (12), p.2606-2618</ispartof><rights>2021 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2021 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5096-daddde9e1cc657dc6e0e8ecb6faa95d46782eca907ca77eb47003678c55213053</citedby><cites>FETCH-LOGICAL-c5096-daddde9e1cc657dc6e0e8ecb6faa95d46782eca907ca77eb47003678c55213053</cites><orcidid>0000-0001-5543-5798 ; 0000-0001-9488-414X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.13686$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.13686$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34416068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Wei, Ke</creatorcontrib><creatorcontrib>Xiong, Min</creatorcontrib><creatorcontrib>Wang, Jin‐Dong</creatorcontrib><creatorcontrib>Zhang, Chang‐Quan</creatorcontrib><creatorcontrib>Fan, Xiao‐Lei</creatorcontrib><creatorcontrib>Huang, Li‐Chun</creatorcontrib><creatorcontrib>Zhao, Dong‐Sheng</creatorcontrib><creatorcontrib>Liu, Qiao‐Quan</creatorcontrib><creatorcontrib>Li, Qian‐Feng</creatorcontrib><title>Glucan, Water‐Dikinase 1 (GWD1), an ideal biotechnological target for potential improving yield and quality in rice</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary The source–sink relationship determines the overall agronomic performance of rice. Cloning and characterizing key genes involved in the regulation of source and sink dynamics is imperative for improving rice yield. However, few source genes with potential application in rice have been identified. Glucan, Water‐Dikinase 1 (GWD1) is an essential enzyme that plays a pivotal role in the first step of transitory starch degradation in source tissues. In the present study, we successfully generated gwd1 weak mutants by promoter editing using CRISPR/Cas9 system, and also leaf‐dominant overexpression lines of GWD1 driven by Osl2 promoter. Analysis of the gwd1 plants indicated that promoter editing mediated down‐regulation of GWD1 caused no observable effects on rice growth and development, but only mildly modified its grain transparency and seed germination. However, the transgenic pOsl2::GWD1 overexpression lines showed improvements in multiple key traits, including rice yield, grain shape, rice quality, seed germination and stress tolerance. Therefore, our study shows that GWD1 is not only involved in transitory starch degradation in source tissues, but also plays key roles in the seeds, which is a sink tissue. In conclusion, we find that GWD1 is an ideal biotechnological target with promising potential for the breeding of elite rice cultivars via genetic engineering.</description><subject>Adenosine</subject><subject>Agricultural production</subject><subject>Biotechnology</subject><subject>Carbohydrates</subject><subject>Cell division</subject><subject>Cloning</subject><subject>CRISPR</subject><subject>Crop yield</subject><subject>Crops</subject><subject>Cultivars</subject><subject>Degradation</subject><subject>eating and cooking quality</subject><subject>Editing</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Genetically altered foods</subject><subject>Germination</subject><subject>Glucan</subject><subject>Glucans - metabolism</subject><subject>Grain</subject><subject>GWD1</subject><subject>Metabolism</subject><subject>Mutation</subject><subject>Oryza - metabolism</subject><subject>Osl2 promoter</subject><subject>Phosphorylation</subject><subject>Plant Breeding</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Rice</subject><subject>rice yield</subject><subject>Seed germination</subject><subject>Seeds</subject><subject>Seeds - genetics</subject><subject>Senescence</subject><subject>Source-sink relationships</subject><subject>Starch</subject><subject>Starch - metabolism</subject><subject>stress tolerance</subject><subject>Water - metabolism</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kdFuFCEUhonR2Lp64QsYEm_apNvCDDAzNyba6tqkiV5oekkYOLs9lYUpzNTsnY_gM_okUrdu1EQugJzz8fOf_IQ85-yYl3Uy9HjMa9WqB2SfC9XMGyWrh7u7EHvkSc7XjFVcSfWY7NVCcMVUu0-mhZ-sCUf00oyQfnz7foZfMJgMlNODxeUZPzyiJlB0YDztMY5gr0L0cYW2FEaTVjDSZUx0KK0wYiniekjxFsOKbhC8K88dvZmMx3FDMdCEFp6SR0vjMzy7P2fk87u3n07fzy8-LM5PX1_MrWSdmjvjnIMOuLVKNs4qYNCC7dXSmE66Ml1bgTUda6xpGuhFw1hdilbKitdM1jPyaqs7TP0anC0Ok_F6SLg2aaOjQf13J-CVXsVb3aq6FmWbkYN7gRRvJsijXmO24L0JEKesK6lqUcnyaUFf_oNexymFMp6uFBNKdXV3Rx1uKZtizgmWOzOc6bswdQlT_wqzsC_-dL8jf6dXgJMt8BU9bP6vpD--Od9K_gS00Krm</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Wang, Zhen</creator><creator>Wei, Ke</creator><creator>Xiong, Min</creator><creator>Wang, Jin‐Dong</creator><creator>Zhang, Chang‐Quan</creator><creator>Fan, Xiao‐Lei</creator><creator>Huang, Li‐Chun</creator><creator>Zhao, Dong‐Sheng</creator><creator>Liu, Qiao‐Quan</creator><creator>Li, Qian‐Feng</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5543-5798</orcidid><orcidid>https://orcid.org/0000-0001-9488-414X</orcidid></search><sort><creationdate>202112</creationdate><title>Glucan, Water‐Dikinase 1 (GWD1), an ideal biotechnological target for potential improving yield and quality in rice</title><author>Wang, Zhen ; Wei, Ke ; Xiong, Min ; Wang, Jin‐Dong ; Zhang, Chang‐Quan ; Fan, Xiao‐Lei ; Huang, Li‐Chun ; Zhao, Dong‐Sheng ; Liu, Qiao‐Quan ; Li, Qian‐Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5096-daddde9e1cc657dc6e0e8ecb6faa95d46782eca907ca77eb47003678c55213053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenosine</topic><topic>Agricultural production</topic><topic>Biotechnology</topic><topic>Carbohydrates</topic><topic>Cell division</topic><topic>Cloning</topic><topic>CRISPR</topic><topic>Crop yield</topic><topic>Crops</topic><topic>Cultivars</topic><topic>Degradation</topic><topic>eating and cooking quality</topic><topic>Editing</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Genetically altered foods</topic><topic>Germination</topic><topic>Glucan</topic><topic>Glucans - metabolism</topic><topic>Grain</topic><topic>GWD1</topic><topic>Metabolism</topic><topic>Mutation</topic><topic>Oryza - metabolism</topic><topic>Osl2 promoter</topic><topic>Phosphorylation</topic><topic>Plant Breeding</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Rice</topic><topic>rice yield</topic><topic>Seed germination</topic><topic>Seeds</topic><topic>Seeds - genetics</topic><topic>Senescence</topic><topic>Source-sink relationships</topic><topic>Starch</topic><topic>Starch - metabolism</topic><topic>stress tolerance</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Wei, Ke</creatorcontrib><creatorcontrib>Xiong, Min</creatorcontrib><creatorcontrib>Wang, Jin‐Dong</creatorcontrib><creatorcontrib>Zhang, Chang‐Quan</creatorcontrib><creatorcontrib>Fan, Xiao‐Lei</creatorcontrib><creatorcontrib>Huang, Li‐Chun</creatorcontrib><creatorcontrib>Zhao, Dong‐Sheng</creatorcontrib><creatorcontrib>Liu, Qiao‐Quan</creatorcontrib><creatorcontrib>Li, Qian‐Feng</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhen</au><au>Wei, Ke</au><au>Xiong, Min</au><au>Wang, Jin‐Dong</au><au>Zhang, Chang‐Quan</au><au>Fan, Xiao‐Lei</au><au>Huang, Li‐Chun</au><au>Zhao, Dong‐Sheng</au><au>Liu, Qiao‐Quan</au><au>Li, Qian‐Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucan, Water‐Dikinase 1 (GWD1), an ideal biotechnological target for potential improving yield and quality in rice</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2021-12</date><risdate>2021</risdate><volume>19</volume><issue>12</issue><spage>2606</spage><epage>2618</epage><pages>2606-2618</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary The source–sink relationship determines the overall agronomic performance of rice. Cloning and characterizing key genes involved in the regulation of source and sink dynamics is imperative for improving rice yield. However, few source genes with potential application in rice have been identified. Glucan, Water‐Dikinase 1 (GWD1) is an essential enzyme that plays a pivotal role in the first step of transitory starch degradation in source tissues. In the present study, we successfully generated gwd1 weak mutants by promoter editing using CRISPR/Cas9 system, and also leaf‐dominant overexpression lines of GWD1 driven by Osl2 promoter. Analysis of the gwd1 plants indicated that promoter editing mediated down‐regulation of GWD1 caused no observable effects on rice growth and development, but only mildly modified its grain transparency and seed germination. However, the transgenic pOsl2::GWD1 overexpression lines showed improvements in multiple key traits, including rice yield, grain shape, rice quality, seed germination and stress tolerance. Therefore, our study shows that GWD1 is not only involved in transitory starch degradation in source tissues, but also plays key roles in the seeds, which is a sink tissue. In conclusion, we find that GWD1 is an ideal biotechnological target with promising potential for the breeding of elite rice cultivars via genetic engineering.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>34416068</pmid><doi>10.1111/pbi.13686</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5543-5798</orcidid><orcidid>https://orcid.org/0000-0001-9488-414X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2021-12, Vol.19 (12), p.2606-2618
issn 1467-7644
1467-7652
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8633486
source MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adenosine
Agricultural production
Biotechnology
Carbohydrates
Cell division
Cloning
CRISPR
Crop yield
Crops
Cultivars
Degradation
eating and cooking quality
Editing
Gene regulation
Genes
Genetic engineering
Genetically altered foods
Germination
Glucan
Glucans - metabolism
Grain
GWD1
Metabolism
Mutation
Oryza - metabolism
Osl2 promoter
Phosphorylation
Plant Breeding
Plants, Genetically Modified - genetics
Plants, Genetically Modified - metabolism
Rice
rice yield
Seed germination
Seeds
Seeds - genetics
Senescence
Source-sink relationships
Starch
Starch - metabolism
stress tolerance
Water - metabolism
title Glucan, Water‐Dikinase 1 (GWD1), an ideal biotechnological target for potential improving yield and quality in rice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucan,%20Water%E2%80%90Dikinase%201%20(GWD1),%20an%20ideal%20biotechnological%20target%20for%20potential%20improving%20yield%20and%20quality%20in%20rice&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Wang,%20Zhen&rft.date=2021-12&rft.volume=19&rft.issue=12&rft.spage=2606&rft.epage=2618&rft.pages=2606-2618&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.13686&rft_dat=%3Cproquest_pubme%3E2563425367%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604669397&rft_id=info:pmid/34416068&rfr_iscdi=true