A Novel Predictive Nomogram including Serum Lipoprotein a Level for Nonsentinel Lymph Node Metastases in Chinese Breast Cancer Patients with Positive Sentinel Lymph Node Metastases

Background. We developed a new nomogram combining serum biomarkers with clinicopathological features to improve the accuracy of prediction of nonsentinel lymph node (SLN) metastases in Chinese breast cancer patients. Methods. We enrolled 209 patients with breast cancer who underwent SLN biopsy and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Disease markers 2021, Vol.2021, p.7879508-10
Hauptverfasser: Fang, Zeng, Wang, Ruizhi, Yang, Ciqiu, Wang, Dong, Chen, Wanna, Lin, Bo, Gong, Dongsheng, Li, Songqi, Liang, Jiadong, Liang, Xiaoli, Zeng, Chunxian, Li, Jie, Wang, Kun, Lv, Weiming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 7879508
container_title Disease markers
container_volume 2021
creator Fang, Zeng
Wang, Ruizhi
Yang, Ciqiu
Wang, Dong
Chen, Wanna
Lin, Bo
Gong, Dongsheng
Li, Songqi
Liang, Jiadong
Liang, Xiaoli
Zeng, Chunxian
Li, Jie
Wang, Kun
Lv, Weiming
description Background. We developed a new nomogram combining serum biomarkers with clinicopathological features to improve the accuracy of prediction of nonsentinel lymph node (SLN) metastases in Chinese breast cancer patients. Methods. We enrolled 209 patients with breast cancer who underwent SLN biopsy and axillary lymph node dissection. We evaluated the relationships between non-SLN metastases and clinicopathologic features, as well as preoperative routine tests of blood indexes, tumor markers, and serum lipids, including lipoprotein a (Lp(a)). Risk factors for non-SLN metastases were identified by logistic regression analysis. The nomogram was created using the R program to predict the risk of non-SLN metastases in the training set. Receiver operating characteristic (ROC) analysis was applied to assess the predictive value of the nomogram model in the validation set. Results. Lp(a) was significantly associated with non-SLN metastasis status. Compared with the MSKCC model, the predictive ability of our new nomogram that combined Lp(a) level and clinical variables (pathologic tumor size, lymphovascular invasion, multifocality, and positive/negative SLN numbers) was significantly greater (AUC: 0.732, 95% CI: 0.643–0.821) (C-index: 0.703, 95% CI: 0.656–0.791) in the training cohorts and also performed well in the validation cohorts (C-index: 0.773, 95% CI: 0.681–0.865). Moreover, the new nomogram with Lp(a) improved the accuracy (12.10%) of identification of patients with non-SLN metastases (NRI: 0.121; 95% CI: 0.081–0.202; P=0.011). Conclusions. This novel nomogram based on preoperative serum indexes combined with clinicopathologic features facilitates accurate prediction of risk of non-SLN metastases in Chinese patients with breast cancer.
doi_str_mv 10.1155/2021/7879508
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8629655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2606654107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-ec90df876572e30787a28736e3359d3b0c55b39ec600069b9c0a7343b39692053</originalsourceid><addsrcrecordid>eNp9kk2LFDEQhoMo7rh68ywBL4K2m046XxdhHdYPaHVg9Rwy6ZqZLN2dNumeZf_X_kDTzrioh4VAyFtPvVSlCqHnJXlblpyfUULLM6mk5kQ9QItSSV4owchDtCBUqoLQipygJyldEVJSXenH6IRVijNB2QLdnuOvYQ8tXkVovBv9HrLQhW20Hfa9a6fG91t8CXHqcO2HMMQwgu-xxTXMeZsQc0KfoB99n9_1TTfsstIA_gKjTflAyk54ucvxBPh9hKzipe0dRLyyo8-pCV_7cYdXIfnfJVzea_cUPdrYNsGz432Kfny4-L78VNTfPn5enteFqyo1FuA0aTZKCi4pMJL_yFIlmQDGuG7YmjjO10yDE4QQodfaEStZxbImNCWcnaJ3B99hWnfQuFxUtK0Zou9svDHBevNvpPc7sw17owTVgs8Gr44GMfycII2m88lB29oewpQMFYRzLVVZZfTlf-hVmGKf25spIXhVEpmpNwfKxZBShM1dMSUx8zqYeR3McR0y_uLvBu7gP_PPwOsDkIfT2Gt_v90vGAK_Ow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2606654107</pqid></control><display><type>article</type><title>A Novel Predictive Nomogram including Serum Lipoprotein a Level for Nonsentinel Lymph Node Metastases in Chinese Breast Cancer Patients with Positive Sentinel Lymph Node Metastases</title><source>MEDLINE</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Fang, Zeng ; Wang, Ruizhi ; Yang, Ciqiu ; Wang, Dong ; Chen, Wanna ; Lin, Bo ; Gong, Dongsheng ; Li, Songqi ; Liang, Jiadong ; Liang, Xiaoli ; Zeng, Chunxian ; Li, Jie ; Wang, Kun ; Lv, Weiming</creator><contributor>Shao, Yi ; Yi Shao</contributor><creatorcontrib>Fang, Zeng ; Wang, Ruizhi ; Yang, Ciqiu ; Wang, Dong ; Chen, Wanna ; Lin, Bo ; Gong, Dongsheng ; Li, Songqi ; Liang, Jiadong ; Liang, Xiaoli ; Zeng, Chunxian ; Li, Jie ; Wang, Kun ; Lv, Weiming ; Shao, Yi ; Yi Shao</creatorcontrib><description>Background. We developed a new nomogram combining serum biomarkers with clinicopathological features to improve the accuracy of prediction of nonsentinel lymph node (SLN) metastases in Chinese breast cancer patients. Methods. We enrolled 209 patients with breast cancer who underwent SLN biopsy and axillary lymph node dissection. We evaluated the relationships between non-SLN metastases and clinicopathologic features, as well as preoperative routine tests of blood indexes, tumor markers, and serum lipids, including lipoprotein a (Lp(a)). Risk factors for non-SLN metastases were identified by logistic regression analysis. The nomogram was created using the R program to predict the risk of non-SLN metastases in the training set. Receiver operating characteristic (ROC) analysis was applied to assess the predictive value of the nomogram model in the validation set. Results. Lp(a) was significantly associated with non-SLN metastasis status. Compared with the MSKCC model, the predictive ability of our new nomogram that combined Lp(a) level and clinical variables (pathologic tumor size, lymphovascular invasion, multifocality, and positive/negative SLN numbers) was significantly greater (AUC: 0.732, 95% CI: 0.643–0.821) (C-index: 0.703, 95% CI: 0.656–0.791) in the training cohorts and also performed well in the validation cohorts (C-index: 0.773, 95% CI: 0.681–0.865). Moreover, the new nomogram with Lp(a) improved the accuracy (12.10%) of identification of patients with non-SLN metastases (NRI: 0.121; 95% CI: 0.081–0.202; P=0.011). Conclusions. This novel nomogram based on preoperative serum indexes combined with clinicopathologic features facilitates accurate prediction of risk of non-SLN metastases in Chinese patients with breast cancer.</description><identifier>ISSN: 0278-0240</identifier><identifier>EISSN: 1875-8630</identifier><identifier>DOI: 10.1155/2021/7879508</identifier><identifier>PMID: 34853623</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Accuracy ; Antigens ; Apolipoproteins ; Biomarkers ; Biomarkers, Tumor - blood ; Biopsy ; Blood ; Breast cancer ; Breast Neoplasms - blood ; Breast Neoplasms - pathology ; Breast Neoplasms - surgery ; China ; Cholesterol ; Estrogens ; Female ; Follow-Up Studies ; High density lipoprotein ; Humans ; Lipids ; Lipoprotein(a) - blood ; Lipoproteins ; Lymph Node Excision ; Lymph nodes ; Lymph Nodes - metabolism ; Lymph Nodes - pathology ; Lymph Nodes - surgery ; Lymphatic Metastasis - pathology ; Lymphatic system ; Lymphocytes ; Metastases ; Metastasis ; Middle Aged ; Multivariate analysis ; Neutrophils ; Nomograms ; Patients ; Prognosis ; Regression analysis ; Retrospective Studies ; Risk analysis ; Risk factors ; ROC Curve ; Sentinel Lymph Node - metabolism ; Sentinel Lymph Node - pathology ; Sentinel Lymph Node - surgery ; Serum lipids ; Surgery ; Training ; Tumor markers ; Tumors</subject><ispartof>Disease markers, 2021, Vol.2021, p.7879508-10</ispartof><rights>Copyright © 2021 Zeng Fang et al.</rights><rights>Copyright © 2021 Zeng Fang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2021 Zeng Fang et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-ec90df876572e30787a28736e3359d3b0c55b39ec600069b9c0a7343b39692053</citedby><cites>FETCH-LOGICAL-c448t-ec90df876572e30787a28736e3359d3b0c55b39ec600069b9c0a7343b39692053</cites><orcidid>0000-0002-3077-8572 ; 0000-0002-7029-3916 ; 0000-0002-7488-1555 ; 0000-0002-9648-7866 ; 0000-0001-6566-0120 ; 0000-0002-1864-8601 ; 0000-0003-2970-1137 ; 0000-0003-1466-9875 ; 0000-0001-9796-3767 ; 0000-0002-9191-0063 ; 0000-0001-9014-7732 ; 0000-0003-3919-9304 ; 0000-0003-1232-3248 ; 0000-0001-9851-7080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8629655/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8629655/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4022,27922,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34853623$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Shao, Yi</contributor><contributor>Yi Shao</contributor><creatorcontrib>Fang, Zeng</creatorcontrib><creatorcontrib>Wang, Ruizhi</creatorcontrib><creatorcontrib>Yang, Ciqiu</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Chen, Wanna</creatorcontrib><creatorcontrib>Lin, Bo</creatorcontrib><creatorcontrib>Gong, Dongsheng</creatorcontrib><creatorcontrib>Li, Songqi</creatorcontrib><creatorcontrib>Liang, Jiadong</creatorcontrib><creatorcontrib>Liang, Xiaoli</creatorcontrib><creatorcontrib>Zeng, Chunxian</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Lv, Weiming</creatorcontrib><title>A Novel Predictive Nomogram including Serum Lipoprotein a Level for Nonsentinel Lymph Node Metastases in Chinese Breast Cancer Patients with Positive Sentinel Lymph Node Metastases</title><title>Disease markers</title><addtitle>Dis Markers</addtitle><description>Background. We developed a new nomogram combining serum biomarkers with clinicopathological features to improve the accuracy of prediction of nonsentinel lymph node (SLN) metastases in Chinese breast cancer patients. Methods. We enrolled 209 patients with breast cancer who underwent SLN biopsy and axillary lymph node dissection. We evaluated the relationships between non-SLN metastases and clinicopathologic features, as well as preoperative routine tests of blood indexes, tumor markers, and serum lipids, including lipoprotein a (Lp(a)). Risk factors for non-SLN metastases were identified by logistic regression analysis. The nomogram was created using the R program to predict the risk of non-SLN metastases in the training set. Receiver operating characteristic (ROC) analysis was applied to assess the predictive value of the nomogram model in the validation set. Results. Lp(a) was significantly associated with non-SLN metastasis status. Compared with the MSKCC model, the predictive ability of our new nomogram that combined Lp(a) level and clinical variables (pathologic tumor size, lymphovascular invasion, multifocality, and positive/negative SLN numbers) was significantly greater (AUC: 0.732, 95% CI: 0.643–0.821) (C-index: 0.703, 95% CI: 0.656–0.791) in the training cohorts and also performed well in the validation cohorts (C-index: 0.773, 95% CI: 0.681–0.865). Moreover, the new nomogram with Lp(a) improved the accuracy (12.10%) of identification of patients with non-SLN metastases (NRI: 0.121; 95% CI: 0.081–0.202; P=0.011). Conclusions. This novel nomogram based on preoperative serum indexes combined with clinicopathologic features facilitates accurate prediction of risk of non-SLN metastases in Chinese patients with breast cancer.</description><subject>Accuracy</subject><subject>Antigens</subject><subject>Apolipoproteins</subject><subject>Biomarkers</subject><subject>Biomarkers, Tumor - blood</subject><subject>Biopsy</subject><subject>Blood</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - blood</subject><subject>Breast Neoplasms - pathology</subject><subject>Breast Neoplasms - surgery</subject><subject>China</subject><subject>Cholesterol</subject><subject>Estrogens</subject><subject>Female</subject><subject>Follow-Up Studies</subject><subject>High density lipoprotein</subject><subject>Humans</subject><subject>Lipids</subject><subject>Lipoprotein(a) - blood</subject><subject>Lipoproteins</subject><subject>Lymph Node Excision</subject><subject>Lymph nodes</subject><subject>Lymph Nodes - metabolism</subject><subject>Lymph Nodes - pathology</subject><subject>Lymph Nodes - surgery</subject><subject>Lymphatic Metastasis - pathology</subject><subject>Lymphatic system</subject><subject>Lymphocytes</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Middle Aged</subject><subject>Multivariate analysis</subject><subject>Neutrophils</subject><subject>Nomograms</subject><subject>Patients</subject><subject>Prognosis</subject><subject>Regression analysis</subject><subject>Retrospective Studies</subject><subject>Risk analysis</subject><subject>Risk factors</subject><subject>ROC Curve</subject><subject>Sentinel Lymph Node - metabolism</subject><subject>Sentinel Lymph Node - pathology</subject><subject>Sentinel Lymph Node - surgery</subject><subject>Serum lipids</subject><subject>Surgery</subject><subject>Training</subject><subject>Tumor markers</subject><subject>Tumors</subject><issn>0278-0240</issn><issn>1875-8630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kk2LFDEQhoMo7rh68ywBL4K2m046XxdhHdYPaHVg9Rwy6ZqZLN2dNumeZf_X_kDTzrioh4VAyFtPvVSlCqHnJXlblpyfUULLM6mk5kQ9QItSSV4owchDtCBUqoLQipygJyldEVJSXenH6IRVijNB2QLdnuOvYQ8tXkVovBv9HrLQhW20Hfa9a6fG91t8CXHqcO2HMMQwgu-xxTXMeZsQc0KfoB99n9_1TTfsstIA_gKjTflAyk54ucvxBPh9hKzipe0dRLyyo8-pCV_7cYdXIfnfJVzea_cUPdrYNsGz432Kfny4-L78VNTfPn5enteFqyo1FuA0aTZKCi4pMJL_yFIlmQDGuG7YmjjO10yDE4QQodfaEStZxbImNCWcnaJ3B99hWnfQuFxUtK0Zou9svDHBevNvpPc7sw17owTVgs8Gr44GMfycII2m88lB29oewpQMFYRzLVVZZfTlf-hVmGKf25spIXhVEpmpNwfKxZBShM1dMSUx8zqYeR3McR0y_uLvBu7gP_PPwOsDkIfT2Gt_v90vGAK_Ow</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Fang, Zeng</creator><creator>Wang, Ruizhi</creator><creator>Yang, Ciqiu</creator><creator>Wang, Dong</creator><creator>Chen, Wanna</creator><creator>Lin, Bo</creator><creator>Gong, Dongsheng</creator><creator>Li, Songqi</creator><creator>Liang, Jiadong</creator><creator>Liang, Xiaoli</creator><creator>Zeng, Chunxian</creator><creator>Li, Jie</creator><creator>Wang, Kun</creator><creator>Lv, Weiming</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3077-8572</orcidid><orcidid>https://orcid.org/0000-0002-7029-3916</orcidid><orcidid>https://orcid.org/0000-0002-7488-1555</orcidid><orcidid>https://orcid.org/0000-0002-9648-7866</orcidid><orcidid>https://orcid.org/0000-0001-6566-0120</orcidid><orcidid>https://orcid.org/0000-0002-1864-8601</orcidid><orcidid>https://orcid.org/0000-0003-2970-1137</orcidid><orcidid>https://orcid.org/0000-0003-1466-9875</orcidid><orcidid>https://orcid.org/0000-0001-9796-3767</orcidid><orcidid>https://orcid.org/0000-0002-9191-0063</orcidid><orcidid>https://orcid.org/0000-0001-9014-7732</orcidid><orcidid>https://orcid.org/0000-0003-3919-9304</orcidid><orcidid>https://orcid.org/0000-0003-1232-3248</orcidid><orcidid>https://orcid.org/0000-0001-9851-7080</orcidid></search><sort><creationdate>2021</creationdate><title>A Novel Predictive Nomogram including Serum Lipoprotein a Level for Nonsentinel Lymph Node Metastases in Chinese Breast Cancer Patients with Positive Sentinel Lymph Node Metastases</title><author>Fang, Zeng ; Wang, Ruizhi ; Yang, Ciqiu ; Wang, Dong ; Chen, Wanna ; Lin, Bo ; Gong, Dongsheng ; Li, Songqi ; Liang, Jiadong ; Liang, Xiaoli ; Zeng, Chunxian ; Li, Jie ; Wang, Kun ; Lv, Weiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-ec90df876572e30787a28736e3359d3b0c55b39ec600069b9c0a7343b39692053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Antigens</topic><topic>Apolipoproteins</topic><topic>Biomarkers</topic><topic>Biomarkers, Tumor - blood</topic><topic>Biopsy</topic><topic>Blood</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - blood</topic><topic>Breast Neoplasms - pathology</topic><topic>Breast Neoplasms - surgery</topic><topic>China</topic><topic>Cholesterol</topic><topic>Estrogens</topic><topic>Female</topic><topic>Follow-Up Studies</topic><topic>High density lipoprotein</topic><topic>Humans</topic><topic>Lipids</topic><topic>Lipoprotein(a) - blood</topic><topic>Lipoproteins</topic><topic>Lymph Node Excision</topic><topic>Lymph nodes</topic><topic>Lymph Nodes - metabolism</topic><topic>Lymph Nodes - pathology</topic><topic>Lymph Nodes - surgery</topic><topic>Lymphatic Metastasis - pathology</topic><topic>Lymphatic system</topic><topic>Lymphocytes</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Middle Aged</topic><topic>Multivariate analysis</topic><topic>Neutrophils</topic><topic>Nomograms</topic><topic>Patients</topic><topic>Prognosis</topic><topic>Regression analysis</topic><topic>Retrospective Studies</topic><topic>Risk analysis</topic><topic>Risk factors</topic><topic>ROC Curve</topic><topic>Sentinel Lymph Node - metabolism</topic><topic>Sentinel Lymph Node - pathology</topic><topic>Sentinel Lymph Node - surgery</topic><topic>Serum lipids</topic><topic>Surgery</topic><topic>Training</topic><topic>Tumor markers</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Zeng</creatorcontrib><creatorcontrib>Wang, Ruizhi</creatorcontrib><creatorcontrib>Yang, Ciqiu</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Chen, Wanna</creatorcontrib><creatorcontrib>Lin, Bo</creatorcontrib><creatorcontrib>Gong, Dongsheng</creatorcontrib><creatorcontrib>Li, Songqi</creatorcontrib><creatorcontrib>Liang, Jiadong</creatorcontrib><creatorcontrib>Liang, Xiaoli</creatorcontrib><creatorcontrib>Zeng, Chunxian</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Lv, Weiming</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Disease markers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Zeng</au><au>Wang, Ruizhi</au><au>Yang, Ciqiu</au><au>Wang, Dong</au><au>Chen, Wanna</au><au>Lin, Bo</au><au>Gong, Dongsheng</au><au>Li, Songqi</au><au>Liang, Jiadong</au><au>Liang, Xiaoli</au><au>Zeng, Chunxian</au><au>Li, Jie</au><au>Wang, Kun</au><au>Lv, Weiming</au><au>Shao, Yi</au><au>Yi Shao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Predictive Nomogram including Serum Lipoprotein a Level for Nonsentinel Lymph Node Metastases in Chinese Breast Cancer Patients with Positive Sentinel Lymph Node Metastases</atitle><jtitle>Disease markers</jtitle><addtitle>Dis Markers</addtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>7879508</spage><epage>10</epage><pages>7879508-10</pages><issn>0278-0240</issn><eissn>1875-8630</eissn><abstract>Background. We developed a new nomogram combining serum biomarkers with clinicopathological features to improve the accuracy of prediction of nonsentinel lymph node (SLN) metastases in Chinese breast cancer patients. Methods. We enrolled 209 patients with breast cancer who underwent SLN biopsy and axillary lymph node dissection. We evaluated the relationships between non-SLN metastases and clinicopathologic features, as well as preoperative routine tests of blood indexes, tumor markers, and serum lipids, including lipoprotein a (Lp(a)). Risk factors for non-SLN metastases were identified by logistic regression analysis. The nomogram was created using the R program to predict the risk of non-SLN metastases in the training set. Receiver operating characteristic (ROC) analysis was applied to assess the predictive value of the nomogram model in the validation set. Results. Lp(a) was significantly associated with non-SLN metastasis status. Compared with the MSKCC model, the predictive ability of our new nomogram that combined Lp(a) level and clinical variables (pathologic tumor size, lymphovascular invasion, multifocality, and positive/negative SLN numbers) was significantly greater (AUC: 0.732, 95% CI: 0.643–0.821) (C-index: 0.703, 95% CI: 0.656–0.791) in the training cohorts and also performed well in the validation cohorts (C-index: 0.773, 95% CI: 0.681–0.865). Moreover, the new nomogram with Lp(a) improved the accuracy (12.10%) of identification of patients with non-SLN metastases (NRI: 0.121; 95% CI: 0.081–0.202; P=0.011). Conclusions. This novel nomogram based on preoperative serum indexes combined with clinicopathologic features facilitates accurate prediction of risk of non-SLN metastases in Chinese patients with breast cancer.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>34853623</pmid><doi>10.1155/2021/7879508</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3077-8572</orcidid><orcidid>https://orcid.org/0000-0002-7029-3916</orcidid><orcidid>https://orcid.org/0000-0002-7488-1555</orcidid><orcidid>https://orcid.org/0000-0002-9648-7866</orcidid><orcidid>https://orcid.org/0000-0001-6566-0120</orcidid><orcidid>https://orcid.org/0000-0002-1864-8601</orcidid><orcidid>https://orcid.org/0000-0003-2970-1137</orcidid><orcidid>https://orcid.org/0000-0003-1466-9875</orcidid><orcidid>https://orcid.org/0000-0001-9796-3767</orcidid><orcidid>https://orcid.org/0000-0002-9191-0063</orcidid><orcidid>https://orcid.org/0000-0001-9014-7732</orcidid><orcidid>https://orcid.org/0000-0003-3919-9304</orcidid><orcidid>https://orcid.org/0000-0003-1232-3248</orcidid><orcidid>https://orcid.org/0000-0001-9851-7080</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-0240
ispartof Disease markers, 2021, Vol.2021, p.7879508-10
issn 0278-0240
1875-8630
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8629655
source MEDLINE; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Accuracy
Antigens
Apolipoproteins
Biomarkers
Biomarkers, Tumor - blood
Biopsy
Blood
Breast cancer
Breast Neoplasms - blood
Breast Neoplasms - pathology
Breast Neoplasms - surgery
China
Cholesterol
Estrogens
Female
Follow-Up Studies
High density lipoprotein
Humans
Lipids
Lipoprotein(a) - blood
Lipoproteins
Lymph Node Excision
Lymph nodes
Lymph Nodes - metabolism
Lymph Nodes - pathology
Lymph Nodes - surgery
Lymphatic Metastasis - pathology
Lymphatic system
Lymphocytes
Metastases
Metastasis
Middle Aged
Multivariate analysis
Neutrophils
Nomograms
Patients
Prognosis
Regression analysis
Retrospective Studies
Risk analysis
Risk factors
ROC Curve
Sentinel Lymph Node - metabolism
Sentinel Lymph Node - pathology
Sentinel Lymph Node - surgery
Serum lipids
Surgery
Training
Tumor markers
Tumors
title A Novel Predictive Nomogram including Serum Lipoprotein a Level for Nonsentinel Lymph Node Metastases in Chinese Breast Cancer Patients with Positive Sentinel Lymph Node Metastases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A11%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Predictive%20Nomogram%20including%20Serum%20Lipoprotein%20a%20Level%20for%20Nonsentinel%20Lymph%20Node%20Metastases%20in%20Chinese%20Breast%20Cancer%20Patients%20with%20Positive%20Sentinel%20Lymph%20Node%20Metastases&rft.jtitle=Disease%20markers&rft.au=Fang,%20Zeng&rft.date=2021&rft.volume=2021&rft.spage=7879508&rft.epage=10&rft.pages=7879508-10&rft.issn=0278-0240&rft.eissn=1875-8630&rft_id=info:doi/10.1155/2021/7879508&rft_dat=%3Cproquest_pubme%3E2606654107%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2606654107&rft_id=info:pmid/34853623&rfr_iscdi=true