Impacts of COVID-19 local spread and Google search trend on the US stock market

We develop a novel temporal complex network approach to quantify the US county level spread dynamics of COVID-19. We use both conventional econometric and Machine Learning (ML) models that incorporate the local spread dynamics, COVID-19 cases and death, and Google search activities to assess if inco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica A 2022-03, Vol.589, p.126423-126423, Article 126423
Hauptverfasser: Dey, Asim K., Hoque, G.M. Toufiqul, Das, Kumer P., Panovska, Irina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a novel temporal complex network approach to quantify the US county level spread dynamics of COVID-19. We use both conventional econometric and Machine Learning (ML) models that incorporate the local spread dynamics, COVID-19 cases and death, and Google search activities to assess if incorporating information about local spreads improves the predictive accuracy of models for the US stock market. The results suggest that COVID-19 cases and deaths, its local spread, and Google searches have impacts on abnormal stock prices between January 2020 to May 2020. Furthermore, incorporating information about local spread significantly improves the performance of forecasting models of the abnormal stock prices at longer forecasting horizons.
ISSN:0378-4371
1873-2119
0378-4371
DOI:10.1016/j.physa.2021.126423