A Minimal Subset of Seven Genes Associated with Tumor Hepatocyte Differentiation Predicts a Poor Prognosis in Human Hepatocellular Carcinoma
Hepatocellular carcinoma (HCC) is a deadly cancer worldwide as a result of a frequent late diagnosis which limits the therapeutic options. Tumor progression in HCC is closely correlated with the dedifferentiation of hepatocytes, the main parenchymal cells in the liver. Here, we hypothesized that the...
Gespeichert in:
Veröffentlicht in: | Cancers 2021-11, Vol.13 (22), p.5624 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | 5624 |
container_title | Cancers |
container_volume | 13 |
creator | Desoteux, Matthis Louis, Corentin Bévant, Kevin Glaise, Denise Coulouarn, Cédric |
description | Hepatocellular carcinoma (HCC) is a deadly cancer worldwide as a result of a frequent late diagnosis which limits the therapeutic options. Tumor progression in HCC is closely correlated with the dedifferentiation of hepatocytes, the main parenchymal cells in the liver. Here, we hypothesized that the expression level of genes reflecting the differentiation status of tumor hepatocytes could be clinically relevant in defining subsets of patients with different clinical outcomes. To test this hypothesis, an integrative transcriptomics approach was used to stratify a cohort of 139 HCC patients based on a gene expression signature established in vitro in the HepaRG cell line using well-controlled culture conditions recapitulating tumor hepatocyte differentiation. The HepaRG model was first validated by identifying a robust gene expression signature associated with hepatocyte differentiation and liver metabolism. In addition, the signature was able to distinguish specific developmental stages in mice. More importantly, the signature identified a subset of human HCC associated with a poor prognosis and cancer stem cell features. By using an independent HCC dataset (TCGA consortium), a minimal subset of seven differentiation-related genes was shown to predict a reduced overall survival, not only in patients with HCC but also in other types of cancers (e.g., kidney, pancreas, skin). In conclusion, the study identified a minimal subset of seven genes reflecting the differentiation status of tumor hepatocytes and clinically relevant for predicting the prognosis of HCC patients. |
doi_str_mv | 10.3390/cancers13225624 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8616205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604028548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-e7d0ed5a9f9da8e6433d42efa6351327444c13508e9384d05ca640474657a64a3</originalsourceid><addsrcrecordid>eNpdksFuEzEQhi0EolXomaslLnBI67W99u4FKQrQIAURqeVsTb2zjatdO9jeoL4DD42jtAjii0f2N_-Mfw8hbyt2KUTLrix4izFVgvNacfmCnHOm-VypVr78Jz4jFyk9sLKEqLTSr8mZkI1gWrfn5PeCfnPejTDQm-kuYaahpze4R0-v0WOii5SCdZCxo79c3tLbaQyRrnAHOdjHjPST63uM6HOBXPB0E7FzNicKdBMKuonh3ofkEnWerqYR_HM2DsM0QKRLiNb5MMIb8qqHIeHF0z4jP758vl2u5uvv11-Xi_XcSsHzHHXHsKuh7dsOGlRSiE5y7EGJupihpZS2EjVrsBWN7FhtQUkmtVS1LhGIGfl41N1NdyN2tjQfYTC7WHyIjyaAM__feLc192FvGlUpzuoi8OEosD1JWy3W5nDGhFQNb_S-Kuz7p2Ix_JwwZTO6dHg7eAxTMlwxyXhTly-ZkXcn6EOYoi9WHCjOqlYLXairI2VjSCli_7eDipnDYJiTwRB_AN_Dq_0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602019737</pqid></control><display><type>article</type><title>A Minimal Subset of Seven Genes Associated with Tumor Hepatocyte Differentiation Predicts a Poor Prognosis in Human Hepatocellular Carcinoma</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Desoteux, Matthis ; Louis, Corentin ; Bévant, Kevin ; Glaise, Denise ; Coulouarn, Cédric</creator><creatorcontrib>Desoteux, Matthis ; Louis, Corentin ; Bévant, Kevin ; Glaise, Denise ; Coulouarn, Cédric</creatorcontrib><description>Hepatocellular carcinoma (HCC) is a deadly cancer worldwide as a result of a frequent late diagnosis which limits the therapeutic options. Tumor progression in HCC is closely correlated with the dedifferentiation of hepatocytes, the main parenchymal cells in the liver. Here, we hypothesized that the expression level of genes reflecting the differentiation status of tumor hepatocytes could be clinically relevant in defining subsets of patients with different clinical outcomes. To test this hypothesis, an integrative transcriptomics approach was used to stratify a cohort of 139 HCC patients based on a gene expression signature established in vitro in the HepaRG cell line using well-controlled culture conditions recapitulating tumor hepatocyte differentiation. The HepaRG model was first validated by identifying a robust gene expression signature associated with hepatocyte differentiation and liver metabolism. In addition, the signature was able to distinguish specific developmental stages in mice. More importantly, the signature identified a subset of human HCC associated with a poor prognosis and cancer stem cell features. By using an independent HCC dataset (TCGA consortium), a minimal subset of seven differentiation-related genes was shown to predict a reduced overall survival, not only in patients with HCC but also in other types of cancers (e.g., kidney, pancreas, skin). In conclusion, the study identified a minimal subset of seven genes reflecting the differentiation status of tumor hepatocytes and clinically relevant for predicting the prognosis of HCC patients.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers13225624</identifier><identifier>PMID: 34830779</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Cell culture ; Cell cycle ; Datasets ; Developmental stages ; Experiments ; Gene expression ; Genomes ; Hepatocellular carcinoma ; Hepatocytes ; Kidneys ; Life Sciences ; Liver cancer ; Medical prognosis ; Metabolism ; Molecular modelling ; Mutation ; Pancreas ; Patients ; Prognosis ; Stem cells ; Survival analysis ; Transcriptomics ; Tumors</subject><ispartof>Cancers, 2021-11, Vol.13 (22), p.5624</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-e7d0ed5a9f9da8e6433d42efa6351327444c13508e9384d05ca640474657a64a3</citedby><cites>FETCH-LOGICAL-c432t-e7d0ed5a9f9da8e6433d42efa6351327444c13508e9384d05ca640474657a64a3</cites><orcidid>0000-0002-5513-4394 ; 0000-0002-5692-9586 ; 0000-0002-3412-2730 ; 0000-0002-4136-6936</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616205/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616205/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03468287$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Desoteux, Matthis</creatorcontrib><creatorcontrib>Louis, Corentin</creatorcontrib><creatorcontrib>Bévant, Kevin</creatorcontrib><creatorcontrib>Glaise, Denise</creatorcontrib><creatorcontrib>Coulouarn, Cédric</creatorcontrib><title>A Minimal Subset of Seven Genes Associated with Tumor Hepatocyte Differentiation Predicts a Poor Prognosis in Human Hepatocellular Carcinoma</title><title>Cancers</title><description>Hepatocellular carcinoma (HCC) is a deadly cancer worldwide as a result of a frequent late diagnosis which limits the therapeutic options. Tumor progression in HCC is closely correlated with the dedifferentiation of hepatocytes, the main parenchymal cells in the liver. Here, we hypothesized that the expression level of genes reflecting the differentiation status of tumor hepatocytes could be clinically relevant in defining subsets of patients with different clinical outcomes. To test this hypothesis, an integrative transcriptomics approach was used to stratify a cohort of 139 HCC patients based on a gene expression signature established in vitro in the HepaRG cell line using well-controlled culture conditions recapitulating tumor hepatocyte differentiation. The HepaRG model was first validated by identifying a robust gene expression signature associated with hepatocyte differentiation and liver metabolism. In addition, the signature was able to distinguish specific developmental stages in mice. More importantly, the signature identified a subset of human HCC associated with a poor prognosis and cancer stem cell features. By using an independent HCC dataset (TCGA consortium), a minimal subset of seven differentiation-related genes was shown to predict a reduced overall survival, not only in patients with HCC but also in other types of cancers (e.g., kidney, pancreas, skin). In conclusion, the study identified a minimal subset of seven genes reflecting the differentiation status of tumor hepatocytes and clinically relevant for predicting the prognosis of HCC patients.</description><subject>Cell culture</subject><subject>Cell cycle</subject><subject>Datasets</subject><subject>Developmental stages</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Hepatocellular carcinoma</subject><subject>Hepatocytes</subject><subject>Kidneys</subject><subject>Life Sciences</subject><subject>Liver cancer</subject><subject>Medical prognosis</subject><subject>Metabolism</subject><subject>Molecular modelling</subject><subject>Mutation</subject><subject>Pancreas</subject><subject>Patients</subject><subject>Prognosis</subject><subject>Stem cells</subject><subject>Survival analysis</subject><subject>Transcriptomics</subject><subject>Tumors</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdksFuEzEQhi0EolXomaslLnBI67W99u4FKQrQIAURqeVsTb2zjatdO9jeoL4DD42jtAjii0f2N_-Mfw8hbyt2KUTLrix4izFVgvNacfmCnHOm-VypVr78Jz4jFyk9sLKEqLTSr8mZkI1gWrfn5PeCfnPejTDQm-kuYaahpze4R0-v0WOii5SCdZCxo79c3tLbaQyRrnAHOdjHjPST63uM6HOBXPB0E7FzNicKdBMKuonh3ofkEnWerqYR_HM2DsM0QKRLiNb5MMIb8qqHIeHF0z4jP758vl2u5uvv11-Xi_XcSsHzHHXHsKuh7dsOGlRSiE5y7EGJupihpZS2EjVrsBWN7FhtQUkmtVS1LhGIGfl41N1NdyN2tjQfYTC7WHyIjyaAM__feLc192FvGlUpzuoi8OEosD1JWy3W5nDGhFQNb_S-Kuz7p2Ix_JwwZTO6dHg7eAxTMlwxyXhTly-ZkXcn6EOYoi9WHCjOqlYLXairI2VjSCli_7eDipnDYJiTwRB_AN_Dq_0</recordid><startdate>20211110</startdate><enddate>20211110</enddate><creator>Desoteux, Matthis</creator><creator>Louis, Corentin</creator><creator>Bévant, Kevin</creator><creator>Glaise, Denise</creator><creator>Coulouarn, Cédric</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5513-4394</orcidid><orcidid>https://orcid.org/0000-0002-5692-9586</orcidid><orcidid>https://orcid.org/0000-0002-3412-2730</orcidid><orcidid>https://orcid.org/0000-0002-4136-6936</orcidid></search><sort><creationdate>20211110</creationdate><title>A Minimal Subset of Seven Genes Associated with Tumor Hepatocyte Differentiation Predicts a Poor Prognosis in Human Hepatocellular Carcinoma</title><author>Desoteux, Matthis ; Louis, Corentin ; Bévant, Kevin ; Glaise, Denise ; Coulouarn, Cédric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-e7d0ed5a9f9da8e6433d42efa6351327444c13508e9384d05ca640474657a64a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cell culture</topic><topic>Cell cycle</topic><topic>Datasets</topic><topic>Developmental stages</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Hepatocellular carcinoma</topic><topic>Hepatocytes</topic><topic>Kidneys</topic><topic>Life Sciences</topic><topic>Liver cancer</topic><topic>Medical prognosis</topic><topic>Metabolism</topic><topic>Molecular modelling</topic><topic>Mutation</topic><topic>Pancreas</topic><topic>Patients</topic><topic>Prognosis</topic><topic>Stem cells</topic><topic>Survival analysis</topic><topic>Transcriptomics</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desoteux, Matthis</creatorcontrib><creatorcontrib>Louis, Corentin</creatorcontrib><creatorcontrib>Bévant, Kevin</creatorcontrib><creatorcontrib>Glaise, Denise</creatorcontrib><creatorcontrib>Coulouarn, Cédric</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desoteux, Matthis</au><au>Louis, Corentin</au><au>Bévant, Kevin</au><au>Glaise, Denise</au><au>Coulouarn, Cédric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Minimal Subset of Seven Genes Associated with Tumor Hepatocyte Differentiation Predicts a Poor Prognosis in Human Hepatocellular Carcinoma</atitle><jtitle>Cancers</jtitle><date>2021-11-10</date><risdate>2021</risdate><volume>13</volume><issue>22</issue><spage>5624</spage><pages>5624-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Hepatocellular carcinoma (HCC) is a deadly cancer worldwide as a result of a frequent late diagnosis which limits the therapeutic options. Tumor progression in HCC is closely correlated with the dedifferentiation of hepatocytes, the main parenchymal cells in the liver. Here, we hypothesized that the expression level of genes reflecting the differentiation status of tumor hepatocytes could be clinically relevant in defining subsets of patients with different clinical outcomes. To test this hypothesis, an integrative transcriptomics approach was used to stratify a cohort of 139 HCC patients based on a gene expression signature established in vitro in the HepaRG cell line using well-controlled culture conditions recapitulating tumor hepatocyte differentiation. The HepaRG model was first validated by identifying a robust gene expression signature associated with hepatocyte differentiation and liver metabolism. In addition, the signature was able to distinguish specific developmental stages in mice. More importantly, the signature identified a subset of human HCC associated with a poor prognosis and cancer stem cell features. By using an independent HCC dataset (TCGA consortium), a minimal subset of seven differentiation-related genes was shown to predict a reduced overall survival, not only in patients with HCC but also in other types of cancers (e.g., kidney, pancreas, skin). In conclusion, the study identified a minimal subset of seven genes reflecting the differentiation status of tumor hepatocytes and clinically relevant for predicting the prognosis of HCC patients.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34830779</pmid><doi>10.3390/cancers13225624</doi><orcidid>https://orcid.org/0000-0002-5513-4394</orcidid><orcidid>https://orcid.org/0000-0002-5692-9586</orcidid><orcidid>https://orcid.org/0000-0002-3412-2730</orcidid><orcidid>https://orcid.org/0000-0002-4136-6936</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-6694 |
ispartof | Cancers, 2021-11, Vol.13 (22), p.5624 |
issn | 2072-6694 2072-6694 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8616205 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | Cell culture Cell cycle Datasets Developmental stages Experiments Gene expression Genomes Hepatocellular carcinoma Hepatocytes Kidneys Life Sciences Liver cancer Medical prognosis Metabolism Molecular modelling Mutation Pancreas Patients Prognosis Stem cells Survival analysis Transcriptomics Tumors |
title | A Minimal Subset of Seven Genes Associated with Tumor Hepatocyte Differentiation Predicts a Poor Prognosis in Human Hepatocellular Carcinoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A30%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Minimal%20Subset%20of%20Seven%20Genes%20Associated%20with%20Tumor%20Hepatocyte%20Differentiation%20Predicts%20a%20Poor%20Prognosis%20in%20Human%20Hepatocellular%20Carcinoma&rft.jtitle=Cancers&rft.au=Desoteux,%20Matthis&rft.date=2021-11-10&rft.volume=13&rft.issue=22&rft.spage=5624&rft.pages=5624-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers13225624&rft_dat=%3Cproquest_pubme%3E2604028548%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2602019737&rft_id=info:pmid/34830779&rfr_iscdi=true |