Influence of Alloying Elements on the Mechanical Properties of Anodized Aluminum and on the Adhesion of Copper Metallization

The active development of the power electronics market and a constant increase in the prices of components require new materials and approaches, including a power module packaging technology. The use of aluminum instead of copper in the power module baseplate is an interesting and promising solution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-11, Vol.14 (22), p.7028, Article 7028
Hauptverfasser: Medvedev, Oleg S., Alyasova, Ekaterina E., Besprozvannaya, Rona E., Gadzhiev, Asadula A., Krivova, Veronika V., Kondratev, Andrey S., Kim, Artem E., Novikov, Pavel A., Popovich, Anatoliy A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page 7028
container_title Materials
container_volume 14
creator Medvedev, Oleg S.
Alyasova, Ekaterina E.
Besprozvannaya, Rona E.
Gadzhiev, Asadula A.
Krivova, Veronika V.
Kondratev, Andrey S.
Kim, Artem E.
Novikov, Pavel A.
Popovich, Anatoliy A.
description The active development of the power electronics market and a constant increase in the prices of components require new materials and approaches, including a power module packaging technology. The use of aluminum instead of copper in the power module baseplate is an interesting and promising solution. The insulated metal baseplate is one of the most extensively developed technologies nowadays. The object of this study is an insulated metal substrate based on anodized aluminum. The main goal of the article is the comparison of copper topology adhesion to an anodized aluminum oxide layer formed on different aluminum alloys with aluminum content of at least 99.3 wt %. Peel test and pull-off adhesions showed a twofold difference for both aluminum alloys. The high ordered defect-free anodized alumina formed on alloys with copper content of 0.06 wt % had a mean pull-off adhesion of 27 N/mm(2) and hardness of 489 HV. In the case of the alloy with copper content of around 0.15 wt %, it had hardness of 295 HV and a mean pull-off adhesion of 12 N/mm(2). The results of our microstructure investigation showed that anodized alumina based on alloys with copper content of around 0.15 wt % is fragile due to spherical holes. Summing up the results, it can be concluded that not all initial impurities are critical for anodized alumina, but some, specifically copper, dramatically decreased the mechanical properties of anodized alumina.
doi_str_mv 10.3390/ma14227028
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8624961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604022784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-c30ae2787417b040ebbf2be5c0b510adc10409f6a83757e0d62bad9afbd7e2a33</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhSMEolXphl8QiQ0CDfg1sbNBGkUFKhXBAtaRHzcdV4492A6oFT-eO51SHiu88PM7R_f6NM1TSl5x3pPXs6aCMUmYetAc077vVrQX4uEf-6PmtJQrgoNzqlj_uDniQnEmWHfc_DiPU1ggWmjT1G5CSNc-XrZnAWaItbQptnUL7QewWx291aH9lNMOcvVQbhUxOX8DDqXL7OMytzq6X6qN20LxeEBwSDuUoVHVIfgbXfH-SfNo0qHA6d160nx5e_Z5eL-6-PjufNhcrCxXvOJMNDCppKDSEEHAmIkZWFti1pRoZyle9lOnFZdrCcR1zGjX68k4CUxzftK8OfjuFjODs9hZ1mHcZT_rfD0m7ce_X6Lfjpfp26g6JvqOosHzO4Ocvi5Q6jj7YiEEHSEtZWQdVoApKIHos3_Qq7TkiO3tKUYFXzOF1IsDZXMqJcN0Xwwl4z7X8XeuCKsD_B1Mmor1-7juBZirZLKXVO4jpoOvt387pCVWlL78fyn_CcSythw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602143528</pqid></control><display><type>article</type><title>Influence of Alloying Elements on the Mechanical Properties of Anodized Aluminum and on the Adhesion of Copper Metallization</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Medvedev, Oleg S. ; Alyasova, Ekaterina E. ; Besprozvannaya, Rona E. ; Gadzhiev, Asadula A. ; Krivova, Veronika V. ; Kondratev, Andrey S. ; Kim, Artem E. ; Novikov, Pavel A. ; Popovich, Anatoliy A.</creator><creatorcontrib>Medvedev, Oleg S. ; Alyasova, Ekaterina E. ; Besprozvannaya, Rona E. ; Gadzhiev, Asadula A. ; Krivova, Veronika V. ; Kondratev, Andrey S. ; Kim, Artem E. ; Novikov, Pavel A. ; Popovich, Anatoliy A.</creatorcontrib><description>The active development of the power electronics market and a constant increase in the prices of components require new materials and approaches, including a power module packaging technology. The use of aluminum instead of copper in the power module baseplate is an interesting and promising solution. The insulated metal baseplate is one of the most extensively developed technologies nowadays. The object of this study is an insulated metal substrate based on anodized aluminum. The main goal of the article is the comparison of copper topology adhesion to an anodized aluminum oxide layer formed on different aluminum alloys with aluminum content of at least 99.3 wt %. Peel test and pull-off adhesions showed a twofold difference for both aluminum alloys. The high ordered defect-free anodized alumina formed on alloys with copper content of 0.06 wt % had a mean pull-off adhesion of 27 N/mm(2) and hardness of 489 HV. In the case of the alloy with copper content of around 0.15 wt %, it had hardness of 295 HV and a mean pull-off adhesion of 12 N/mm(2). The results of our microstructure investigation showed that anodized alumina based on alloys with copper content of around 0.15 wt % is fragile due to spherical holes. Summing up the results, it can be concluded that not all initial impurities are critical for anodized alumina, but some, specifically copper, dramatically decreased the mechanical properties of anodized alumina.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14227028</identifier><identifier>PMID: 34832426</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Adhesion ; Adhesives ; Alloying elements ; Alloys ; Aluminum alloys ; Aluminum base alloys ; Aluminum oxide ; Anodizing ; Ceramics ; Chemical elements ; Chemistry ; Chemistry, Physical ; Copper ; Electric vehicles ; Experiments ; Hardness ; Heat conductivity ; Manufacturers ; Materials Science ; Materials Science, Multidisciplinary ; Mechanical properties ; Metallizing ; Metallurgy &amp; Metallurgical Engineering ; Modules ; Morphology ; Peel tests ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Polymerization ; Pricing ; Science &amp; Technology ; Substrates ; Surface hardness ; Technology ; Thermal cycling ; Topology ; Transistors ; Trends</subject><ispartof>Materials, 2021-11, Vol.14 (22), p.7028, Article 7028</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000727971700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c383t-c30ae2787417b040ebbf2be5c0b510adc10409f6a83757e0d62bad9afbd7e2a33</citedby><cites>FETCH-LOGICAL-c383t-c30ae2787417b040ebbf2be5c0b510adc10409f6a83757e0d62bad9afbd7e2a33</cites><orcidid>0000-0002-2052-363X ; 0000-0002-9748-6910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624961/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624961/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,39263,53796,53798</link.rule.ids></links><search><creatorcontrib>Medvedev, Oleg S.</creatorcontrib><creatorcontrib>Alyasova, Ekaterina E.</creatorcontrib><creatorcontrib>Besprozvannaya, Rona E.</creatorcontrib><creatorcontrib>Gadzhiev, Asadula A.</creatorcontrib><creatorcontrib>Krivova, Veronika V.</creatorcontrib><creatorcontrib>Kondratev, Andrey S.</creatorcontrib><creatorcontrib>Kim, Artem E.</creatorcontrib><creatorcontrib>Novikov, Pavel A.</creatorcontrib><creatorcontrib>Popovich, Anatoliy A.</creatorcontrib><title>Influence of Alloying Elements on the Mechanical Properties of Anodized Aluminum and on the Adhesion of Copper Metallization</title><title>Materials</title><addtitle>MATERIALS</addtitle><description>The active development of the power electronics market and a constant increase in the prices of components require new materials and approaches, including a power module packaging technology. The use of aluminum instead of copper in the power module baseplate is an interesting and promising solution. The insulated metal baseplate is one of the most extensively developed technologies nowadays. The object of this study is an insulated metal substrate based on anodized aluminum. The main goal of the article is the comparison of copper topology adhesion to an anodized aluminum oxide layer formed on different aluminum alloys with aluminum content of at least 99.3 wt %. Peel test and pull-off adhesions showed a twofold difference for both aluminum alloys. The high ordered defect-free anodized alumina formed on alloys with copper content of 0.06 wt % had a mean pull-off adhesion of 27 N/mm(2) and hardness of 489 HV. In the case of the alloy with copper content of around 0.15 wt %, it had hardness of 295 HV and a mean pull-off adhesion of 12 N/mm(2). The results of our microstructure investigation showed that anodized alumina based on alloys with copper content of around 0.15 wt % is fragile due to spherical holes. Summing up the results, it can be concluded that not all initial impurities are critical for anodized alumina, but some, specifically copper, dramatically decreased the mechanical properties of anodized alumina.</description><subject>Adhesion</subject><subject>Adhesives</subject><subject>Alloying elements</subject><subject>Alloys</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Aluminum oxide</subject><subject>Anodizing</subject><subject>Ceramics</subject><subject>Chemical elements</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Copper</subject><subject>Electric vehicles</subject><subject>Experiments</subject><subject>Hardness</subject><subject>Heat conductivity</subject><subject>Manufacturers</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Mechanical properties</subject><subject>Metallizing</subject><subject>Metallurgy &amp; Metallurgical Engineering</subject><subject>Modules</subject><subject>Morphology</subject><subject>Peel tests</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Polymerization</subject><subject>Pricing</subject><subject>Science &amp; Technology</subject><subject>Substrates</subject><subject>Surface hardness</subject><subject>Technology</subject><subject>Thermal cycling</subject><subject>Topology</subject><subject>Transistors</subject><subject>Trends</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkUtv1DAUhSMEolXphl8QiQ0CDfg1sbNBGkUFKhXBAtaRHzcdV4492A6oFT-eO51SHiu88PM7R_f6NM1TSl5x3pPXs6aCMUmYetAc077vVrQX4uEf-6PmtJQrgoNzqlj_uDniQnEmWHfc_DiPU1ggWmjT1G5CSNc-XrZnAWaItbQptnUL7QewWx291aH9lNMOcvVQbhUxOX8DDqXL7OMytzq6X6qN20LxeEBwSDuUoVHVIfgbXfH-SfNo0qHA6d160nx5e_Z5eL-6-PjufNhcrCxXvOJMNDCppKDSEEHAmIkZWFti1pRoZyle9lOnFZdrCcR1zGjX68k4CUxzftK8OfjuFjODs9hZ1mHcZT_rfD0m7ce_X6Lfjpfp26g6JvqOosHzO4Ocvi5Q6jj7YiEEHSEtZWQdVoApKIHos3_Qq7TkiO3tKUYFXzOF1IsDZXMqJcN0Xwwl4z7X8XeuCKsD_B1Mmor1-7juBZirZLKXVO4jpoOvt387pCVWlL78fyn_CcSythw</recordid><startdate>20211119</startdate><enddate>20211119</enddate><creator>Medvedev, Oleg S.</creator><creator>Alyasova, Ekaterina E.</creator><creator>Besprozvannaya, Rona E.</creator><creator>Gadzhiev, Asadula A.</creator><creator>Krivova, Veronika V.</creator><creator>Kondratev, Andrey S.</creator><creator>Kim, Artem E.</creator><creator>Novikov, Pavel A.</creator><creator>Popovich, Anatoliy A.</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2052-363X</orcidid><orcidid>https://orcid.org/0000-0002-9748-6910</orcidid></search><sort><creationdate>20211119</creationdate><title>Influence of Alloying Elements on the Mechanical Properties of Anodized Aluminum and on the Adhesion of Copper Metallization</title><author>Medvedev, Oleg S. ; Alyasova, Ekaterina E. ; Besprozvannaya, Rona E. ; Gadzhiev, Asadula A. ; Krivova, Veronika V. ; Kondratev, Andrey S. ; Kim, Artem E. ; Novikov, Pavel A. ; Popovich, Anatoliy A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-c30ae2787417b040ebbf2be5c0b510adc10409f6a83757e0d62bad9afbd7e2a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adhesion</topic><topic>Adhesives</topic><topic>Alloying elements</topic><topic>Alloys</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Aluminum oxide</topic><topic>Anodizing</topic><topic>Ceramics</topic><topic>Chemical elements</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Copper</topic><topic>Electric vehicles</topic><topic>Experiments</topic><topic>Hardness</topic><topic>Heat conductivity</topic><topic>Manufacturers</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Mechanical properties</topic><topic>Metallizing</topic><topic>Metallurgy &amp; Metallurgical Engineering</topic><topic>Modules</topic><topic>Morphology</topic><topic>Peel tests</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Polymerization</topic><topic>Pricing</topic><topic>Science &amp; Technology</topic><topic>Substrates</topic><topic>Surface hardness</topic><topic>Technology</topic><topic>Thermal cycling</topic><topic>Topology</topic><topic>Transistors</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medvedev, Oleg S.</creatorcontrib><creatorcontrib>Alyasova, Ekaterina E.</creatorcontrib><creatorcontrib>Besprozvannaya, Rona E.</creatorcontrib><creatorcontrib>Gadzhiev, Asadula A.</creatorcontrib><creatorcontrib>Krivova, Veronika V.</creatorcontrib><creatorcontrib>Kondratev, Andrey S.</creatorcontrib><creatorcontrib>Kim, Artem E.</creatorcontrib><creatorcontrib>Novikov, Pavel A.</creatorcontrib><creatorcontrib>Popovich, Anatoliy A.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medvedev, Oleg S.</au><au>Alyasova, Ekaterina E.</au><au>Besprozvannaya, Rona E.</au><au>Gadzhiev, Asadula A.</au><au>Krivova, Veronika V.</au><au>Kondratev, Andrey S.</au><au>Kim, Artem E.</au><au>Novikov, Pavel A.</au><au>Popovich, Anatoliy A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Alloying Elements on the Mechanical Properties of Anodized Aluminum and on the Adhesion of Copper Metallization</atitle><jtitle>Materials</jtitle><stitle>MATERIALS</stitle><date>2021-11-19</date><risdate>2021</risdate><volume>14</volume><issue>22</issue><spage>7028</spage><pages>7028-</pages><artnum>7028</artnum><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The active development of the power electronics market and a constant increase in the prices of components require new materials and approaches, including a power module packaging technology. The use of aluminum instead of copper in the power module baseplate is an interesting and promising solution. The insulated metal baseplate is one of the most extensively developed technologies nowadays. The object of this study is an insulated metal substrate based on anodized aluminum. The main goal of the article is the comparison of copper topology adhesion to an anodized aluminum oxide layer formed on different aluminum alloys with aluminum content of at least 99.3 wt %. Peel test and pull-off adhesions showed a twofold difference for both aluminum alloys. The high ordered defect-free anodized alumina formed on alloys with copper content of 0.06 wt % had a mean pull-off adhesion of 27 N/mm(2) and hardness of 489 HV. In the case of the alloy with copper content of around 0.15 wt %, it had hardness of 295 HV and a mean pull-off adhesion of 12 N/mm(2). The results of our microstructure investigation showed that anodized alumina based on alloys with copper content of around 0.15 wt % is fragile due to spherical holes. Summing up the results, it can be concluded that not all initial impurities are critical for anodized alumina, but some, specifically copper, dramatically decreased the mechanical properties of anodized alumina.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>34832426</pmid><doi>10.3390/ma14227028</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2052-363X</orcidid><orcidid>https://orcid.org/0000-0002-9748-6910</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-11, Vol.14 (22), p.7028, Article 7028
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8624961
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adhesion
Adhesives
Alloying elements
Alloys
Aluminum alloys
Aluminum base alloys
Aluminum oxide
Anodizing
Ceramics
Chemical elements
Chemistry
Chemistry, Physical
Copper
Electric vehicles
Experiments
Hardness
Heat conductivity
Manufacturers
Materials Science
Materials Science, Multidisciplinary
Mechanical properties
Metallizing
Metallurgy & Metallurgical Engineering
Modules
Morphology
Peel tests
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
Polymerization
Pricing
Science & Technology
Substrates
Surface hardness
Technology
Thermal cycling
Topology
Transistors
Trends
title Influence of Alloying Elements on the Mechanical Properties of Anodized Aluminum and on the Adhesion of Copper Metallization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T15%3A51%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Alloying%20Elements%20on%20the%20Mechanical%20Properties%20of%20Anodized%20Aluminum%20and%20on%20the%20Adhesion%20of%20Copper%20Metallization&rft.jtitle=Materials&rft.au=Medvedev,%20Oleg%20S.&rft.date=2021-11-19&rft.volume=14&rft.issue=22&rft.spage=7028&rft.pages=7028-&rft.artnum=7028&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14227028&rft_dat=%3Cproquest_pubme%3E2604022784%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2602143528&rft_id=info:pmid/34832426&rfr_iscdi=true