Ultrafast Photon-Induced Tunneling Microscopy

Unification of the techniques of ultrafast science and scanning tunneling microscopy (STM) has the potential of tracking electronic motion in molecules simultaneously in real space and real time. Laser pulses can couple to an STM junction either in the weak-field or in the strong-field interaction r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2021-11, Vol.15 (11), p.18071-18084
Hauptverfasser: Garg, Manish, Martin-Jimenez, Alberto, Luo, Yang, Kern, Klaus
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18084
container_issue 11
container_start_page 18071
container_title ACS nano
container_volume 15
creator Garg, Manish
Martin-Jimenez, Alberto
Luo, Yang
Kern, Klaus
description Unification of the techniques of ultrafast science and scanning tunneling microscopy (STM) has the potential of tracking electronic motion in molecules simultaneously in real space and real time. Laser pulses can couple to an STM junction either in the weak-field or in the strong-field interaction regime. The strong-field regime entails significant modification (dressing) of the tunneling barrier of the STM junction, whereas the weak-field or the photon-driven regime entails perturbative interaction. Here, we describe how photons carried in an ultrashort pulse interact with an STM junction, defining the basic fundamental framework of ultrafast photon-induced tunneling microscopy. Selective dipole coupling of electronic states by photons is shown to be controllable by adjusting the DC bias at the STM junction. An ultrafast tunneling microscopy involving photons is established. Consolidation of the technique calls for innovative approaches to detect photon-induced tunneling currents at the STM junction. We introduce and characterize here three techniques involving dispersion, polarization, and frequency modulation of the laser pulses to lock-in detect the laser-induced tunneling current. We show that photon-induced tunneling currents can simultaneously achieve angstrom scale spatial resolution and sub-femtosecond temporal resolution. Ultrafast photon-induced tunneling microscopy will be able to directly probe electron dynamics in complex molecular systems, without the need of reconstruction techniques.
doi_str_mv 10.1021/acsnano.1c06716
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8613903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2592308189</sourcerecordid><originalsourceid>FETCH-LOGICAL-a472t-ec75357bb616ad2ff0de62f8a0103b45364b643ed1152ccda5b4332883d7db173</originalsourceid><addsrcrecordid>eNp1UEtLw0AQXkSxtXr22qMgafeRfeQiSPFRUPTQgrdlX2lT0t2aTYT-e7c0FDx4GGbge8zMB8AtghMEMZoqE73yYYIMZByxMzBEBWEZFOzr_DRTNABXMW4gpFxwdgkGJOc4VT4E2bJuG1Wq2I4_16ENPpt72xlnx4vOe1dXfjV-r0wTogm7_TW4KFUd3U3fR2D5_LSYvWZvHy_z2eNbppJxmznDKaFca4aYsrgsoXUMl0JBBInOKWG5ZjlxFiGKjbGK6pwQLASx3GrEyQg8HH13nd46a5xPR9Zy11Rb1exlUJX8i_hqLVfhRwqGSAFJMrjrDZrw3bnYym0Vjatr5V3oosS0wAQKJIpEnR6phydj48rTGgTlIWTZhyz7kJPi_qhIgNyErvEpi3_Zv5VFft4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2592308189</pqid></control><display><type>article</type><title>Ultrafast Photon-Induced Tunneling Microscopy</title><source>American Chemical Society Publications</source><creator>Garg, Manish ; Martin-Jimenez, Alberto ; Luo, Yang ; Kern, Klaus</creator><creatorcontrib>Garg, Manish ; Martin-Jimenez, Alberto ; Luo, Yang ; Kern, Klaus</creatorcontrib><description>Unification of the techniques of ultrafast science and scanning tunneling microscopy (STM) has the potential of tracking electronic motion in molecules simultaneously in real space and real time. Laser pulses can couple to an STM junction either in the weak-field or in the strong-field interaction regime. The strong-field regime entails significant modification (dressing) of the tunneling barrier of the STM junction, whereas the weak-field or the photon-driven regime entails perturbative interaction. Here, we describe how photons carried in an ultrashort pulse interact with an STM junction, defining the basic fundamental framework of ultrafast photon-induced tunneling microscopy. Selective dipole coupling of electronic states by photons is shown to be controllable by adjusting the DC bias at the STM junction. An ultrafast tunneling microscopy involving photons is established. Consolidation of the technique calls for innovative approaches to detect photon-induced tunneling currents at the STM junction. We introduce and characterize here three techniques involving dispersion, polarization, and frequency modulation of the laser pulses to lock-in detect the laser-induced tunneling current. We show that photon-induced tunneling currents can simultaneously achieve angstrom scale spatial resolution and sub-femtosecond temporal resolution. Ultrafast photon-induced tunneling microscopy will be able to directly probe electron dynamics in complex molecular systems, without the need of reconstruction techniques.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c06716</identifier><identifier>PMID: 34723474</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2021-11, Vol.15 (11), p.18071-18084</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><rights>2021 The Authors. Published by American Chemical Society 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a472t-ec75357bb616ad2ff0de62f8a0103b45364b643ed1152ccda5b4332883d7db173</citedby><cites>FETCH-LOGICAL-a472t-ec75357bb616ad2ff0de62f8a0103b45364b643ed1152ccda5b4332883d7db173</cites><orcidid>0000-0002-1744-7445 ; 0000-0003-0887-934X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.1c06716$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.1c06716$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Garg, Manish</creatorcontrib><creatorcontrib>Martin-Jimenez, Alberto</creatorcontrib><creatorcontrib>Luo, Yang</creatorcontrib><creatorcontrib>Kern, Klaus</creatorcontrib><title>Ultrafast Photon-Induced Tunneling Microscopy</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Unification of the techniques of ultrafast science and scanning tunneling microscopy (STM) has the potential of tracking electronic motion in molecules simultaneously in real space and real time. Laser pulses can couple to an STM junction either in the weak-field or in the strong-field interaction regime. The strong-field regime entails significant modification (dressing) of the tunneling barrier of the STM junction, whereas the weak-field or the photon-driven regime entails perturbative interaction. Here, we describe how photons carried in an ultrashort pulse interact with an STM junction, defining the basic fundamental framework of ultrafast photon-induced tunneling microscopy. Selective dipole coupling of electronic states by photons is shown to be controllable by adjusting the DC bias at the STM junction. An ultrafast tunneling microscopy involving photons is established. Consolidation of the technique calls for innovative approaches to detect photon-induced tunneling currents at the STM junction. We introduce and characterize here three techniques involving dispersion, polarization, and frequency modulation of the laser pulses to lock-in detect the laser-induced tunneling current. We show that photon-induced tunneling currents can simultaneously achieve angstrom scale spatial resolution and sub-femtosecond temporal resolution. Ultrafast photon-induced tunneling microscopy will be able to directly probe electron dynamics in complex molecular systems, without the need of reconstruction techniques.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLw0AQXkSxtXr22qMgafeRfeQiSPFRUPTQgrdlX2lT0t2aTYT-e7c0FDx4GGbge8zMB8AtghMEMZoqE73yYYIMZByxMzBEBWEZFOzr_DRTNABXMW4gpFxwdgkGJOc4VT4E2bJuG1Wq2I4_16ENPpt72xlnx4vOe1dXfjV-r0wTogm7_TW4KFUd3U3fR2D5_LSYvWZvHy_z2eNbppJxmznDKaFca4aYsrgsoXUMl0JBBInOKWG5ZjlxFiGKjbGK6pwQLASx3GrEyQg8HH13nd46a5xPR9Zy11Rb1exlUJX8i_hqLVfhRwqGSAFJMrjrDZrw3bnYym0Vjatr5V3oosS0wAQKJIpEnR6phydj48rTGgTlIWTZhyz7kJPi_qhIgNyErvEpi3_Zv5VFft4</recordid><startdate>20211123</startdate><enddate>20211123</enddate><creator>Garg, Manish</creator><creator>Martin-Jimenez, Alberto</creator><creator>Luo, Yang</creator><creator>Kern, Klaus</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1744-7445</orcidid><orcidid>https://orcid.org/0000-0003-0887-934X</orcidid></search><sort><creationdate>20211123</creationdate><title>Ultrafast Photon-Induced Tunneling Microscopy</title><author>Garg, Manish ; Martin-Jimenez, Alberto ; Luo, Yang ; Kern, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a472t-ec75357bb616ad2ff0de62f8a0103b45364b643ed1152ccda5b4332883d7db173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garg, Manish</creatorcontrib><creatorcontrib>Martin-Jimenez, Alberto</creatorcontrib><creatorcontrib>Luo, Yang</creatorcontrib><creatorcontrib>Kern, Klaus</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garg, Manish</au><au>Martin-Jimenez, Alberto</au><au>Luo, Yang</au><au>Kern, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast Photon-Induced Tunneling Microscopy</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2021-11-23</date><risdate>2021</risdate><volume>15</volume><issue>11</issue><spage>18071</spage><epage>18084</epage><pages>18071-18084</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Unification of the techniques of ultrafast science and scanning tunneling microscopy (STM) has the potential of tracking electronic motion in molecules simultaneously in real space and real time. Laser pulses can couple to an STM junction either in the weak-field or in the strong-field interaction regime. The strong-field regime entails significant modification (dressing) of the tunneling barrier of the STM junction, whereas the weak-field or the photon-driven regime entails perturbative interaction. Here, we describe how photons carried in an ultrashort pulse interact with an STM junction, defining the basic fundamental framework of ultrafast photon-induced tunneling microscopy. Selective dipole coupling of electronic states by photons is shown to be controllable by adjusting the DC bias at the STM junction. An ultrafast tunneling microscopy involving photons is established. Consolidation of the technique calls for innovative approaches to detect photon-induced tunneling currents at the STM junction. We introduce and characterize here three techniques involving dispersion, polarization, and frequency modulation of the laser pulses to lock-in detect the laser-induced tunneling current. We show that photon-induced tunneling currents can simultaneously achieve angstrom scale spatial resolution and sub-femtosecond temporal resolution. Ultrafast photon-induced tunneling microscopy will be able to directly probe electron dynamics in complex molecular systems, without the need of reconstruction techniques.</abstract><pub>American Chemical Society</pub><pmid>34723474</pmid><doi>10.1021/acsnano.1c06716</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1744-7445</orcidid><orcidid>https://orcid.org/0000-0003-0887-934X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2021-11, Vol.15 (11), p.18071-18084
issn 1936-0851
1936-086X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8613903
source American Chemical Society Publications
title Ultrafast Photon-Induced Tunneling Microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A21%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20Photon-Induced%20Tunneling%20Microscopy&rft.jtitle=ACS%20nano&rft.au=Garg,%20Manish&rft.date=2021-11-23&rft.volume=15&rft.issue=11&rft.spage=18071&rft.epage=18084&rft.pages=18071-18084&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c06716&rft_dat=%3Cproquest_pubme%3E2592308189%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2592308189&rft_id=info:pmid/34723474&rfr_iscdi=true