A Simple and Expeditious Route to Phosphate-Functionalized, Water-Processable Graphene for Capacitive Energy Storage

Phosphate-functionalized carbon-based nanomaterials have attracted significant attention in recent years owing to their outstanding behavior in electrochemical energy-storage devices. In this work, we report a simple approach to obtain phosphate-functionalized graphene (PFG) via anodic exfoliation o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-11, Vol.13 (46), p.54860-54873
Hauptverfasser: Ramírez-Soria, Edgar H, García-Dalí, Sergio, Munuera, Jose M, Carrasco, Daniel F, Villar-Rodil, Silvia, Tascón, Juan M. D, Paredes, Juan I, Bonilla-Cruz, José
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 54873
container_issue 46
container_start_page 54860
container_title ACS applied materials & interfaces
container_volume 13
creator Ramírez-Soria, Edgar H
García-Dalí, Sergio
Munuera, Jose M
Carrasco, Daniel F
Villar-Rodil, Silvia
Tascón, Juan M. D
Paredes, Juan I
Bonilla-Cruz, José
description Phosphate-functionalized carbon-based nanomaterials have attracted significant attention in recent years owing to their outstanding behavior in electrochemical energy-storage devices. In this work, we report a simple approach to obtain phosphate-functionalized graphene (PFG) via anodic exfoliation of graphite at room temperature with a high yield. The graphene nanosheets were obtained via anodic exfoliation of graphite foil using aqueous solutions of H3PO4 or Na3PO4 in the dual role of phosphate sources and electrolytes, and the underlying exfoliation/functionalization mechanisms are proposed. The effect of electrolyte concentration was studied, as low concentrations do not lead to a favorable graphite exfoliation and high concentrations produce fast graphite expansion but poor layer-by-layer delamination. The optimal concentrations are 0.25 M H3PO4 and 0.05 M Na3PO4, which also exhibited the highest phosphorus contents of 2.2 and 1.4 at. %, respectively. Furthermore, when PFG-acid at 0.25 M and PFG-salt at 0.05 M were tested as an electrode material for capacitive energy storage in a three-electrode cell, they achieved a competitive performance of ∼375 F/g (540 F/cm3) and 356 F/g (500 F/cm3), respectively. Finally, devices made up of symmetric electrode cells obtained using PFG-acid at 0.25 M possess energy and power densities up to 17.6 Wh·kg–1 (25.3 Wh·L–1) and 10,200 W/kg; meanwhile, PFG-salt at 0.05 M achieved values of 14.9 Wh·kg–1 (21.3 Wh·L–1) and 9400 W/kg, with 98 and 99% of capacitance retention after 10,000 cycles, respectively. The methodology proposed here also promotes a circular-synthesis process to successfully achieve a more sustainable and greener energy-storage device.
doi_str_mv 10.1021/acsami.1c12135
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8631702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596019166</sourcerecordid><originalsourceid>FETCH-LOGICAL-a425t-2630f270e4a6203e21eef173ce55b5b383ed9cb0a478cb26846e86efeca541873</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0Eoh9w5Yh8RIgs_k5yQapW24JUiYqCOFoTZ7KbKomD7VSUX1-jXVZw4GTL88wz1ryEvOJsxZng78FFGPsVd1xwqZ-QU14rVVRCi6fHu1In5CzGO8aMFEw_JydSlVowU5-SdEFv-3EekMLU0s3PGds-9X6J9ItfEtLk6c3Ox3kHCYvLZXK5OMHQ_8L2Hf2eH0NxE7zDGKHJkqsA8w4npJ0PdA0zuGy7R7qZMGwf6G3yAbb4gjzrYIj48nCek2-Xm6_rj8X156tP64vrApTQqRBGsk6UDBUYwSQKjtjxUjrUutGNrCS2tWsYqLJyjTCVMlgZ7NCBVrwq5Tn5sPfOSzNi63BKAQY7h36E8GA99PbfytTv7Nbf28pIXjKRBW8OguB_LBiTHfvocBhgwrwjK3RtGK-5MRld7VEXfIwBu-MYzuzvqOw-KnuIKje8_vtzR_xPNhl4uwdyo73zS8h7j_-zPQLANaD_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596019166</pqid></control><display><type>article</type><title>A Simple and Expeditious Route to Phosphate-Functionalized, Water-Processable Graphene for Capacitive Energy Storage</title><source>American Chemical Society Journals</source><creator>Ramírez-Soria, Edgar H ; García-Dalí, Sergio ; Munuera, Jose M ; Carrasco, Daniel F ; Villar-Rodil, Silvia ; Tascón, Juan M. D ; Paredes, Juan I ; Bonilla-Cruz, José</creator><creatorcontrib>Ramírez-Soria, Edgar H ; García-Dalí, Sergio ; Munuera, Jose M ; Carrasco, Daniel F ; Villar-Rodil, Silvia ; Tascón, Juan M. D ; Paredes, Juan I ; Bonilla-Cruz, José</creatorcontrib><description>Phosphate-functionalized carbon-based nanomaterials have attracted significant attention in recent years owing to their outstanding behavior in electrochemical energy-storage devices. In this work, we report a simple approach to obtain phosphate-functionalized graphene (PFG) via anodic exfoliation of graphite at room temperature with a high yield. The graphene nanosheets were obtained via anodic exfoliation of graphite foil using aqueous solutions of H3PO4 or Na3PO4 in the dual role of phosphate sources and electrolytes, and the underlying exfoliation/functionalization mechanisms are proposed. The effect of electrolyte concentration was studied, as low concentrations do not lead to a favorable graphite exfoliation and high concentrations produce fast graphite expansion but poor layer-by-layer delamination. The optimal concentrations are 0.25 M H3PO4 and 0.05 M Na3PO4, which also exhibited the highest phosphorus contents of 2.2 and 1.4 at. %, respectively. Furthermore, when PFG-acid at 0.25 M and PFG-salt at 0.05 M were tested as an electrode material for capacitive energy storage in a three-electrode cell, they achieved a competitive performance of ∼375 F/g (540 F/cm3) and 356 F/g (500 F/cm3), respectively. Finally, devices made up of symmetric electrode cells obtained using PFG-acid at 0.25 M possess energy and power densities up to 17.6 Wh·kg–1 (25.3 Wh·L–1) and 10,200 W/kg; meanwhile, PFG-salt at 0.05 M achieved values of 14.9 Wh·kg–1 (21.3 Wh·L–1) and 9400 W/kg, with 98 and 99% of capacitance retention after 10,000 cycles, respectively. The methodology proposed here also promotes a circular-synthesis process to successfully achieve a more sustainable and greener energy-storage device.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c12135</identifier><identifier>PMID: 34752069</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2021-11, Vol.13 (46), p.54860-54873</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><rights>2021 The Authors. Published by American Chemical Society 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a425t-2630f270e4a6203e21eef173ce55b5b383ed9cb0a478cb26846e86efeca541873</citedby><cites>FETCH-LOGICAL-a425t-2630f270e4a6203e21eef173ce55b5b383ed9cb0a478cb26846e86efeca541873</cites><orcidid>0000-0002-0044-9153 ; 0000-0001-8575-5637 ; 0000-0002-5832-9971 ; 0000-0003-3605-0918 ; 0000-0002-8176-4795 ; 0000-0002-0042-0430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c12135$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c12135$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34752069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramírez-Soria, Edgar H</creatorcontrib><creatorcontrib>García-Dalí, Sergio</creatorcontrib><creatorcontrib>Munuera, Jose M</creatorcontrib><creatorcontrib>Carrasco, Daniel F</creatorcontrib><creatorcontrib>Villar-Rodil, Silvia</creatorcontrib><creatorcontrib>Tascón, Juan M. D</creatorcontrib><creatorcontrib>Paredes, Juan I</creatorcontrib><creatorcontrib>Bonilla-Cruz, José</creatorcontrib><title>A Simple and Expeditious Route to Phosphate-Functionalized, Water-Processable Graphene for Capacitive Energy Storage</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Phosphate-functionalized carbon-based nanomaterials have attracted significant attention in recent years owing to their outstanding behavior in electrochemical energy-storage devices. In this work, we report a simple approach to obtain phosphate-functionalized graphene (PFG) via anodic exfoliation of graphite at room temperature with a high yield. The graphene nanosheets were obtained via anodic exfoliation of graphite foil using aqueous solutions of H3PO4 or Na3PO4 in the dual role of phosphate sources and electrolytes, and the underlying exfoliation/functionalization mechanisms are proposed. The effect of electrolyte concentration was studied, as low concentrations do not lead to a favorable graphite exfoliation and high concentrations produce fast graphite expansion but poor layer-by-layer delamination. The optimal concentrations are 0.25 M H3PO4 and 0.05 M Na3PO4, which also exhibited the highest phosphorus contents of 2.2 and 1.4 at. %, respectively. Furthermore, when PFG-acid at 0.25 M and PFG-salt at 0.05 M were tested as an electrode material for capacitive energy storage in a three-electrode cell, they achieved a competitive performance of ∼375 F/g (540 F/cm3) and 356 F/g (500 F/cm3), respectively. Finally, devices made up of symmetric electrode cells obtained using PFG-acid at 0.25 M possess energy and power densities up to 17.6 Wh·kg–1 (25.3 Wh·L–1) and 10,200 W/kg; meanwhile, PFG-salt at 0.05 M achieved values of 14.9 Wh·kg–1 (21.3 Wh·L–1) and 9400 W/kg, with 98 and 99% of capacitance retention after 10,000 cycles, respectively. The methodology proposed here also promotes a circular-synthesis process to successfully achieve a more sustainable and greener energy-storage device.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kU1v1DAQhi0Eoh9w5Yh8RIgs_k5yQapW24JUiYqCOFoTZ7KbKomD7VSUX1-jXVZw4GTL88wz1ryEvOJsxZng78FFGPsVd1xwqZ-QU14rVVRCi6fHu1In5CzGO8aMFEw_JydSlVowU5-SdEFv-3EekMLU0s3PGds-9X6J9ItfEtLk6c3Ox3kHCYvLZXK5OMHQ_8L2Hf2eH0NxE7zDGKHJkqsA8w4npJ0PdA0zuGy7R7qZMGwf6G3yAbb4gjzrYIj48nCek2-Xm6_rj8X156tP64vrApTQqRBGsk6UDBUYwSQKjtjxUjrUutGNrCS2tWsYqLJyjTCVMlgZ7NCBVrwq5Tn5sPfOSzNi63BKAQY7h36E8GA99PbfytTv7Nbf28pIXjKRBW8OguB_LBiTHfvocBhgwrwjK3RtGK-5MRld7VEXfIwBu-MYzuzvqOw-KnuIKje8_vtzR_xPNhl4uwdyo73zS8h7j_-zPQLANaD_</recordid><startdate>20211124</startdate><enddate>20211124</enddate><creator>Ramírez-Soria, Edgar H</creator><creator>García-Dalí, Sergio</creator><creator>Munuera, Jose M</creator><creator>Carrasco, Daniel F</creator><creator>Villar-Rodil, Silvia</creator><creator>Tascón, Juan M. D</creator><creator>Paredes, Juan I</creator><creator>Bonilla-Cruz, José</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0044-9153</orcidid><orcidid>https://orcid.org/0000-0001-8575-5637</orcidid><orcidid>https://orcid.org/0000-0002-5832-9971</orcidid><orcidid>https://orcid.org/0000-0003-3605-0918</orcidid><orcidid>https://orcid.org/0000-0002-8176-4795</orcidid><orcidid>https://orcid.org/0000-0002-0042-0430</orcidid></search><sort><creationdate>20211124</creationdate><title>A Simple and Expeditious Route to Phosphate-Functionalized, Water-Processable Graphene for Capacitive Energy Storage</title><author>Ramírez-Soria, Edgar H ; García-Dalí, Sergio ; Munuera, Jose M ; Carrasco, Daniel F ; Villar-Rodil, Silvia ; Tascón, Juan M. D ; Paredes, Juan I ; Bonilla-Cruz, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a425t-2630f270e4a6203e21eef173ce55b5b383ed9cb0a478cb26846e86efeca541873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramírez-Soria, Edgar H</creatorcontrib><creatorcontrib>García-Dalí, Sergio</creatorcontrib><creatorcontrib>Munuera, Jose M</creatorcontrib><creatorcontrib>Carrasco, Daniel F</creatorcontrib><creatorcontrib>Villar-Rodil, Silvia</creatorcontrib><creatorcontrib>Tascón, Juan M. D</creatorcontrib><creatorcontrib>Paredes, Juan I</creatorcontrib><creatorcontrib>Bonilla-Cruz, José</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramírez-Soria, Edgar H</au><au>García-Dalí, Sergio</au><au>Munuera, Jose M</au><au>Carrasco, Daniel F</au><au>Villar-Rodil, Silvia</au><au>Tascón, Juan M. D</au><au>Paredes, Juan I</au><au>Bonilla-Cruz, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Simple and Expeditious Route to Phosphate-Functionalized, Water-Processable Graphene for Capacitive Energy Storage</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-11-24</date><risdate>2021</risdate><volume>13</volume><issue>46</issue><spage>54860</spage><epage>54873</epage><pages>54860-54873</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Phosphate-functionalized carbon-based nanomaterials have attracted significant attention in recent years owing to their outstanding behavior in electrochemical energy-storage devices. In this work, we report a simple approach to obtain phosphate-functionalized graphene (PFG) via anodic exfoliation of graphite at room temperature with a high yield. The graphene nanosheets were obtained via anodic exfoliation of graphite foil using aqueous solutions of H3PO4 or Na3PO4 in the dual role of phosphate sources and electrolytes, and the underlying exfoliation/functionalization mechanisms are proposed. The effect of electrolyte concentration was studied, as low concentrations do not lead to a favorable graphite exfoliation and high concentrations produce fast graphite expansion but poor layer-by-layer delamination. The optimal concentrations are 0.25 M H3PO4 and 0.05 M Na3PO4, which also exhibited the highest phosphorus contents of 2.2 and 1.4 at. %, respectively. Furthermore, when PFG-acid at 0.25 M and PFG-salt at 0.05 M were tested as an electrode material for capacitive energy storage in a three-electrode cell, they achieved a competitive performance of ∼375 F/g (540 F/cm3) and 356 F/g (500 F/cm3), respectively. Finally, devices made up of symmetric electrode cells obtained using PFG-acid at 0.25 M possess energy and power densities up to 17.6 Wh·kg–1 (25.3 Wh·L–1) and 10,200 W/kg; meanwhile, PFG-salt at 0.05 M achieved values of 14.9 Wh·kg–1 (21.3 Wh·L–1) and 9400 W/kg, with 98 and 99% of capacitance retention after 10,000 cycles, respectively. The methodology proposed here also promotes a circular-synthesis process to successfully achieve a more sustainable and greener energy-storage device.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34752069</pmid><doi>10.1021/acsami.1c12135</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0044-9153</orcidid><orcidid>https://orcid.org/0000-0001-8575-5637</orcidid><orcidid>https://orcid.org/0000-0002-5832-9971</orcidid><orcidid>https://orcid.org/0000-0003-3605-0918</orcidid><orcidid>https://orcid.org/0000-0002-8176-4795</orcidid><orcidid>https://orcid.org/0000-0002-0042-0430</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-11, Vol.13 (46), p.54860-54873
issn 1944-8244
1944-8252
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8631702
source American Chemical Society Journals
subjects Energy, Environmental, and Catalysis Applications
title A Simple and Expeditious Route to Phosphate-Functionalized, Water-Processable Graphene for Capacitive Energy Storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A09%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple%20and%20Expeditious%20Route%20to%20Phosphate-Functionalized,%20Water-Processable%20Graphene%20for%20Capacitive%20Energy%20Storage&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Rami%CC%81rez-Soria,%20Edgar%20H&rft.date=2021-11-24&rft.volume=13&rft.issue=46&rft.spage=54860&rft.epage=54873&rft.pages=54860-54873&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c12135&rft_dat=%3Cproquest_pubme%3E2596019166%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596019166&rft_id=info:pmid/34752069&rfr_iscdi=true