An extensive evaluation of codon usage pattern and bias of structural proteins p30, p54 and, p72 of the African swine fever virus (ASFV)
African swine fever virus (ASFV) belongs to the family of Asfarviridae to the genus Asfivirus. ASF virus causes hemorrhage illness with a high mortality rate and hence, commercial loss in the swine community. The ASFV has been categorized by variation in codon usage that is caused by high mutation r...
Gespeichert in:
Veröffentlicht in: | VirusDisease 2021-12, Vol.32 (4), p.810-822 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | African swine fever virus (ASFV) belongs to the family of
Asfarviridae
to the genus
Asfivirus.
ASF virus causes hemorrhage illness with a high mortality rate and hence, commercial loss in the swine community. The ASFV has been categorized by variation in codon usage that is caused by high mutation rates and natural selection. The evolution is caused mainly due to the mutation pressure and regulating the protein gene expression. Based on publicly accessible nucleotide sequences of the ASFV and its host (pig & tick), codon usage bias analysis was performed since an approved effective vaccination is not available to date, it is very important to analyze the codon usage bias of the
p30
,
p54
, and
p72
proteins of ASFV to produce an effective and efficient vaccine to control the disease. Even though the codon usage bias analyses have been evaluated earlier, the evaluation of the codon usage pattern specific to
p30, p54, and p72
of ASFV is inadequate. In all the protein-coding sequences, nucleotide base and codons terminating with base T were most frequent and the mean effective number of codons (Nc) was high, indicating the presence of codon usage bias. The GC contents and dinucleotide frequencies also indicated the codon usage bias of the ASFV pig and tick. The Nc plot, parity plot, neutrality plot analysis, revealed natural selection, as well as mutation pressure, were the major constraints in altering the codon bias of ASF virus. codon usage bias analysis was performed with no substantial differences in codon usage of the ASFV in pig and tick. |
---|---|
ISSN: | 2347-3584 2347-3517 |
DOI: | 10.1007/s13337-021-00719-x |