Discovery of new vascular disrupting agents based on evolutionarily conserved drug action, pesticide resistance mutations, and humanized yeast
Abstract Thiabendazole (TBZ) is an FDA-approved benzimidazole widely used for its antifungal and antihelminthic properties. We showed previously that TBZ is also a potent vascular disrupting agent and inhibits angiogenesis at the tissue level by dissociating vascular endothelial cells in newly forme...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 2021-09, Vol.219 (1) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Genetics (Austin) |
container_volume | 219 |
creator | Garge, Riddhiman K Cha, Hye Ji Lee, Chanjae Gollihar, Jimmy D Kachroo, Aashiq H Wallingford, John B Marcotte, Edward M |
description | Abstract
Thiabendazole (TBZ) is an FDA-approved benzimidazole widely used for its antifungal and antihelminthic properties. We showed previously that TBZ is also a potent vascular disrupting agent and inhibits angiogenesis at the tissue level by dissociating vascular endothelial cells in newly formed blood vessels. Here, we uncover TBZ’s molecular target and mechanism of action. Using human cell culture, molecular modeling, and humanized yeast, we find that TBZ selectively targets only 1 of 9 human β-tubulin isotypes (TUBB8) to specifically disrupt endothelial cell microtubules. By leveraging epidemiological pesticide resistance data and mining chemical features of commercially used benzimidazoles, we discover that a broader class of benzimidazole compounds, in extensive use for 50 years, also potently disrupt immature blood vessels and inhibit angiogenesis. Thus, besides identifying the molecular mechanism of benzimidazole-mediated vascular disruption, this study presents evidence relevant to the widespread use of these compounds while offering potential new clinical applications.
Garge et al. use humanized yeast, molecular modeling, and cell culture to investigate the molecular target and mechanism of action of the widely–used antifungal Thiabendazole. By applying these approaches, along with examining properties of other benzimidazoles and incorporating epidemiological signatures of pesticide resistance, the authors discover a broader class of commonly used benzimidazole compounds that disrupt blood vessels and inhibit angiogenesis, thus opening up new drug repurposing opportunities and clinical applications for these compounds. |
doi_str_mv | 10.1093/genetics/iyab101 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8633126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/genetics/iyab101</oup_id><sourcerecordid>2605226368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-ff4da5921508a911b6751485bf1a9bf349c187efa234db3303e28c805b1363203</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EomXhzglZ4oJEl9qx8-ELEmr5kipxgbM1cSZbV4kd7Dgo_Ah-c73abVW4cPJI7zPjeecl5CVn7zhT4nyHDmdr4rldoeWMPyKnXEmxLSrBHz-oT8izGG8YY5Uqm6fkRMhGKsXqU_Ln0kbjFwwr9T11-IsuEE0aINDOxpCm2bodhfzRHGkLETvqHcXFD2m23kGww0qNdxHDkrUupEybvXRGJ4x5OdshDRhtnMEZpGOaYS_HMwquo9dpBGd_59YVIc7PyZMehogvju-G_Pj08fvFl-3Vt89fLz5cbY2s2Lzte9lBqQpesgYU521Vl1w2ZdtzUG0vpDK8qbGHQsiuFYIJLBrTsLLlohIFExvy_jB3Su2Incn2Agx6CnaEsGoPVv-tOHutd37RTSUEzyfdkDfHAcH_TNmoHvMhcRjAoU9RFxUri8xVTUZf_4Pe-BRctqeLslZ581rWmWIHygQfY8D-fhnO9D5sfRe2PoadW149NHHfcJduBt4eAJ-m_4-7Bb16u9o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579751747</pqid></control><display><type>article</type><title>Discovery of new vascular disrupting agents based on evolutionarily conserved drug action, pesticide resistance mutations, and humanized yeast</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Garge, Riddhiman K ; Cha, Hye Ji ; Lee, Chanjae ; Gollihar, Jimmy D ; Kachroo, Aashiq H ; Wallingford, John B ; Marcotte, Edward M</creator><contributor>Gladfelter, A</contributor><creatorcontrib>Garge, Riddhiman K ; Cha, Hye Ji ; Lee, Chanjae ; Gollihar, Jimmy D ; Kachroo, Aashiq H ; Wallingford, John B ; Marcotte, Edward M ; Gladfelter, A</creatorcontrib><description>Abstract
Thiabendazole (TBZ) is an FDA-approved benzimidazole widely used for its antifungal and antihelminthic properties. We showed previously that TBZ is also a potent vascular disrupting agent and inhibits angiogenesis at the tissue level by dissociating vascular endothelial cells in newly formed blood vessels. Here, we uncover TBZ’s molecular target and mechanism of action. Using human cell culture, molecular modeling, and humanized yeast, we find that TBZ selectively targets only 1 of 9 human β-tubulin isotypes (TUBB8) to specifically disrupt endothelial cell microtubules. By leveraging epidemiological pesticide resistance data and mining chemical features of commercially used benzimidazoles, we discover that a broader class of benzimidazole compounds, in extensive use for 50 years, also potently disrupt immature blood vessels and inhibit angiogenesis. Thus, besides identifying the molecular mechanism of benzimidazole-mediated vascular disruption, this study presents evidence relevant to the widespread use of these compounds while offering potential new clinical applications.
Garge et al. use humanized yeast, molecular modeling, and cell culture to investigate the molecular target and mechanism of action of the widely–used antifungal Thiabendazole. By applying these approaches, along with examining properties of other benzimidazoles and incorporating epidemiological signatures of pesticide resistance, the authors discover a broader class of commonly used benzimidazole compounds that disrupt blood vessels and inhibit angiogenesis, thus opening up new drug repurposing opportunities and clinical applications for these compounds.</description><identifier>ISSN: 1943-2631</identifier><identifier>ISSN: 0016-6731</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1093/genetics/iyab101</identifier><identifier>PMID: 34849907</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Angiogenesis ; Angiogenesis Inhibitors - pharmacology ; Anthelmintic agents ; Benzimidazoles ; Benzimidazoles - pharmacology ; Blood vessels ; Cell culture ; Disruption ; Endothelial cells ; Endothelial Cells - drug effects ; Endothelial Cells - metabolism ; Epidemiology ; Fungicides ; Genetics ; Human Umbilical Vein Endothelial Cells ; Humans ; Investigation ; Isotypes ; Microtubules ; Microtubules - drug effects ; Microtubules - metabolism ; Molecular modelling ; Mutation ; Pesticide resistance ; Pesticides ; Pesticides - pharmacology ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - genetics ; Thiabendazole ; Thiabendazole - pharmacology ; Tubulin ; Tubulin - genetics ; Tubulin - metabolism ; Yeast ; Yeasts</subject><ispartof>Genetics (Austin), 2021-09, Vol.219 (1)</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Genetics Society of America. All rights reserved. For permissions, please email: journals.permissions@oup.com 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Genetics Society of America. All rights reserved. For permissions, please email: journals.permissions@oup.com.</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Genetics Society of America. All rights reserved. For permissions, please email: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-ff4da5921508a911b6751485bf1a9bf349c187efa234db3303e28c805b1363203</citedby><cites>FETCH-LOGICAL-c460t-ff4da5921508a911b6751485bf1a9bf349c187efa234db3303e28c805b1363203</cites><orcidid>0000-0002-6774-0172 ; 0000-0001-9770-778X ; 0000-0001-8808-180X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1584,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34849907$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gladfelter, A</contributor><creatorcontrib>Garge, Riddhiman K</creatorcontrib><creatorcontrib>Cha, Hye Ji</creatorcontrib><creatorcontrib>Lee, Chanjae</creatorcontrib><creatorcontrib>Gollihar, Jimmy D</creatorcontrib><creatorcontrib>Kachroo, Aashiq H</creatorcontrib><creatorcontrib>Wallingford, John B</creatorcontrib><creatorcontrib>Marcotte, Edward M</creatorcontrib><title>Discovery of new vascular disrupting agents based on evolutionarily conserved drug action, pesticide resistance mutations, and humanized yeast</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Abstract
Thiabendazole (TBZ) is an FDA-approved benzimidazole widely used for its antifungal and antihelminthic properties. We showed previously that TBZ is also a potent vascular disrupting agent and inhibits angiogenesis at the tissue level by dissociating vascular endothelial cells in newly formed blood vessels. Here, we uncover TBZ’s molecular target and mechanism of action. Using human cell culture, molecular modeling, and humanized yeast, we find that TBZ selectively targets only 1 of 9 human β-tubulin isotypes (TUBB8) to specifically disrupt endothelial cell microtubules. By leveraging epidemiological pesticide resistance data and mining chemical features of commercially used benzimidazoles, we discover that a broader class of benzimidazole compounds, in extensive use for 50 years, also potently disrupt immature blood vessels and inhibit angiogenesis. Thus, besides identifying the molecular mechanism of benzimidazole-mediated vascular disruption, this study presents evidence relevant to the widespread use of these compounds while offering potential new clinical applications.
Garge et al. use humanized yeast, molecular modeling, and cell culture to investigate the molecular target and mechanism of action of the widely–used antifungal Thiabendazole. By applying these approaches, along with examining properties of other benzimidazoles and incorporating epidemiological signatures of pesticide resistance, the authors discover a broader class of commonly used benzimidazole compounds that disrupt blood vessels and inhibit angiogenesis, thus opening up new drug repurposing opportunities and clinical applications for these compounds.</description><subject>Angiogenesis</subject><subject>Angiogenesis Inhibitors - pharmacology</subject><subject>Anthelmintic agents</subject><subject>Benzimidazoles</subject><subject>Benzimidazoles - pharmacology</subject><subject>Blood vessels</subject><subject>Cell culture</subject><subject>Disruption</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - metabolism</subject><subject>Epidemiology</subject><subject>Fungicides</subject><subject>Genetics</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>Investigation</subject><subject>Isotypes</subject><subject>Microtubules</subject><subject>Microtubules - drug effects</subject><subject>Microtubules - metabolism</subject><subject>Molecular modelling</subject><subject>Mutation</subject><subject>Pesticide resistance</subject><subject>Pesticides</subject><subject>Pesticides - pharmacology</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Thiabendazole</subject><subject>Thiabendazole - pharmacology</subject><subject>Tubulin</subject><subject>Tubulin - genetics</subject><subject>Tubulin - metabolism</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1943-2631</issn><issn>0016-6731</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EomXhzglZ4oJEl9qx8-ELEmr5kipxgbM1cSZbV4kd7Dgo_Ah-c73abVW4cPJI7zPjeecl5CVn7zhT4nyHDmdr4rldoeWMPyKnXEmxLSrBHz-oT8izGG8YY5Uqm6fkRMhGKsXqU_Ln0kbjFwwr9T11-IsuEE0aINDOxpCm2bodhfzRHGkLETvqHcXFD2m23kGww0qNdxHDkrUupEybvXRGJ4x5OdshDRhtnMEZpGOaYS_HMwquo9dpBGd_59YVIc7PyZMehogvju-G_Pj08fvFl-3Vt89fLz5cbY2s2Lzte9lBqQpesgYU521Vl1w2ZdtzUG0vpDK8qbGHQsiuFYIJLBrTsLLlohIFExvy_jB3Su2Incn2Agx6CnaEsGoPVv-tOHutd37RTSUEzyfdkDfHAcH_TNmoHvMhcRjAoU9RFxUri8xVTUZf_4Pe-BRctqeLslZ581rWmWIHygQfY8D-fhnO9D5sfRe2PoadW149NHHfcJduBt4eAJ-m_4-7Bb16u9o</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Garge, Riddhiman K</creator><creator>Cha, Hye Ji</creator><creator>Lee, Chanjae</creator><creator>Gollihar, Jimmy D</creator><creator>Kachroo, Aashiq H</creator><creator>Wallingford, John B</creator><creator>Marcotte, Edward M</creator><general>Oxford University Press</general><general>Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6774-0172</orcidid><orcidid>https://orcid.org/0000-0001-9770-778X</orcidid><orcidid>https://orcid.org/0000-0001-8808-180X</orcidid></search><sort><creationdate>20210901</creationdate><title>Discovery of new vascular disrupting agents based on evolutionarily conserved drug action, pesticide resistance mutations, and humanized yeast</title><author>Garge, Riddhiman K ; Cha, Hye Ji ; Lee, Chanjae ; Gollihar, Jimmy D ; Kachroo, Aashiq H ; Wallingford, John B ; Marcotte, Edward M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-ff4da5921508a911b6751485bf1a9bf349c187efa234db3303e28c805b1363203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angiogenesis</topic><topic>Angiogenesis Inhibitors - pharmacology</topic><topic>Anthelmintic agents</topic><topic>Benzimidazoles</topic><topic>Benzimidazoles - pharmacology</topic><topic>Blood vessels</topic><topic>Cell culture</topic><topic>Disruption</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - metabolism</topic><topic>Epidemiology</topic><topic>Fungicides</topic><topic>Genetics</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>Investigation</topic><topic>Isotypes</topic><topic>Microtubules</topic><topic>Microtubules - drug effects</topic><topic>Microtubules - metabolism</topic><topic>Molecular modelling</topic><topic>Mutation</topic><topic>Pesticide resistance</topic><topic>Pesticides</topic><topic>Pesticides - pharmacology</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Thiabendazole</topic><topic>Thiabendazole - pharmacology</topic><topic>Tubulin</topic><topic>Tubulin - genetics</topic><topic>Tubulin - metabolism</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garge, Riddhiman K</creatorcontrib><creatorcontrib>Cha, Hye Ji</creatorcontrib><creatorcontrib>Lee, Chanjae</creatorcontrib><creatorcontrib>Gollihar, Jimmy D</creatorcontrib><creatorcontrib>Kachroo, Aashiq H</creatorcontrib><creatorcontrib>Wallingford, John B</creatorcontrib><creatorcontrib>Marcotte, Edward M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garge, Riddhiman K</au><au>Cha, Hye Ji</au><au>Lee, Chanjae</au><au>Gollihar, Jimmy D</au><au>Kachroo, Aashiq H</au><au>Wallingford, John B</au><au>Marcotte, Edward M</au><au>Gladfelter, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovery of new vascular disrupting agents based on evolutionarily conserved drug action, pesticide resistance mutations, and humanized yeast</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>219</volume><issue>1</issue><issn>1943-2631</issn><issn>0016-6731</issn><eissn>1943-2631</eissn><abstract>Abstract
Thiabendazole (TBZ) is an FDA-approved benzimidazole widely used for its antifungal and antihelminthic properties. We showed previously that TBZ is also a potent vascular disrupting agent and inhibits angiogenesis at the tissue level by dissociating vascular endothelial cells in newly formed blood vessels. Here, we uncover TBZ’s molecular target and mechanism of action. Using human cell culture, molecular modeling, and humanized yeast, we find that TBZ selectively targets only 1 of 9 human β-tubulin isotypes (TUBB8) to specifically disrupt endothelial cell microtubules. By leveraging epidemiological pesticide resistance data and mining chemical features of commercially used benzimidazoles, we discover that a broader class of benzimidazole compounds, in extensive use for 50 years, also potently disrupt immature blood vessels and inhibit angiogenesis. Thus, besides identifying the molecular mechanism of benzimidazole-mediated vascular disruption, this study presents evidence relevant to the widespread use of these compounds while offering potential new clinical applications.
Garge et al. use humanized yeast, molecular modeling, and cell culture to investigate the molecular target and mechanism of action of the widely–used antifungal Thiabendazole. By applying these approaches, along with examining properties of other benzimidazoles and incorporating epidemiological signatures of pesticide resistance, the authors discover a broader class of commonly used benzimidazole compounds that disrupt blood vessels and inhibit angiogenesis, thus opening up new drug repurposing opportunities and clinical applications for these compounds.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>34849907</pmid><doi>10.1093/genetics/iyab101</doi><orcidid>https://orcid.org/0000-0002-6774-0172</orcidid><orcidid>https://orcid.org/0000-0001-9770-778X</orcidid><orcidid>https://orcid.org/0000-0001-8808-180X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-2631 |
ispartof | Genetics (Austin), 2021-09, Vol.219 (1) |
issn | 1943-2631 0016-6731 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8633126 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Angiogenesis Angiogenesis Inhibitors - pharmacology Anthelmintic agents Benzimidazoles Benzimidazoles - pharmacology Blood vessels Cell culture Disruption Endothelial cells Endothelial Cells - drug effects Endothelial Cells - metabolism Epidemiology Fungicides Genetics Human Umbilical Vein Endothelial Cells Humans Investigation Isotypes Microtubules Microtubules - drug effects Microtubules - metabolism Molecular modelling Mutation Pesticide resistance Pesticides Pesticides - pharmacology Saccharomyces cerevisiae - drug effects Saccharomyces cerevisiae - genetics Thiabendazole Thiabendazole - pharmacology Tubulin Tubulin - genetics Tubulin - metabolism Yeast Yeasts |
title | Discovery of new vascular disrupting agents based on evolutionarily conserved drug action, pesticide resistance mutations, and humanized yeast |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T10%3A09%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovery%20of%20new%20vascular%20disrupting%20agents%20based%20on%20evolutionarily%20conserved%20drug%20action,%20pesticide%20resistance%20mutations,%20and%20humanized%20yeast&rft.jtitle=Genetics%20(Austin)&rft.au=Garge,%20Riddhiman%20K&rft.date=2021-09-01&rft.volume=219&rft.issue=1&rft.issn=1943-2631&rft.eissn=1943-2631&rft_id=info:doi/10.1093/genetics/iyab101&rft_dat=%3Cproquest_pubme%3E2605226368%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579751747&rft_id=info:pmid/34849907&rft_oup_id=10.1093/genetics/iyab101&rfr_iscdi=true |