Automated Screening for Abdominal Aortic Aneurysm in CT Scans under Clinical Conditions Using Deep Learning
Abdominal aortic aneurysms (AAA) may remain clinically silent until they enlarge and patients present with a potentially lethal rupture. This necessitates early detection and elective treatment. The goal of this study was to develop an easy-to-train algorithm which is capable of automated AAA screen...
Gespeichert in:
Veröffentlicht in: | Diagnostics (Basel) 2021-11, Vol.11 (11), p.2131, Article 2131 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 2131 |
container_title | Diagnostics (Basel) |
container_volume | 11 |
creator | Golla, Alena-K. Toennes, Christian Russ, Tom Bauer, Dominik F. Froelich, Matthias F. Diehl, Steffen J. Schoenberg, Stefan O. Keese, Michael Schad, Lothar R. Zoellner, Frank G. Rink, Johann S. |
description | Abdominal aortic aneurysms (AAA) may remain clinically silent until they enlarge and patients present with a potentially lethal rupture. This necessitates early detection and elective treatment. The goal of this study was to develop an easy-to-train algorithm which is capable of automated AAA screening in CT scans and can be applied to an intra-hospital environment. Three deep convolutional neural networks (ResNet, VGG-16 and AlexNet) were adapted for 3D classification and applied to a dataset consisting of 187 heterogenous CT scans. The 3D ResNet outperformed both other networks. Across the five folds of the first training dataset it achieved an accuracy of 0.856 and an area under the curve (AUC) of 0.926. Subsequently, the algorithms performance was verified on a second data set containing 106 scans, where it ran fully automated and resulted in an accuracy of 0.953 and an AUC of 0.971. A layer-wise relevance propagation (LRP) made the decision process interpretable and showed that the network correctly focused on the aortic lumen. In conclusion, the deep learning-based screening proved to be robust and showed high performance even on a heterogeneous multi-center data set. Integration into hospital workflow and its effect on aneurysm management would be an exciting topic of future research. |
doi_str_mv | 10.3390/diagnostics11112131 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8621263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_03bf2908103447d88829b25b0ecaa4b7</doaj_id><sourcerecordid>2604027122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-12e4fffb143326d636c1bdb06311e4ee018fbc424193b1865fa37266c559a2943</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEolXpL-ASiQsSWvBXHOeCFAVaKq3EgfZs-WO8eEnsxU6K-u9xulVFEQfmYsvzzGuP562q1xi9p7RDH6xXuxDz7E3GJQim-Fl1SlDbbBjD4vkf-5PqPOc9KtFhKkjzsjqhTJCOteK0-tEvc5zUDLb-ZhJA8GFXu5jqXts4-aDGuo-pXFP3AZZ0l6fah3q4LrQKuV6ChVQPow_eFHSIwfrZx5K5yavSJ4BDvQWVVt1X1QunxgznD-tZdXPx-Xr4stl-vbwa-u3GsJbPG0yAOec0ZpQSbjnlBmurEacYAwNAWDhtGGG4oxoL3jhFW8K5aZpOlbboWXV11LVR7eUh-UmlOxmVl_cHMe2kWlsaQSKqHemQwIgy1lohyr9o0mgERimm26L18ah1WPQE1kCYkxqfiD7NBP9d7uKtFJxgwmkRePsgkOLPBfIsJ58NjKMKEJcsCUcMkRYTUtA3f6H7uKQygnuKINKJBheKHimTYs4J3ONjMJKrN-Q_vFGq3h2rfoGOLhsPwcBjZfFGSwTBnVhtstLi_-nBz2qd-RCXMNPfgrzN8Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602029851</pqid></control><display><type>article</type><title>Automated Screening for Abdominal Aortic Aneurysm in CT Scans under Clinical Conditions Using Deep Learning</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><creator>Golla, Alena-K. ; Toennes, Christian ; Russ, Tom ; Bauer, Dominik F. ; Froelich, Matthias F. ; Diehl, Steffen J. ; Schoenberg, Stefan O. ; Keese, Michael ; Schad, Lothar R. ; Zoellner, Frank G. ; Rink, Johann S.</creator><creatorcontrib>Golla, Alena-K. ; Toennes, Christian ; Russ, Tom ; Bauer, Dominik F. ; Froelich, Matthias F. ; Diehl, Steffen J. ; Schoenberg, Stefan O. ; Keese, Michael ; Schad, Lothar R. ; Zoellner, Frank G. ; Rink, Johann S.</creatorcontrib><description>Abdominal aortic aneurysms (AAA) may remain clinically silent until they enlarge and patients present with a potentially lethal rupture. This necessitates early detection and elective treatment. The goal of this study was to develop an easy-to-train algorithm which is capable of automated AAA screening in CT scans and can be applied to an intra-hospital environment. Three deep convolutional neural networks (ResNet, VGG-16 and AlexNet) were adapted for 3D classification and applied to a dataset consisting of 187 heterogenous CT scans. The 3D ResNet outperformed both other networks. Across the five folds of the first training dataset it achieved an accuracy of 0.856 and an area under the curve (AUC) of 0.926. Subsequently, the algorithms performance was verified on a second data set containing 106 scans, where it ran fully automated and resulted in an accuracy of 0.953 and an AUC of 0.971. A layer-wise relevance propagation (LRP) made the decision process interpretable and showed that the network correctly focused on the aortic lumen. In conclusion, the deep learning-based screening proved to be robust and showed high performance even on a heterogeneous multi-center data set. Integration into hospital workflow and its effect on aneurysm management would be an exciting topic of future research.</description><identifier>ISSN: 2075-4418</identifier><identifier>EISSN: 2075-4418</identifier><identifier>DOI: 10.3390/diagnostics11112131</identifier><identifier>PMID: 34829478</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Abdomen ; abdominal aortic aneurysm ; Algorithms ; Aortic aneurysms ; Automation ; computed X ray tomography ; Coronary vessels ; Datasets ; Deep learning ; General & Internal Medicine ; image classification ; interpretable artificial intelligence ; Life Sciences & Biomedicine ; Medical imaging ; Medicine, General & Internal ; Science & Technology</subject><ispartof>Diagnostics (Basel), 2021-11, Vol.11 (11), p.2131, Article 2131</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>14</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000728219800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c476t-12e4fffb143326d636c1bdb06311e4ee018fbc424193b1865fa37266c559a2943</citedby><cites>FETCH-LOGICAL-c476t-12e4fffb143326d636c1bdb06311e4ee018fbc424193b1865fa37266c559a2943</cites><orcidid>0000-0002-8781-2882 ; 0000-0002-7476-3508 ; 0000-0002-9323-5559 ; 0000-0002-7069-5181 ; 0000-0002-2506-4583 ; 0000-0001-8501-2147 ; 0000-0003-3405-1394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621263/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621263/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids></links><search><creatorcontrib>Golla, Alena-K.</creatorcontrib><creatorcontrib>Toennes, Christian</creatorcontrib><creatorcontrib>Russ, Tom</creatorcontrib><creatorcontrib>Bauer, Dominik F.</creatorcontrib><creatorcontrib>Froelich, Matthias F.</creatorcontrib><creatorcontrib>Diehl, Steffen J.</creatorcontrib><creatorcontrib>Schoenberg, Stefan O.</creatorcontrib><creatorcontrib>Keese, Michael</creatorcontrib><creatorcontrib>Schad, Lothar R.</creatorcontrib><creatorcontrib>Zoellner, Frank G.</creatorcontrib><creatorcontrib>Rink, Johann S.</creatorcontrib><title>Automated Screening for Abdominal Aortic Aneurysm in CT Scans under Clinical Conditions Using Deep Learning</title><title>Diagnostics (Basel)</title><addtitle>DIAGNOSTICS</addtitle><description>Abdominal aortic aneurysms (AAA) may remain clinically silent until they enlarge and patients present with a potentially lethal rupture. This necessitates early detection and elective treatment. The goal of this study was to develop an easy-to-train algorithm which is capable of automated AAA screening in CT scans and can be applied to an intra-hospital environment. Three deep convolutional neural networks (ResNet, VGG-16 and AlexNet) were adapted for 3D classification and applied to a dataset consisting of 187 heterogenous CT scans. The 3D ResNet outperformed both other networks. Across the five folds of the first training dataset it achieved an accuracy of 0.856 and an area under the curve (AUC) of 0.926. Subsequently, the algorithms performance was verified on a second data set containing 106 scans, where it ran fully automated and resulted in an accuracy of 0.953 and an AUC of 0.971. A layer-wise relevance propagation (LRP) made the decision process interpretable and showed that the network correctly focused on the aortic lumen. In conclusion, the deep learning-based screening proved to be robust and showed high performance even on a heterogeneous multi-center data set. Integration into hospital workflow and its effect on aneurysm management would be an exciting topic of future research.</description><subject>Abdomen</subject><subject>abdominal aortic aneurysm</subject><subject>Algorithms</subject><subject>Aortic aneurysms</subject><subject>Automation</subject><subject>computed X ray tomography</subject><subject>Coronary vessels</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>General & Internal Medicine</subject><subject>image classification</subject><subject>interpretable artificial intelligence</subject><subject>Life Sciences & Biomedicine</subject><subject>Medical imaging</subject><subject>Medicine, General & Internal</subject><subject>Science & Technology</subject><issn>2075-4418</issn><issn>2075-4418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1v1DAQhiMEolXpL-ASiQsSWvBXHOeCFAVaKq3EgfZs-WO8eEnsxU6K-u9xulVFEQfmYsvzzGuP562q1xi9p7RDH6xXuxDz7E3GJQim-Fl1SlDbbBjD4vkf-5PqPOc9KtFhKkjzsjqhTJCOteK0-tEvc5zUDLb-ZhJA8GFXu5jqXts4-aDGuo-pXFP3AZZ0l6fah3q4LrQKuV6ChVQPow_eFHSIwfrZx5K5yavSJ4BDvQWVVt1X1QunxgznD-tZdXPx-Xr4stl-vbwa-u3GsJbPG0yAOec0ZpQSbjnlBmurEacYAwNAWDhtGGG4oxoL3jhFW8K5aZpOlbboWXV11LVR7eUh-UmlOxmVl_cHMe2kWlsaQSKqHemQwIgy1lohyr9o0mgERimm26L18ah1WPQE1kCYkxqfiD7NBP9d7uKtFJxgwmkRePsgkOLPBfIsJ58NjKMKEJcsCUcMkRYTUtA3f6H7uKQygnuKINKJBheKHimTYs4J3ONjMJKrN-Q_vFGq3h2rfoGOLhsPwcBjZfFGSwTBnVhtstLi_-nBz2qd-RCXMNPfgrzN8Q</recordid><startdate>20211117</startdate><enddate>20211117</enddate><creator>Golla, Alena-K.</creator><creator>Toennes, Christian</creator><creator>Russ, Tom</creator><creator>Bauer, Dominik F.</creator><creator>Froelich, Matthias F.</creator><creator>Diehl, Steffen J.</creator><creator>Schoenberg, Stefan O.</creator><creator>Keese, Michael</creator><creator>Schad, Lothar R.</creator><creator>Zoellner, Frank G.</creator><creator>Rink, Johann S.</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8781-2882</orcidid><orcidid>https://orcid.org/0000-0002-7476-3508</orcidid><orcidid>https://orcid.org/0000-0002-9323-5559</orcidid><orcidid>https://orcid.org/0000-0002-7069-5181</orcidid><orcidid>https://orcid.org/0000-0002-2506-4583</orcidid><orcidid>https://orcid.org/0000-0001-8501-2147</orcidid><orcidid>https://orcid.org/0000-0003-3405-1394</orcidid></search><sort><creationdate>20211117</creationdate><title>Automated Screening for Abdominal Aortic Aneurysm in CT Scans under Clinical Conditions Using Deep Learning</title><author>Golla, Alena-K. ; Toennes, Christian ; Russ, Tom ; Bauer, Dominik F. ; Froelich, Matthias F. ; Diehl, Steffen J. ; Schoenberg, Stefan O. ; Keese, Michael ; Schad, Lothar R. ; Zoellner, Frank G. ; Rink, Johann S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-12e4fffb143326d636c1bdb06311e4ee018fbc424193b1865fa37266c559a2943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abdomen</topic><topic>abdominal aortic aneurysm</topic><topic>Algorithms</topic><topic>Aortic aneurysms</topic><topic>Automation</topic><topic>computed X ray tomography</topic><topic>Coronary vessels</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>General & Internal Medicine</topic><topic>image classification</topic><topic>interpretable artificial intelligence</topic><topic>Life Sciences & Biomedicine</topic><topic>Medical imaging</topic><topic>Medicine, General & Internal</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golla, Alena-K.</creatorcontrib><creatorcontrib>Toennes, Christian</creatorcontrib><creatorcontrib>Russ, Tom</creatorcontrib><creatorcontrib>Bauer, Dominik F.</creatorcontrib><creatorcontrib>Froelich, Matthias F.</creatorcontrib><creatorcontrib>Diehl, Steffen J.</creatorcontrib><creatorcontrib>Schoenberg, Stefan O.</creatorcontrib><creatorcontrib>Keese, Michael</creatorcontrib><creatorcontrib>Schad, Lothar R.</creatorcontrib><creatorcontrib>Zoellner, Frank G.</creatorcontrib><creatorcontrib>Rink, Johann S.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Diagnostics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golla, Alena-K.</au><au>Toennes, Christian</au><au>Russ, Tom</au><au>Bauer, Dominik F.</au><au>Froelich, Matthias F.</au><au>Diehl, Steffen J.</au><au>Schoenberg, Stefan O.</au><au>Keese, Michael</au><au>Schad, Lothar R.</au><au>Zoellner, Frank G.</au><au>Rink, Johann S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Screening for Abdominal Aortic Aneurysm in CT Scans under Clinical Conditions Using Deep Learning</atitle><jtitle>Diagnostics (Basel)</jtitle><stitle>DIAGNOSTICS</stitle><date>2021-11-17</date><risdate>2021</risdate><volume>11</volume><issue>11</issue><spage>2131</spage><pages>2131-</pages><artnum>2131</artnum><issn>2075-4418</issn><eissn>2075-4418</eissn><abstract>Abdominal aortic aneurysms (AAA) may remain clinically silent until they enlarge and patients present with a potentially lethal rupture. This necessitates early detection and elective treatment. The goal of this study was to develop an easy-to-train algorithm which is capable of automated AAA screening in CT scans and can be applied to an intra-hospital environment. Three deep convolutional neural networks (ResNet, VGG-16 and AlexNet) were adapted for 3D classification and applied to a dataset consisting of 187 heterogenous CT scans. The 3D ResNet outperformed both other networks. Across the five folds of the first training dataset it achieved an accuracy of 0.856 and an area under the curve (AUC) of 0.926. Subsequently, the algorithms performance was verified on a second data set containing 106 scans, where it ran fully automated and resulted in an accuracy of 0.953 and an AUC of 0.971. A layer-wise relevance propagation (LRP) made the decision process interpretable and showed that the network correctly focused on the aortic lumen. In conclusion, the deep learning-based screening proved to be robust and showed high performance even on a heterogeneous multi-center data set. Integration into hospital workflow and its effect on aneurysm management would be an exciting topic of future research.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>34829478</pmid><doi>10.3390/diagnostics11112131</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8781-2882</orcidid><orcidid>https://orcid.org/0000-0002-7476-3508</orcidid><orcidid>https://orcid.org/0000-0002-9323-5559</orcidid><orcidid>https://orcid.org/0000-0002-7069-5181</orcidid><orcidid>https://orcid.org/0000-0002-2506-4583</orcidid><orcidid>https://orcid.org/0000-0001-8501-2147</orcidid><orcidid>https://orcid.org/0000-0003-3405-1394</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-4418 |
ispartof | Diagnostics (Basel), 2021-11, Vol.11 (11), p.2131, Article 2131 |
issn | 2075-4418 2075-4418 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8621263 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central |
subjects | Abdomen abdominal aortic aneurysm Algorithms Aortic aneurysms Automation computed X ray tomography Coronary vessels Datasets Deep learning General & Internal Medicine image classification interpretable artificial intelligence Life Sciences & Biomedicine Medical imaging Medicine, General & Internal Science & Technology |
title | Automated Screening for Abdominal Aortic Aneurysm in CT Scans under Clinical Conditions Using Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T08%3A06%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Screening%20for%20Abdominal%20Aortic%20Aneurysm%20in%20CT%20Scans%20under%20Clinical%20Conditions%20Using%20Deep%20Learning&rft.jtitle=Diagnostics%20(Basel)&rft.au=Golla,%20Alena-K.&rft.date=2021-11-17&rft.volume=11&rft.issue=11&rft.spage=2131&rft.pages=2131-&rft.artnum=2131&rft.issn=2075-4418&rft.eissn=2075-4418&rft_id=info:doi/10.3390/diagnostics11112131&rft_dat=%3Cproquest_pubme%3E2604027122%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2602029851&rft_id=info:pmid/34829478&rft_doaj_id=oai_doaj_org_article_03bf2908103447d88829b25b0ecaa4b7&rfr_iscdi=true |