Structural basis for anti-CRISPR repression mediated by bacterial operon proteins Aca1 and Aca2
It has been shown that phages have evolved anti-CRISPR (Acr) proteins to inhibit host CRISPR-Cas systems. Most acr genes are located upstream of anti-CRISPR-associated (aca) genes, which is instrumental for identifying these acr genes. Thus far, eight Aca families (Aca1–Aca8) have been identified, a...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2021-12, Vol.297 (6), p.101357-101357, Article 101357 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 101357 |
---|---|
container_issue | 6 |
container_start_page | 101357 |
container_title | The Journal of biological chemistry |
container_volume | 297 |
creator | Liu, Yanhong Zhang, Linsheng Guo, Maochao Chen, Liu Wu, Baixing Huang, Hongda |
description | It has been shown that phages have evolved anti-CRISPR (Acr) proteins to inhibit host CRISPR-Cas systems. Most acr genes are located upstream of anti-CRISPR-associated (aca) genes, which is instrumental for identifying these acr genes. Thus far, eight Aca families (Aca1–Aca8) have been identified, all proteins of which share low sequence homology and bind to different target DNA sequences. Recently, Aca1 and Aca2 proteins were discovered to function as repressors by binding to acr-aca promoters, thus implying a potential anti-anti-CRISPR mechanism. However, the structural basis for the repression roles of Aca proteins is still unknown. Here, we elucidated apo-structures of Aca1 and Aca2 proteins and their complex structures with their cognate operator DNA in two model systems, the Pseudomonas phage JBD30 and the Pectobacterium carotovorum template phage ZF40. In combination with biochemical and cellular assays, our study unveils dimerization and DNA-recognition mechanisms of Aca1 and Aca2 family proteins, thus revealing the molecular basis for Aca1-and Aca2-mediated anti-CRISPR repression. Our results also shed light on understanding the repression roles of other Aca family proteins and autoregulation roles of acr-aca operons. |
doi_str_mv | 10.1016/j.jbc.2021.101357 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8633003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925821011637</els_id><sourcerecordid>2596012063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-c31b8b60af241115b80524956eef5903383d0b2c600c029ceec18b3a2e33f80f3</originalsourceid><addsrcrecordid>eNp9Ud9rFDEQDqLY8_QP8EX20Zc9Z5LNXhZBKIfaQkFpFXwLSXZWc9xt1iRb6H9vlmuLvpiXZPh-zGQ-xl4jbBCwfbff7K3bcOC41EJun7AVghK1kPjjKVtBQeqOS3XGXqS0h3KaDp-zM9FsZavUdsX0TY6zy3M0h8qa5FM1hFiZMft6d3158_W6ijRFSsmHsTpS702mvrJ3hewyRV9kYaJYwCmGTH5M1bkzWBz65cFfsmeDOSR6dX-v2fdPH7_tLuqrL58vd-dXtWsk5toJtMq2YAbeIKK0CiRvOtkSDbIDIZTowXLXAjjgnSNyqKwwnIQYFAxizT6cfKfZljEdjbl8SU_RH02808F4_S8y-l_6Z7jVqhUCSoM1e3tvEMPvmVLWR58cHQ5mpDAnzWXXAnJoFyqeqC6GlCINj20Q9BKM3usSjF6C0adgiubN3_M9Kh6SKIT3JwKVLd16ijo5T6MrK4_ksu6D_4_9H7jDnlY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596012063</pqid></control><display><type>article</type><title>Structural basis for anti-CRISPR repression mediated by bacterial operon proteins Aca1 and Aca2</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Liu, Yanhong ; Zhang, Linsheng ; Guo, Maochao ; Chen, Liu ; Wu, Baixing ; Huang, Hongda</creator><creatorcontrib>Liu, Yanhong ; Zhang, Linsheng ; Guo, Maochao ; Chen, Liu ; Wu, Baixing ; Huang, Hongda</creatorcontrib><description>It has been shown that phages have evolved anti-CRISPR (Acr) proteins to inhibit host CRISPR-Cas systems. Most acr genes are located upstream of anti-CRISPR-associated (aca) genes, which is instrumental for identifying these acr genes. Thus far, eight Aca families (Aca1–Aca8) have been identified, all proteins of which share low sequence homology and bind to different target DNA sequences. Recently, Aca1 and Aca2 proteins were discovered to function as repressors by binding to acr-aca promoters, thus implying a potential anti-anti-CRISPR mechanism. However, the structural basis for the repression roles of Aca proteins is still unknown. Here, we elucidated apo-structures of Aca1 and Aca2 proteins and their complex structures with their cognate operator DNA in two model systems, the Pseudomonas phage JBD30 and the Pectobacterium carotovorum template phage ZF40. In combination with biochemical and cellular assays, our study unveils dimerization and DNA-recognition mechanisms of Aca1 and Aca2 family proteins, thus revealing the molecular basis for Aca1-and Aca2-mediated anti-CRISPR repression. Our results also shed light on understanding the repression roles of other Aca family proteins and autoregulation roles of acr-aca operons.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2021.101357</identifier><identifier>PMID: 34756887</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aca1 ; Aca2 ; anti-CRISPR ; anti-CRISPR-associated ; Bacteriophages - chemistry ; Bacteriophages - genetics ; Bacteriophages - metabolism ; Clustered Regularly Interspaced Short Palindromic Repeats ; Models, Molecular ; Operon ; Pectobacterium carotovorum - genetics ; Pectobacterium carotovorum - metabolism ; Pectobacterium carotovorum - virology ; Protein Conformation ; Protein Multimerization ; protein–DNA complex ; Pseudomonas aeruginosa - genetics ; Pseudomonas aeruginosa - metabolism ; Pseudomonas aeruginosa - virology ; Pseudomonas Phages - chemistry ; Pseudomonas Phages - genetics ; Pseudomonas Phages - metabolism ; Viral Proteins - chemistry ; Viral Proteins - genetics ; Viral Proteins - metabolism ; X-ray crystallography</subject><ispartof>The Journal of biological chemistry, 2021-12, Vol.297 (6), p.101357-101357, Article 101357</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2021 The Authors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-c31b8b60af241115b80524956eef5903383d0b2c600c029ceec18b3a2e33f80f3</citedby><cites>FETCH-LOGICAL-c451t-c31b8b60af241115b80524956eef5903383d0b2c600c029ceec18b3a2e33f80f3</cites><orcidid>0000-0001-7484-6939 ; 0000-0002-3595-0554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633003/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633003/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34756887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yanhong</creatorcontrib><creatorcontrib>Zhang, Linsheng</creatorcontrib><creatorcontrib>Guo, Maochao</creatorcontrib><creatorcontrib>Chen, Liu</creatorcontrib><creatorcontrib>Wu, Baixing</creatorcontrib><creatorcontrib>Huang, Hongda</creatorcontrib><title>Structural basis for anti-CRISPR repression mediated by bacterial operon proteins Aca1 and Aca2</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>It has been shown that phages have evolved anti-CRISPR (Acr) proteins to inhibit host CRISPR-Cas systems. Most acr genes are located upstream of anti-CRISPR-associated (aca) genes, which is instrumental for identifying these acr genes. Thus far, eight Aca families (Aca1–Aca8) have been identified, all proteins of which share low sequence homology and bind to different target DNA sequences. Recently, Aca1 and Aca2 proteins were discovered to function as repressors by binding to acr-aca promoters, thus implying a potential anti-anti-CRISPR mechanism. However, the structural basis for the repression roles of Aca proteins is still unknown. Here, we elucidated apo-structures of Aca1 and Aca2 proteins and their complex structures with their cognate operator DNA in two model systems, the Pseudomonas phage JBD30 and the Pectobacterium carotovorum template phage ZF40. In combination with biochemical and cellular assays, our study unveils dimerization and DNA-recognition mechanisms of Aca1 and Aca2 family proteins, thus revealing the molecular basis for Aca1-and Aca2-mediated anti-CRISPR repression. Our results also shed light on understanding the repression roles of other Aca family proteins and autoregulation roles of acr-aca operons.</description><subject>Aca1</subject><subject>Aca2</subject><subject>anti-CRISPR</subject><subject>anti-CRISPR-associated</subject><subject>Bacteriophages - chemistry</subject><subject>Bacteriophages - genetics</subject><subject>Bacteriophages - metabolism</subject><subject>Clustered Regularly Interspaced Short Palindromic Repeats</subject><subject>Models, Molecular</subject><subject>Operon</subject><subject>Pectobacterium carotovorum - genetics</subject><subject>Pectobacterium carotovorum - metabolism</subject><subject>Pectobacterium carotovorum - virology</subject><subject>Protein Conformation</subject><subject>Protein Multimerization</subject><subject>protein–DNA complex</subject><subject>Pseudomonas aeruginosa - genetics</subject><subject>Pseudomonas aeruginosa - metabolism</subject><subject>Pseudomonas aeruginosa - virology</subject><subject>Pseudomonas Phages - chemistry</subject><subject>Pseudomonas Phages - genetics</subject><subject>Pseudomonas Phages - metabolism</subject><subject>Viral Proteins - chemistry</subject><subject>Viral Proteins - genetics</subject><subject>Viral Proteins - metabolism</subject><subject>X-ray crystallography</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9Ud9rFDEQDqLY8_QP8EX20Zc9Z5LNXhZBKIfaQkFpFXwLSXZWc9xt1iRb6H9vlmuLvpiXZPh-zGQ-xl4jbBCwfbff7K3bcOC41EJun7AVghK1kPjjKVtBQeqOS3XGXqS0h3KaDp-zM9FsZavUdsX0TY6zy3M0h8qa5FM1hFiZMft6d3158_W6ijRFSsmHsTpS702mvrJ3hewyRV9kYaJYwCmGTH5M1bkzWBz65cFfsmeDOSR6dX-v2fdPH7_tLuqrL58vd-dXtWsk5toJtMq2YAbeIKK0CiRvOtkSDbIDIZTowXLXAjjgnSNyqKwwnIQYFAxizT6cfKfZljEdjbl8SU_RH02808F4_S8y-l_6Z7jVqhUCSoM1e3tvEMPvmVLWR58cHQ5mpDAnzWXXAnJoFyqeqC6GlCINj20Q9BKM3usSjF6C0adgiubN3_M9Kh6SKIT3JwKVLd16ijo5T6MrK4_ksu6D_4_9H7jDnlY</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Liu, Yanhong</creator><creator>Zhang, Linsheng</creator><creator>Guo, Maochao</creator><creator>Chen, Liu</creator><creator>Wu, Baixing</creator><creator>Huang, Hongda</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7484-6939</orcidid><orcidid>https://orcid.org/0000-0002-3595-0554</orcidid></search><sort><creationdate>20211201</creationdate><title>Structural basis for anti-CRISPR repression mediated by bacterial operon proteins Aca1 and Aca2</title><author>Liu, Yanhong ; Zhang, Linsheng ; Guo, Maochao ; Chen, Liu ; Wu, Baixing ; Huang, Hongda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-c31b8b60af241115b80524956eef5903383d0b2c600c029ceec18b3a2e33f80f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aca1</topic><topic>Aca2</topic><topic>anti-CRISPR</topic><topic>anti-CRISPR-associated</topic><topic>Bacteriophages - chemistry</topic><topic>Bacteriophages - genetics</topic><topic>Bacteriophages - metabolism</topic><topic>Clustered Regularly Interspaced Short Palindromic Repeats</topic><topic>Models, Molecular</topic><topic>Operon</topic><topic>Pectobacterium carotovorum - genetics</topic><topic>Pectobacterium carotovorum - metabolism</topic><topic>Pectobacterium carotovorum - virology</topic><topic>Protein Conformation</topic><topic>Protein Multimerization</topic><topic>protein–DNA complex</topic><topic>Pseudomonas aeruginosa - genetics</topic><topic>Pseudomonas aeruginosa - metabolism</topic><topic>Pseudomonas aeruginosa - virology</topic><topic>Pseudomonas Phages - chemistry</topic><topic>Pseudomonas Phages - genetics</topic><topic>Pseudomonas Phages - metabolism</topic><topic>Viral Proteins - chemistry</topic><topic>Viral Proteins - genetics</topic><topic>Viral Proteins - metabolism</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yanhong</creatorcontrib><creatorcontrib>Zhang, Linsheng</creatorcontrib><creatorcontrib>Guo, Maochao</creatorcontrib><creatorcontrib>Chen, Liu</creatorcontrib><creatorcontrib>Wu, Baixing</creatorcontrib><creatorcontrib>Huang, Hongda</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yanhong</au><au>Zhang, Linsheng</au><au>Guo, Maochao</au><au>Chen, Liu</au><au>Wu, Baixing</au><au>Huang, Hongda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for anti-CRISPR repression mediated by bacterial operon proteins Aca1 and Aca2</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>297</volume><issue>6</issue><spage>101357</spage><epage>101357</epage><pages>101357-101357</pages><artnum>101357</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>It has been shown that phages have evolved anti-CRISPR (Acr) proteins to inhibit host CRISPR-Cas systems. Most acr genes are located upstream of anti-CRISPR-associated (aca) genes, which is instrumental for identifying these acr genes. Thus far, eight Aca families (Aca1–Aca8) have been identified, all proteins of which share low sequence homology and bind to different target DNA sequences. Recently, Aca1 and Aca2 proteins were discovered to function as repressors by binding to acr-aca promoters, thus implying a potential anti-anti-CRISPR mechanism. However, the structural basis for the repression roles of Aca proteins is still unknown. Here, we elucidated apo-structures of Aca1 and Aca2 proteins and their complex structures with their cognate operator DNA in two model systems, the Pseudomonas phage JBD30 and the Pectobacterium carotovorum template phage ZF40. In combination with biochemical and cellular assays, our study unveils dimerization and DNA-recognition mechanisms of Aca1 and Aca2 family proteins, thus revealing the molecular basis for Aca1-and Aca2-mediated anti-CRISPR repression. Our results also shed light on understanding the repression roles of other Aca family proteins and autoregulation roles of acr-aca operons.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34756887</pmid><doi>10.1016/j.jbc.2021.101357</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7484-6939</orcidid><orcidid>https://orcid.org/0000-0002-3595-0554</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2021-12, Vol.297 (6), p.101357-101357, Article 101357 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8633003 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Aca1 Aca2 anti-CRISPR anti-CRISPR-associated Bacteriophages - chemistry Bacteriophages - genetics Bacteriophages - metabolism Clustered Regularly Interspaced Short Palindromic Repeats Models, Molecular Operon Pectobacterium carotovorum - genetics Pectobacterium carotovorum - metabolism Pectobacterium carotovorum - virology Protein Conformation Protein Multimerization protein–DNA complex Pseudomonas aeruginosa - genetics Pseudomonas aeruginosa - metabolism Pseudomonas aeruginosa - virology Pseudomonas Phages - chemistry Pseudomonas Phages - genetics Pseudomonas Phages - metabolism Viral Proteins - chemistry Viral Proteins - genetics Viral Proteins - metabolism X-ray crystallography |
title | Structural basis for anti-CRISPR repression mediated by bacterial operon proteins Aca1 and Aca2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A10%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20anti-CRISPR%20repression%20mediated%20by%20bacterial%20operon%20proteins%20Aca1%20and%20Aca2&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Liu,%20Yanhong&rft.date=2021-12-01&rft.volume=297&rft.issue=6&rft.spage=101357&rft.epage=101357&rft.pages=101357-101357&rft.artnum=101357&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2021.101357&rft_dat=%3Cproquest_pubme%3E2596012063%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596012063&rft_id=info:pmid/34756887&rft_els_id=S0021925821011637&rfr_iscdi=true |