Discovery of new vascular disrupting agents based on evolutionarily conserved drug action, pesticide resistance mutations, and humanized yeast

Abstract Thiabendazole (TBZ) is an FDA-approved benzimidazole widely used for its antifungal and antihelminthic properties. We showed previously that TBZ is also a potent vascular disrupting agent and inhibits angiogenesis at the tissue level by dissociating vascular endothelial cells in newly forme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics (Austin) 2021-09, Vol.219 (1)
Hauptverfasser: Garge, Riddhiman K, Cha, Hye Ji, Lee, Chanjae, Gollihar, Jimmy D, Kachroo, Aashiq H, Wallingford, John B, Marcotte, Edward M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Genetics (Austin)
container_volume 219
creator Garge, Riddhiman K
Cha, Hye Ji
Lee, Chanjae
Gollihar, Jimmy D
Kachroo, Aashiq H
Wallingford, John B
Marcotte, Edward M
description Abstract Thiabendazole (TBZ) is an FDA-approved benzimidazole widely used for its antifungal and antihelminthic properties. We showed previously that TBZ is also a potent vascular disrupting agent and inhibits angiogenesis at the tissue level by dissociating vascular endothelial cells in newly formed blood vessels. Here, we uncover TBZ’s molecular target and mechanism of action. Using human cell culture, molecular modeling, and humanized yeast, we find that TBZ selectively targets only 1 of 9 human β-tubulin isotypes (TUBB8) to specifically disrupt endothelial cell microtubules. By leveraging epidemiological pesticide resistance data and mining chemical features of commercially used benzimidazoles, we discover that a broader class of benzimidazole compounds, in extensive use for 50 years, also potently disrupt immature blood vessels and inhibit angiogenesis. Thus, besides identifying the molecular mechanism of benzimidazole-mediated vascular disruption, this study presents evidence relevant to the widespread use of these compounds while offering potential new clinical applications. Garge et al. use humanized yeast, molecular modeling, and cell culture to investigate the molecular target and mechanism of action of the widely–used antifungal Thiabendazole. By applying these approaches, along with examining properties of other benzimidazoles and incorporating epidemiological signatures of pesticide resistance, the authors discover a broader class of commonly used benzimidazole compounds that disrupt blood vessels and inhibit angiogenesis, thus opening up new drug repurposing opportunities and clinical applications for these compounds.
doi_str_mv 10.1093/genetics/iyab101
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8633126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/genetics/iyab101</oup_id><sourcerecordid>2605226368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-ff4da5921508a911b6751485bf1a9bf349c187efa234db3303e28c805b1363203</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EomXhzglZ4oJEl9qx8-ELEmr5kipxgbM1cSZbV4kd7Dgo_Ah-c73abVW4cPJI7zPjeecl5CVn7zhT4nyHDmdr4rldoeWMPyKnXEmxLSrBHz-oT8izGG8YY5Uqm6fkRMhGKsXqU_Ln0kbjFwwr9T11-IsuEE0aINDOxpCm2bodhfzRHGkLETvqHcXFD2m23kGww0qNdxHDkrUupEybvXRGJ4x5OdshDRhtnMEZpGOaYS_HMwquo9dpBGd_59YVIc7PyZMehogvju-G_Pj08fvFl-3Vt89fLz5cbY2s2Lzte9lBqQpesgYU521Vl1w2ZdtzUG0vpDK8qbGHQsiuFYIJLBrTsLLlohIFExvy_jB3Su2Incn2Agx6CnaEsGoPVv-tOHutd37RTSUEzyfdkDfHAcH_TNmoHvMhcRjAoU9RFxUri8xVTUZf_4Pe-BRctqeLslZ581rWmWIHygQfY8D-fhnO9D5sfRe2PoadW149NHHfcJduBt4eAJ-m_4-7Bb16u9o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579751747</pqid></control><display><type>article</type><title>Discovery of new vascular disrupting agents based on evolutionarily conserved drug action, pesticide resistance mutations, and humanized yeast</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Garge, Riddhiman K ; Cha, Hye Ji ; Lee, Chanjae ; Gollihar, Jimmy D ; Kachroo, Aashiq H ; Wallingford, John B ; Marcotte, Edward M</creator><contributor>Gladfelter, A</contributor><creatorcontrib>Garge, Riddhiman K ; Cha, Hye Ji ; Lee, Chanjae ; Gollihar, Jimmy D ; Kachroo, Aashiq H ; Wallingford, John B ; Marcotte, Edward M ; Gladfelter, A</creatorcontrib><description>Abstract Thiabendazole (TBZ) is an FDA-approved benzimidazole widely used for its antifungal and antihelminthic properties. We showed previously that TBZ is also a potent vascular disrupting agent and inhibits angiogenesis at the tissue level by dissociating vascular endothelial cells in newly formed blood vessels. Here, we uncover TBZ’s molecular target and mechanism of action. Using human cell culture, molecular modeling, and humanized yeast, we find that TBZ selectively targets only 1 of 9 human β-tubulin isotypes (TUBB8) to specifically disrupt endothelial cell microtubules. By leveraging epidemiological pesticide resistance data and mining chemical features of commercially used benzimidazoles, we discover that a broader class of benzimidazole compounds, in extensive use for 50 years, also potently disrupt immature blood vessels and inhibit angiogenesis. Thus, besides identifying the molecular mechanism of benzimidazole-mediated vascular disruption, this study presents evidence relevant to the widespread use of these compounds while offering potential new clinical applications. Garge et al. use humanized yeast, molecular modeling, and cell culture to investigate the molecular target and mechanism of action of the widely–used antifungal Thiabendazole. By applying these approaches, along with examining properties of other benzimidazoles and incorporating epidemiological signatures of pesticide resistance, the authors discover a broader class of commonly used benzimidazole compounds that disrupt blood vessels and inhibit angiogenesis, thus opening up new drug repurposing opportunities and clinical applications for these compounds.</description><identifier>ISSN: 1943-2631</identifier><identifier>ISSN: 0016-6731</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1093/genetics/iyab101</identifier><identifier>PMID: 34849907</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Angiogenesis ; Angiogenesis Inhibitors - pharmacology ; Anthelmintic agents ; Benzimidazoles ; Benzimidazoles - pharmacology ; Blood vessels ; Cell culture ; Disruption ; Endothelial cells ; Endothelial Cells - drug effects ; Endothelial Cells - metabolism ; Epidemiology ; Fungicides ; Genetics ; Human Umbilical Vein Endothelial Cells ; Humans ; Investigation ; Isotypes ; Microtubules ; Microtubules - drug effects ; Microtubules - metabolism ; Molecular modelling ; Mutation ; Pesticide resistance ; Pesticides ; Pesticides - pharmacology ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - genetics ; Thiabendazole ; Thiabendazole - pharmacology ; Tubulin ; Tubulin - genetics ; Tubulin - metabolism ; Yeast ; Yeasts</subject><ispartof>Genetics (Austin), 2021-09, Vol.219 (1)</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Genetics Society of America. All rights reserved. For permissions, please email: journals.permissions@oup.com 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Genetics Society of America. All rights reserved. For permissions, please email: journals.permissions@oup.com.</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Genetics Society of America. All rights reserved. For permissions, please email: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-ff4da5921508a911b6751485bf1a9bf349c187efa234db3303e28c805b1363203</citedby><cites>FETCH-LOGICAL-c460t-ff4da5921508a911b6751485bf1a9bf349c187efa234db3303e28c805b1363203</cites><orcidid>0000-0002-6774-0172 ; 0000-0001-9770-778X ; 0000-0001-8808-180X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1584,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34849907$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gladfelter, A</contributor><creatorcontrib>Garge, Riddhiman K</creatorcontrib><creatorcontrib>Cha, Hye Ji</creatorcontrib><creatorcontrib>Lee, Chanjae</creatorcontrib><creatorcontrib>Gollihar, Jimmy D</creatorcontrib><creatorcontrib>Kachroo, Aashiq H</creatorcontrib><creatorcontrib>Wallingford, John B</creatorcontrib><creatorcontrib>Marcotte, Edward M</creatorcontrib><title>Discovery of new vascular disrupting agents based on evolutionarily conserved drug action, pesticide resistance mutations, and humanized yeast</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Abstract Thiabendazole (TBZ) is an FDA-approved benzimidazole widely used for its antifungal and antihelminthic properties. We showed previously that TBZ is also a potent vascular disrupting agent and inhibits angiogenesis at the tissue level by dissociating vascular endothelial cells in newly formed blood vessels. Here, we uncover TBZ’s molecular target and mechanism of action. Using human cell culture, molecular modeling, and humanized yeast, we find that TBZ selectively targets only 1 of 9 human β-tubulin isotypes (TUBB8) to specifically disrupt endothelial cell microtubules. By leveraging epidemiological pesticide resistance data and mining chemical features of commercially used benzimidazoles, we discover that a broader class of benzimidazole compounds, in extensive use for 50 years, also potently disrupt immature blood vessels and inhibit angiogenesis. Thus, besides identifying the molecular mechanism of benzimidazole-mediated vascular disruption, this study presents evidence relevant to the widespread use of these compounds while offering potential new clinical applications. Garge et al. use humanized yeast, molecular modeling, and cell culture to investigate the molecular target and mechanism of action of the widely–used antifungal Thiabendazole. By applying these approaches, along with examining properties of other benzimidazoles and incorporating epidemiological signatures of pesticide resistance, the authors discover a broader class of commonly used benzimidazole compounds that disrupt blood vessels and inhibit angiogenesis, thus opening up new drug repurposing opportunities and clinical applications for these compounds.</description><subject>Angiogenesis</subject><subject>Angiogenesis Inhibitors - pharmacology</subject><subject>Anthelmintic agents</subject><subject>Benzimidazoles</subject><subject>Benzimidazoles - pharmacology</subject><subject>Blood vessels</subject><subject>Cell culture</subject><subject>Disruption</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - metabolism</subject><subject>Epidemiology</subject><subject>Fungicides</subject><subject>Genetics</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>Investigation</subject><subject>Isotypes</subject><subject>Microtubules</subject><subject>Microtubules - drug effects</subject><subject>Microtubules - metabolism</subject><subject>Molecular modelling</subject><subject>Mutation</subject><subject>Pesticide resistance</subject><subject>Pesticides</subject><subject>Pesticides - pharmacology</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Thiabendazole</subject><subject>Thiabendazole - pharmacology</subject><subject>Tubulin</subject><subject>Tubulin - genetics</subject><subject>Tubulin - metabolism</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1943-2631</issn><issn>0016-6731</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EomXhzglZ4oJEl9qx8-ELEmr5kipxgbM1cSZbV4kd7Dgo_Ah-c73abVW4cPJI7zPjeecl5CVn7zhT4nyHDmdr4rldoeWMPyKnXEmxLSrBHz-oT8izGG8YY5Uqm6fkRMhGKsXqU_Ln0kbjFwwr9T11-IsuEE0aINDOxpCm2bodhfzRHGkLETvqHcXFD2m23kGww0qNdxHDkrUupEybvXRGJ4x5OdshDRhtnMEZpGOaYS_HMwquo9dpBGd_59YVIc7PyZMehogvju-G_Pj08fvFl-3Vt89fLz5cbY2s2Lzte9lBqQpesgYU521Vl1w2ZdtzUG0vpDK8qbGHQsiuFYIJLBrTsLLlohIFExvy_jB3Su2Incn2Agx6CnaEsGoPVv-tOHutd37RTSUEzyfdkDfHAcH_TNmoHvMhcRjAoU9RFxUri8xVTUZf_4Pe-BRctqeLslZ581rWmWIHygQfY8D-fhnO9D5sfRe2PoadW149NHHfcJduBt4eAJ-m_4-7Bb16u9o</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Garge, Riddhiman K</creator><creator>Cha, Hye Ji</creator><creator>Lee, Chanjae</creator><creator>Gollihar, Jimmy D</creator><creator>Kachroo, Aashiq H</creator><creator>Wallingford, John B</creator><creator>Marcotte, Edward M</creator><general>Oxford University Press</general><general>Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6774-0172</orcidid><orcidid>https://orcid.org/0000-0001-9770-778X</orcidid><orcidid>https://orcid.org/0000-0001-8808-180X</orcidid></search><sort><creationdate>20210901</creationdate><title>Discovery of new vascular disrupting agents based on evolutionarily conserved drug action, pesticide resistance mutations, and humanized yeast</title><author>Garge, Riddhiman K ; Cha, Hye Ji ; Lee, Chanjae ; Gollihar, Jimmy D ; Kachroo, Aashiq H ; Wallingford, John B ; Marcotte, Edward M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-ff4da5921508a911b6751485bf1a9bf349c187efa234db3303e28c805b1363203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angiogenesis</topic><topic>Angiogenesis Inhibitors - pharmacology</topic><topic>Anthelmintic agents</topic><topic>Benzimidazoles</topic><topic>Benzimidazoles - pharmacology</topic><topic>Blood vessels</topic><topic>Cell culture</topic><topic>Disruption</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - metabolism</topic><topic>Epidemiology</topic><topic>Fungicides</topic><topic>Genetics</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>Investigation</topic><topic>Isotypes</topic><topic>Microtubules</topic><topic>Microtubules - drug effects</topic><topic>Microtubules - metabolism</topic><topic>Molecular modelling</topic><topic>Mutation</topic><topic>Pesticide resistance</topic><topic>Pesticides</topic><topic>Pesticides - pharmacology</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Thiabendazole</topic><topic>Thiabendazole - pharmacology</topic><topic>Tubulin</topic><topic>Tubulin - genetics</topic><topic>Tubulin - metabolism</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garge, Riddhiman K</creatorcontrib><creatorcontrib>Cha, Hye Ji</creatorcontrib><creatorcontrib>Lee, Chanjae</creatorcontrib><creatorcontrib>Gollihar, Jimmy D</creatorcontrib><creatorcontrib>Kachroo, Aashiq H</creatorcontrib><creatorcontrib>Wallingford, John B</creatorcontrib><creatorcontrib>Marcotte, Edward M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garge, Riddhiman K</au><au>Cha, Hye Ji</au><au>Lee, Chanjae</au><au>Gollihar, Jimmy D</au><au>Kachroo, Aashiq H</au><au>Wallingford, John B</au><au>Marcotte, Edward M</au><au>Gladfelter, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovery of new vascular disrupting agents based on evolutionarily conserved drug action, pesticide resistance mutations, and humanized yeast</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>219</volume><issue>1</issue><issn>1943-2631</issn><issn>0016-6731</issn><eissn>1943-2631</eissn><abstract>Abstract Thiabendazole (TBZ) is an FDA-approved benzimidazole widely used for its antifungal and antihelminthic properties. We showed previously that TBZ is also a potent vascular disrupting agent and inhibits angiogenesis at the tissue level by dissociating vascular endothelial cells in newly formed blood vessels. Here, we uncover TBZ’s molecular target and mechanism of action. Using human cell culture, molecular modeling, and humanized yeast, we find that TBZ selectively targets only 1 of 9 human β-tubulin isotypes (TUBB8) to specifically disrupt endothelial cell microtubules. By leveraging epidemiological pesticide resistance data and mining chemical features of commercially used benzimidazoles, we discover that a broader class of benzimidazole compounds, in extensive use for 50 years, also potently disrupt immature blood vessels and inhibit angiogenesis. Thus, besides identifying the molecular mechanism of benzimidazole-mediated vascular disruption, this study presents evidence relevant to the widespread use of these compounds while offering potential new clinical applications. Garge et al. use humanized yeast, molecular modeling, and cell culture to investigate the molecular target and mechanism of action of the widely–used antifungal Thiabendazole. By applying these approaches, along with examining properties of other benzimidazoles and incorporating epidemiological signatures of pesticide resistance, the authors discover a broader class of commonly used benzimidazole compounds that disrupt blood vessels and inhibit angiogenesis, thus opening up new drug repurposing opportunities and clinical applications for these compounds.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>34849907</pmid><doi>10.1093/genetics/iyab101</doi><orcidid>https://orcid.org/0000-0002-6774-0172</orcidid><orcidid>https://orcid.org/0000-0001-9770-778X</orcidid><orcidid>https://orcid.org/0000-0001-8808-180X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-2631
ispartof Genetics (Austin), 2021-09, Vol.219 (1)
issn 1943-2631
0016-6731
1943-2631
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8633126
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Angiogenesis
Angiogenesis Inhibitors - pharmacology
Anthelmintic agents
Benzimidazoles
Benzimidazoles - pharmacology
Blood vessels
Cell culture
Disruption
Endothelial cells
Endothelial Cells - drug effects
Endothelial Cells - metabolism
Epidemiology
Fungicides
Genetics
Human Umbilical Vein Endothelial Cells
Humans
Investigation
Isotypes
Microtubules
Microtubules - drug effects
Microtubules - metabolism
Molecular modelling
Mutation
Pesticide resistance
Pesticides
Pesticides - pharmacology
Saccharomyces cerevisiae - drug effects
Saccharomyces cerevisiae - genetics
Thiabendazole
Thiabendazole - pharmacology
Tubulin
Tubulin - genetics
Tubulin - metabolism
Yeast
Yeasts
title Discovery of new vascular disrupting agents based on evolutionarily conserved drug action, pesticide resistance mutations, and humanized yeast
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T10%3A09%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovery%20of%20new%20vascular%20disrupting%20agents%20based%20on%20evolutionarily%20conserved%20drug%20action,%20pesticide%20resistance%20mutations,%20and%20humanized%20yeast&rft.jtitle=Genetics%20(Austin)&rft.au=Garge,%20Riddhiman%20K&rft.date=2021-09-01&rft.volume=219&rft.issue=1&rft.issn=1943-2631&rft.eissn=1943-2631&rft_id=info:doi/10.1093/genetics/iyab101&rft_dat=%3Cproquest_pubme%3E2605226368%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579751747&rft_id=info:pmid/34849907&rft_oup_id=10.1093/genetics/iyab101&rfr_iscdi=true