Reinforcement-learning in fronto-striatal circuits
We review the current state of knowledge on the computational and neural mechanisms of reinforcement-learning with a particular focus on fronto-striatal circuits. We divide the literature in this area into five broad research themes: the target of the learning-whether it be learning about the value...
Gespeichert in:
Veröffentlicht in: | Neuropsychopharmacology (New York, N.Y.) N.Y.), 2022-01, Vol.47 (1), p.147-162 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 162 |
---|---|
container_issue | 1 |
container_start_page | 147 |
container_title | Neuropsychopharmacology (New York, N.Y.) |
container_volume | 47 |
creator | Averbeck, Bruno O'Doherty, John P |
description | We review the current state of knowledge on the computational and neural mechanisms of reinforcement-learning with a particular focus on fronto-striatal circuits. We divide the literature in this area into five broad research themes: the target of the learning-whether it be learning about the value of stimuli or about the value of actions; the nature and complexity of the algorithm used to drive the learning and inference process; how learned values get converted into choices and associated actions; the nature of state representations, and of other cognitive machinery that support the implementation of various reinforcement-learning operations. An emerging fifth area focuses on how the brain allocates or arbitrates control over different reinforcement-learning sub-systems or "experts". We will outline what is known about the role of the prefrontal cortex and striatum in implementing each of these functions. We then conclude by arguing that it will be necessary to build bridges from algorithmic level descriptions of computational reinforcement-learning to implementational level models to better understand how reinforcement-learning emerges from multiple distributed neural networks in the brain. |
doi_str_mv | 10.1038/s41386-021-01108-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8616931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559425020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-1776a2f391d1cb8318450cc3695013f0c4f5f2a26b3e15ea75961421684792463</originalsourceid><addsrcrecordid>eNpdkUFLXDEQx0OxdFfbL9CDLHjpJXYmk-TlXQQRq8JCobTgLWRjnmZ5m6zJe0K_fZ-uivY0h_nNn__wY-wrwjECme9VIhnNQSAHRDAcPrA5NhK4Jnm9x-ZgWuJIdD1j-7WuAVA12nxiM5KkpJDtnIlfIaYuFx82IQ28D66kmG4XMS26ktOQeR1KdIPrFz4WP8ahfmYfO9fX8OV5HrA_P85_n13y5c-Lq7PTJfeSYODYNNqJjlq8Qb8yhEYq8J50qwCpAy871Qkn9IoCquAa1WqUArWRTSukpgN2ssvdjqtNuPFTv-J6uy1x48pfm1207zcp3tnb_GCNRt0STgHfngNKvh9DHewmVh_63qWQx2qFUq0UCgRM6NF_6DqPJU3vWaFBkGyUpIkSO8qXXGsJ3WsZBPuoxO6U2EmJfVJiH6MP377xevLigP4BbQaFwg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602347543</pqid></control><display><type>article</type><title>Reinforcement-learning in fronto-striatal circuits</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Averbeck, Bruno ; O'Doherty, John P</creator><creatorcontrib>Averbeck, Bruno ; O'Doherty, John P</creatorcontrib><description>We review the current state of knowledge on the computational and neural mechanisms of reinforcement-learning with a particular focus on fronto-striatal circuits. We divide the literature in this area into five broad research themes: the target of the learning-whether it be learning about the value of stimuli or about the value of actions; the nature and complexity of the algorithm used to drive the learning and inference process; how learned values get converted into choices and associated actions; the nature of state representations, and of other cognitive machinery that support the implementation of various reinforcement-learning operations. An emerging fifth area focuses on how the brain allocates or arbitrates control over different reinforcement-learning sub-systems or "experts". We will outline what is known about the role of the prefrontal cortex and striatum in implementing each of these functions. We then conclude by arguing that it will be necessary to build bridges from algorithmic level descriptions of computational reinforcement-learning to implementational level models to better understand how reinforcement-learning emerges from multiple distributed neural networks in the brain.</description><identifier>ISSN: 0893-133X</identifier><identifier>EISSN: 1740-634X</identifier><identifier>DOI: 10.1038/s41386-021-01108-0</identifier><identifier>PMID: 34354249</identifier><language>eng</language><publisher>England: Nature Publishing Group</publisher><subject>Algorithms ; Brain Mapping ; Brain research ; Cognitive ability ; Computational neuroscience ; Corpus Striatum ; Dopamine ; Learning ; Neostriatum ; Neural networks ; Prefrontal Cortex ; Reinforcement ; Reinforcement, Psychology ; Review</subject><ispartof>Neuropsychopharmacology (New York, N.Y.), 2022-01, Vol.47 (1), p.147-162</ispartof><rights>2021. The Author(s), under exclusive licence to American College of Neuropsychopharmacology.</rights><rights>The Author(s), under exclusive licence to American College of Neuropsychopharmacology 2021.</rights><rights>The Author(s), under exclusive licence to American College of Neuropsychopharmacology 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-1776a2f391d1cb8318450cc3695013f0c4f5f2a26b3e15ea75961421684792463</citedby><cites>FETCH-LOGICAL-c430t-1776a2f391d1cb8318450cc3695013f0c4f5f2a26b3e15ea75961421684792463</cites><orcidid>0000-0002-3976-8565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616931/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616931/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34354249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Averbeck, Bruno</creatorcontrib><creatorcontrib>O'Doherty, John P</creatorcontrib><title>Reinforcement-learning in fronto-striatal circuits</title><title>Neuropsychopharmacology (New York, N.Y.)</title><addtitle>Neuropsychopharmacology</addtitle><description>We review the current state of knowledge on the computational and neural mechanisms of reinforcement-learning with a particular focus on fronto-striatal circuits. We divide the literature in this area into five broad research themes: the target of the learning-whether it be learning about the value of stimuli or about the value of actions; the nature and complexity of the algorithm used to drive the learning and inference process; how learned values get converted into choices and associated actions; the nature of state representations, and of other cognitive machinery that support the implementation of various reinforcement-learning operations. An emerging fifth area focuses on how the brain allocates or arbitrates control over different reinforcement-learning sub-systems or "experts". We will outline what is known about the role of the prefrontal cortex and striatum in implementing each of these functions. We then conclude by arguing that it will be necessary to build bridges from algorithmic level descriptions of computational reinforcement-learning to implementational level models to better understand how reinforcement-learning emerges from multiple distributed neural networks in the brain.</description><subject>Algorithms</subject><subject>Brain Mapping</subject><subject>Brain research</subject><subject>Cognitive ability</subject><subject>Computational neuroscience</subject><subject>Corpus Striatum</subject><subject>Dopamine</subject><subject>Learning</subject><subject>Neostriatum</subject><subject>Neural networks</subject><subject>Prefrontal Cortex</subject><subject>Reinforcement</subject><subject>Reinforcement, Psychology</subject><subject>Review</subject><issn>0893-133X</issn><issn>1740-634X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkUFLXDEQx0OxdFfbL9CDLHjpJXYmk-TlXQQRq8JCobTgLWRjnmZ5m6zJe0K_fZ-uivY0h_nNn__wY-wrwjECme9VIhnNQSAHRDAcPrA5NhK4Jnm9x-ZgWuJIdD1j-7WuAVA12nxiM5KkpJDtnIlfIaYuFx82IQ28D66kmG4XMS26ktOQeR1KdIPrFz4WP8ahfmYfO9fX8OV5HrA_P85_n13y5c-Lq7PTJfeSYODYNNqJjlq8Qb8yhEYq8J50qwCpAy871Qkn9IoCquAa1WqUArWRTSukpgN2ssvdjqtNuPFTv-J6uy1x48pfm1207zcp3tnb_GCNRt0STgHfngNKvh9DHewmVh_63qWQx2qFUq0UCgRM6NF_6DqPJU3vWaFBkGyUpIkSO8qXXGsJ3WsZBPuoxO6U2EmJfVJiH6MP377xevLigP4BbQaFwg</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Averbeck, Bruno</creator><creator>O'Doherty, John P</creator><general>Nature Publishing Group</general><general>Springer International Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3976-8565</orcidid></search><sort><creationdate>20220101</creationdate><title>Reinforcement-learning in fronto-striatal circuits</title><author>Averbeck, Bruno ; O'Doherty, John P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-1776a2f391d1cb8318450cc3695013f0c4f5f2a26b3e15ea75961421684792463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Brain Mapping</topic><topic>Brain research</topic><topic>Cognitive ability</topic><topic>Computational neuroscience</topic><topic>Corpus Striatum</topic><topic>Dopamine</topic><topic>Learning</topic><topic>Neostriatum</topic><topic>Neural networks</topic><topic>Prefrontal Cortex</topic><topic>Reinforcement</topic><topic>Reinforcement, Psychology</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Averbeck, Bruno</creatorcontrib><creatorcontrib>O'Doherty, John P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuropsychopharmacology (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Averbeck, Bruno</au><au>O'Doherty, John P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinforcement-learning in fronto-striatal circuits</atitle><jtitle>Neuropsychopharmacology (New York, N.Y.)</jtitle><addtitle>Neuropsychopharmacology</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>47</volume><issue>1</issue><spage>147</spage><epage>162</epage><pages>147-162</pages><issn>0893-133X</issn><eissn>1740-634X</eissn><abstract>We review the current state of knowledge on the computational and neural mechanisms of reinforcement-learning with a particular focus on fronto-striatal circuits. We divide the literature in this area into five broad research themes: the target of the learning-whether it be learning about the value of stimuli or about the value of actions; the nature and complexity of the algorithm used to drive the learning and inference process; how learned values get converted into choices and associated actions; the nature of state representations, and of other cognitive machinery that support the implementation of various reinforcement-learning operations. An emerging fifth area focuses on how the brain allocates or arbitrates control over different reinforcement-learning sub-systems or "experts". We will outline what is known about the role of the prefrontal cortex and striatum in implementing each of these functions. We then conclude by arguing that it will be necessary to build bridges from algorithmic level descriptions of computational reinforcement-learning to implementational level models to better understand how reinforcement-learning emerges from multiple distributed neural networks in the brain.</abstract><cop>England</cop><pub>Nature Publishing Group</pub><pmid>34354249</pmid><doi>10.1038/s41386-021-01108-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3976-8565</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-133X |
ispartof | Neuropsychopharmacology (New York, N.Y.), 2022-01, Vol.47 (1), p.147-162 |
issn | 0893-133X 1740-634X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8616931 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms Brain Mapping Brain research Cognitive ability Computational neuroscience Corpus Striatum Dopamine Learning Neostriatum Neural networks Prefrontal Cortex Reinforcement Reinforcement, Psychology Review |
title | Reinforcement-learning in fronto-striatal circuits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinforcement-learning%20in%20fronto-striatal%20circuits&rft.jtitle=Neuropsychopharmacology%20(New%20York,%20N.Y.)&rft.au=Averbeck,%20Bruno&rft.date=2022-01-01&rft.volume=47&rft.issue=1&rft.spage=147&rft.epage=162&rft.pages=147-162&rft.issn=0893-133X&rft.eissn=1740-634X&rft_id=info:doi/10.1038/s41386-021-01108-0&rft_dat=%3Cproquest_pubme%3E2559425020%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2602347543&rft_id=info:pmid/34354249&rfr_iscdi=true |