Structural basis for anti-CRISPR repression mediated by bacterial operon proteins Aca1 and Aca2

It has been shown that phages have evolved anti-CRISPR (Acr) proteins to inhibit host CRISPR-Cas systems. Most acr genes are located upstream of anti-CRISPR-associated (aca) genes, which is instrumental for identifying these acr genes. Thus far, eight Aca families (Aca1–Aca8) have been identified, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2021-12, Vol.297 (6), p.101357-101357, Article 101357
Hauptverfasser: Liu, Yanhong, Zhang, Linsheng, Guo, Maochao, Chen, Liu, Wu, Baixing, Huang, Hongda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101357
container_issue 6
container_start_page 101357
container_title The Journal of biological chemistry
container_volume 297
creator Liu, Yanhong
Zhang, Linsheng
Guo, Maochao
Chen, Liu
Wu, Baixing
Huang, Hongda
description It has been shown that phages have evolved anti-CRISPR (Acr) proteins to inhibit host CRISPR-Cas systems. Most acr genes are located upstream of anti-CRISPR-associated (aca) genes, which is instrumental for identifying these acr genes. Thus far, eight Aca families (Aca1–Aca8) have been identified, all proteins of which share low sequence homology and bind to different target DNA sequences. Recently, Aca1 and Aca2 proteins were discovered to function as repressors by binding to acr-aca promoters, thus implying a potential anti-anti-CRISPR mechanism. However, the structural basis for the repression roles of Aca proteins is still unknown. Here, we elucidated apo-structures of Aca1 and Aca2 proteins and their complex structures with their cognate operator DNA in two model systems, the Pseudomonas phage JBD30 and the Pectobacterium carotovorum template phage ZF40. In combination with biochemical and cellular assays, our study unveils dimerization and DNA-recognition mechanisms of Aca1 and Aca2 family proteins, thus revealing the molecular basis for Aca1-and Aca2-mediated anti-CRISPR repression. Our results also shed light on understanding the repression roles of other Aca family proteins and autoregulation roles of acr-aca operons.
doi_str_mv 10.1016/j.jbc.2021.101357
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8633003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925821011637</els_id><sourcerecordid>2596012063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-c31b8b60af241115b80524956eef5903383d0b2c600c029ceec18b3a2e33f80f3</originalsourceid><addsrcrecordid>eNp9Ud9rFDEQDqLY8_QP8EX20Zc9Z5LNXhZBKIfaQkFpFXwLSXZWc9xt1iRb6H9vlmuLvpiXZPh-zGQ-xl4jbBCwfbff7K3bcOC41EJun7AVghK1kPjjKVtBQeqOS3XGXqS0h3KaDp-zM9FsZavUdsX0TY6zy3M0h8qa5FM1hFiZMft6d3158_W6ijRFSsmHsTpS702mvrJ3hewyRV9kYaJYwCmGTH5M1bkzWBz65cFfsmeDOSR6dX-v2fdPH7_tLuqrL58vd-dXtWsk5toJtMq2YAbeIKK0CiRvOtkSDbIDIZTowXLXAjjgnSNyqKwwnIQYFAxizT6cfKfZljEdjbl8SU_RH02808F4_S8y-l_6Z7jVqhUCSoM1e3tvEMPvmVLWR58cHQ5mpDAnzWXXAnJoFyqeqC6GlCINj20Q9BKM3usSjF6C0adgiubN3_M9Kh6SKIT3JwKVLd16ijo5T6MrK4_ksu6D_4_9H7jDnlY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596012063</pqid></control><display><type>article</type><title>Structural basis for anti-CRISPR repression mediated by bacterial operon proteins Aca1 and Aca2</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Liu, Yanhong ; Zhang, Linsheng ; Guo, Maochao ; Chen, Liu ; Wu, Baixing ; Huang, Hongda</creator><creatorcontrib>Liu, Yanhong ; Zhang, Linsheng ; Guo, Maochao ; Chen, Liu ; Wu, Baixing ; Huang, Hongda</creatorcontrib><description>It has been shown that phages have evolved anti-CRISPR (Acr) proteins to inhibit host CRISPR-Cas systems. Most acr genes are located upstream of anti-CRISPR-associated (aca) genes, which is instrumental for identifying these acr genes. Thus far, eight Aca families (Aca1–Aca8) have been identified, all proteins of which share low sequence homology and bind to different target DNA sequences. Recently, Aca1 and Aca2 proteins were discovered to function as repressors by binding to acr-aca promoters, thus implying a potential anti-anti-CRISPR mechanism. However, the structural basis for the repression roles of Aca proteins is still unknown. Here, we elucidated apo-structures of Aca1 and Aca2 proteins and their complex structures with their cognate operator DNA in two model systems, the Pseudomonas phage JBD30 and the Pectobacterium carotovorum template phage ZF40. In combination with biochemical and cellular assays, our study unveils dimerization and DNA-recognition mechanisms of Aca1 and Aca2 family proteins, thus revealing the molecular basis for Aca1-and Aca2-mediated anti-CRISPR repression. Our results also shed light on understanding the repression roles of other Aca family proteins and autoregulation roles of acr-aca operons.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2021.101357</identifier><identifier>PMID: 34756887</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aca1 ; Aca2 ; anti-CRISPR ; anti-CRISPR-associated ; Bacteriophages - chemistry ; Bacteriophages - genetics ; Bacteriophages - metabolism ; Clustered Regularly Interspaced Short Palindromic Repeats ; Models, Molecular ; Operon ; Pectobacterium carotovorum - genetics ; Pectobacterium carotovorum - metabolism ; Pectobacterium carotovorum - virology ; Protein Conformation ; Protein Multimerization ; protein–DNA complex ; Pseudomonas aeruginosa - genetics ; Pseudomonas aeruginosa - metabolism ; Pseudomonas aeruginosa - virology ; Pseudomonas Phages - chemistry ; Pseudomonas Phages - genetics ; Pseudomonas Phages - metabolism ; Viral Proteins - chemistry ; Viral Proteins - genetics ; Viral Proteins - metabolism ; X-ray crystallography</subject><ispartof>The Journal of biological chemistry, 2021-12, Vol.297 (6), p.101357-101357, Article 101357</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2021 The Authors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-c31b8b60af241115b80524956eef5903383d0b2c600c029ceec18b3a2e33f80f3</citedby><cites>FETCH-LOGICAL-c451t-c31b8b60af241115b80524956eef5903383d0b2c600c029ceec18b3a2e33f80f3</cites><orcidid>0000-0001-7484-6939 ; 0000-0002-3595-0554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633003/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633003/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34756887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yanhong</creatorcontrib><creatorcontrib>Zhang, Linsheng</creatorcontrib><creatorcontrib>Guo, Maochao</creatorcontrib><creatorcontrib>Chen, Liu</creatorcontrib><creatorcontrib>Wu, Baixing</creatorcontrib><creatorcontrib>Huang, Hongda</creatorcontrib><title>Structural basis for anti-CRISPR repression mediated by bacterial operon proteins Aca1 and Aca2</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>It has been shown that phages have evolved anti-CRISPR (Acr) proteins to inhibit host CRISPR-Cas systems. Most acr genes are located upstream of anti-CRISPR-associated (aca) genes, which is instrumental for identifying these acr genes. Thus far, eight Aca families (Aca1–Aca8) have been identified, all proteins of which share low sequence homology and bind to different target DNA sequences. Recently, Aca1 and Aca2 proteins were discovered to function as repressors by binding to acr-aca promoters, thus implying a potential anti-anti-CRISPR mechanism. However, the structural basis for the repression roles of Aca proteins is still unknown. Here, we elucidated apo-structures of Aca1 and Aca2 proteins and their complex structures with their cognate operator DNA in two model systems, the Pseudomonas phage JBD30 and the Pectobacterium carotovorum template phage ZF40. In combination with biochemical and cellular assays, our study unveils dimerization and DNA-recognition mechanisms of Aca1 and Aca2 family proteins, thus revealing the molecular basis for Aca1-and Aca2-mediated anti-CRISPR repression. Our results also shed light on understanding the repression roles of other Aca family proteins and autoregulation roles of acr-aca operons.</description><subject>Aca1</subject><subject>Aca2</subject><subject>anti-CRISPR</subject><subject>anti-CRISPR-associated</subject><subject>Bacteriophages - chemistry</subject><subject>Bacteriophages - genetics</subject><subject>Bacteriophages - metabolism</subject><subject>Clustered Regularly Interspaced Short Palindromic Repeats</subject><subject>Models, Molecular</subject><subject>Operon</subject><subject>Pectobacterium carotovorum - genetics</subject><subject>Pectobacterium carotovorum - metabolism</subject><subject>Pectobacterium carotovorum - virology</subject><subject>Protein Conformation</subject><subject>Protein Multimerization</subject><subject>protein–DNA complex</subject><subject>Pseudomonas aeruginosa - genetics</subject><subject>Pseudomonas aeruginosa - metabolism</subject><subject>Pseudomonas aeruginosa - virology</subject><subject>Pseudomonas Phages - chemistry</subject><subject>Pseudomonas Phages - genetics</subject><subject>Pseudomonas Phages - metabolism</subject><subject>Viral Proteins - chemistry</subject><subject>Viral Proteins - genetics</subject><subject>Viral Proteins - metabolism</subject><subject>X-ray crystallography</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9Ud9rFDEQDqLY8_QP8EX20Zc9Z5LNXhZBKIfaQkFpFXwLSXZWc9xt1iRb6H9vlmuLvpiXZPh-zGQ-xl4jbBCwfbff7K3bcOC41EJun7AVghK1kPjjKVtBQeqOS3XGXqS0h3KaDp-zM9FsZavUdsX0TY6zy3M0h8qa5FM1hFiZMft6d3158_W6ijRFSsmHsTpS702mvrJ3hewyRV9kYaJYwCmGTH5M1bkzWBz65cFfsmeDOSR6dX-v2fdPH7_tLuqrL58vd-dXtWsk5toJtMq2YAbeIKK0CiRvOtkSDbIDIZTowXLXAjjgnSNyqKwwnIQYFAxizT6cfKfZljEdjbl8SU_RH02808F4_S8y-l_6Z7jVqhUCSoM1e3tvEMPvmVLWR58cHQ5mpDAnzWXXAnJoFyqeqC6GlCINj20Q9BKM3usSjF6C0adgiubN3_M9Kh6SKIT3JwKVLd16ijo5T6MrK4_ksu6D_4_9H7jDnlY</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Liu, Yanhong</creator><creator>Zhang, Linsheng</creator><creator>Guo, Maochao</creator><creator>Chen, Liu</creator><creator>Wu, Baixing</creator><creator>Huang, Hongda</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7484-6939</orcidid><orcidid>https://orcid.org/0000-0002-3595-0554</orcidid></search><sort><creationdate>20211201</creationdate><title>Structural basis for anti-CRISPR repression mediated by bacterial operon proteins Aca1 and Aca2</title><author>Liu, Yanhong ; Zhang, Linsheng ; Guo, Maochao ; Chen, Liu ; Wu, Baixing ; Huang, Hongda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-c31b8b60af241115b80524956eef5903383d0b2c600c029ceec18b3a2e33f80f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aca1</topic><topic>Aca2</topic><topic>anti-CRISPR</topic><topic>anti-CRISPR-associated</topic><topic>Bacteriophages - chemistry</topic><topic>Bacteriophages - genetics</topic><topic>Bacteriophages - metabolism</topic><topic>Clustered Regularly Interspaced Short Palindromic Repeats</topic><topic>Models, Molecular</topic><topic>Operon</topic><topic>Pectobacterium carotovorum - genetics</topic><topic>Pectobacterium carotovorum - metabolism</topic><topic>Pectobacterium carotovorum - virology</topic><topic>Protein Conformation</topic><topic>Protein Multimerization</topic><topic>protein–DNA complex</topic><topic>Pseudomonas aeruginosa - genetics</topic><topic>Pseudomonas aeruginosa - metabolism</topic><topic>Pseudomonas aeruginosa - virology</topic><topic>Pseudomonas Phages - chemistry</topic><topic>Pseudomonas Phages - genetics</topic><topic>Pseudomonas Phages - metabolism</topic><topic>Viral Proteins - chemistry</topic><topic>Viral Proteins - genetics</topic><topic>Viral Proteins - metabolism</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yanhong</creatorcontrib><creatorcontrib>Zhang, Linsheng</creatorcontrib><creatorcontrib>Guo, Maochao</creatorcontrib><creatorcontrib>Chen, Liu</creatorcontrib><creatorcontrib>Wu, Baixing</creatorcontrib><creatorcontrib>Huang, Hongda</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yanhong</au><au>Zhang, Linsheng</au><au>Guo, Maochao</au><au>Chen, Liu</au><au>Wu, Baixing</au><au>Huang, Hongda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for anti-CRISPR repression mediated by bacterial operon proteins Aca1 and Aca2</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>297</volume><issue>6</issue><spage>101357</spage><epage>101357</epage><pages>101357-101357</pages><artnum>101357</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>It has been shown that phages have evolved anti-CRISPR (Acr) proteins to inhibit host CRISPR-Cas systems. Most acr genes are located upstream of anti-CRISPR-associated (aca) genes, which is instrumental for identifying these acr genes. Thus far, eight Aca families (Aca1–Aca8) have been identified, all proteins of which share low sequence homology and bind to different target DNA sequences. Recently, Aca1 and Aca2 proteins were discovered to function as repressors by binding to acr-aca promoters, thus implying a potential anti-anti-CRISPR mechanism. However, the structural basis for the repression roles of Aca proteins is still unknown. Here, we elucidated apo-structures of Aca1 and Aca2 proteins and their complex structures with their cognate operator DNA in two model systems, the Pseudomonas phage JBD30 and the Pectobacterium carotovorum template phage ZF40. In combination with biochemical and cellular assays, our study unveils dimerization and DNA-recognition mechanisms of Aca1 and Aca2 family proteins, thus revealing the molecular basis for Aca1-and Aca2-mediated anti-CRISPR repression. Our results also shed light on understanding the repression roles of other Aca family proteins and autoregulation roles of acr-aca operons.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34756887</pmid><doi>10.1016/j.jbc.2021.101357</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7484-6939</orcidid><orcidid>https://orcid.org/0000-0002-3595-0554</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2021-12, Vol.297 (6), p.101357-101357, Article 101357
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8633003
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Aca1
Aca2
anti-CRISPR
anti-CRISPR-associated
Bacteriophages - chemistry
Bacteriophages - genetics
Bacteriophages - metabolism
Clustered Regularly Interspaced Short Palindromic Repeats
Models, Molecular
Operon
Pectobacterium carotovorum - genetics
Pectobacterium carotovorum - metabolism
Pectobacterium carotovorum - virology
Protein Conformation
Protein Multimerization
protein–DNA complex
Pseudomonas aeruginosa - genetics
Pseudomonas aeruginosa - metabolism
Pseudomonas aeruginosa - virology
Pseudomonas Phages - chemistry
Pseudomonas Phages - genetics
Pseudomonas Phages - metabolism
Viral Proteins - chemistry
Viral Proteins - genetics
Viral Proteins - metabolism
X-ray crystallography
title Structural basis for anti-CRISPR repression mediated by bacterial operon proteins Aca1 and Aca2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A10%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20anti-CRISPR%20repression%20mediated%20by%20bacterial%20operon%20proteins%20Aca1%20and%20Aca2&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Liu,%20Yanhong&rft.date=2021-12-01&rft.volume=297&rft.issue=6&rft.spage=101357&rft.epage=101357&rft.pages=101357-101357&rft.artnum=101357&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2021.101357&rft_dat=%3Cproquest_pubme%3E2596012063%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596012063&rft_id=info:pmid/34756887&rft_els_id=S0021925821011637&rfr_iscdi=true