3D Bioprinting of Biomimetic Bilayered Scaffold Consisting of Decellularized Extracellular Matrix and Silk Fibroin for Osteochondral Repair
Recently, three-dimensional (3D) bioprinting technology is becoming an appealing approach for osteochondral repair. However, it is challenging to develop a bilayered scaffold with anisotropic structural properties to mimic a native osteochondral tissue. Herein, we developed a bioink consisting of de...
Gespeichert in:
Veröffentlicht in: | International journal of bioprinting 2021-01, Vol.7 (4), p.401-401 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 401 |
---|---|
container_issue | 4 |
container_start_page | 401 |
container_title | International journal of bioprinting |
container_volume | 7 |
creator | Zhang, Xiao Liu, Yang Zuo, Qiang Wang, Qingyun Li, Zuxi Yan, Kai Yuan, Tao Zhang, Yi Shen, Kai Xie, Rui Fan, Weimin |
description | Recently, three-dimensional (3D) bioprinting technology is becoming an appealing approach for osteochondral repair. However, it is challenging to develop a bilayered scaffold with anisotropic structural properties to mimic a native osteochondral tissue. Herein, we developed a bioink consisting of decellularized extracellular matrix and silk fibroin to print the bilayered scaffold. The bilayered scaffold mimics the natural osteochondral tissue by controlling the composition, mechanical properties, and growth factor release in each layer of the scaffold. The in vitro results show that each layer of scaffolds had a suitable mechanical strength and degradation rate. Furthermore, the scaffolds encapsulating transforming growth factor-beta (TGF-β) and bone morphogenetic protein-2 (BMP-2) can act as a controlled release system and promote directed differentiation of bone marrow-derived mesenchymal stem cells. Furthermore, the in vivo experiments suggested that the scaffolds loaded with growth factors promoted osteochondral regeneration in the rabbit knee joint model. Consequently, the biomimetic bilayered scaffold loaded with TGF-β and BMP-2 would be a promising strategy for osteochondral repair. |
doi_str_mv | 10.18063/ijb.v7i4.401 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8611412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604026647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-813520a6a5852b0a1b172225b52b25723cfd5f1ef449c40822fb74345c90de593</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EotXSI3dLXLhk8WfiXJBg2wJSUSU-zpbj2O0sjr3YSdXyF_qn8dItEsgHz4yfeTXjF6GXlKypIi1_A9thfdOBWAtCn6BjJphoFCHs6SHuOsaP0EkpW1KrihLK1XN0xIVikvT9Mbrnp_g9pF2GOEO8wsnv0wkmN4OtYTB3LrsRf7XG-xRGvEmxQHlkT511ISzBZPhVqbPbOZvHCv5s5gy32MTaDuEHPochJ4jYp4wvy-ySvU5xzCbgL25nIL9Az7wJxZ0c7hX6fn72bfOxubj88Gnz7qKxvGdzoyiXjJjWSCXZQAwdaMcYk0PNmKwLWz9KT50XoreCKMb80AkupO3J6GTPV-jtg-5uGSY3Whfr1EHXP5hMvtPJgP73JcK1vko3WrWUCsqqwOuDQE4_F1dmPUHZr22iS0vRrCWCsLYVXUVf_Ydu05JjXa9SrWw5V_WsUPNA2ZxKyc7_HYYS_cdpXZ3We6d1dZr_BsMJnJc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665633838</pqid></control><display><type>article</type><title>3D Bioprinting of Biomimetic Bilayered Scaffold Consisting of Decellularized Extracellular Matrix and Silk Fibroin for Osteochondral Repair</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Zhang, Xiao ; Liu, Yang ; Zuo, Qiang ; Wang, Qingyun ; Li, Zuxi ; Yan, Kai ; Yuan, Tao ; Zhang, Yi ; Shen, Kai ; Xie, Rui ; Fan, Weimin</creator><creatorcontrib>Zhang, Xiao ; Liu, Yang ; Zuo, Qiang ; Wang, Qingyun ; Li, Zuxi ; Yan, Kai ; Yuan, Tao ; Zhang, Yi ; Shen, Kai ; Xie, Rui ; Fan, Weimin</creatorcontrib><description>Recently, three-dimensional (3D) bioprinting technology is becoming an appealing approach for osteochondral repair. However, it is challenging to develop a bilayered scaffold with anisotropic structural properties to mimic a native osteochondral tissue. Herein, we developed a bioink consisting of decellularized extracellular matrix and silk fibroin to print the bilayered scaffold. The bilayered scaffold mimics the natural osteochondral tissue by controlling the composition, mechanical properties, and growth factor release in each layer of the scaffold. The in vitro results show that each layer of scaffolds had a suitable mechanical strength and degradation rate. Furthermore, the scaffolds encapsulating transforming growth factor-beta (TGF-β) and bone morphogenetic protein-2 (BMP-2) can act as a controlled release system and promote directed differentiation of bone marrow-derived mesenchymal stem cells. Furthermore, the in vivo experiments suggested that the scaffolds loaded with growth factors promoted osteochondral regeneration in the rabbit knee joint model. Consequently, the biomimetic bilayered scaffold loaded with TGF-β and BMP-2 would be a promising strategy for osteochondral repair.</description><identifier>ISSN: 2424-7723</identifier><identifier>EISSN: 2424-8002</identifier><identifier>DOI: 10.18063/ijb.v7i4.401</identifier><identifier>PMID: 34825099</identifier><language>eng</language><publisher>Singapore: AccScience Publishing</publisher><subject>Biomedical materials ; Biomimetics ; Bone growth ; Bone marrow ; Bone morphogenetic protein 2 ; Bone morphogenetic proteins ; Controlled release ; Extracellular matrix ; Growth factors ; Knee ; Mechanical properties ; Mesenchyme ; Regeneration ; Repair ; Scaffolds ; Silk ; Silk fibroin ; Stem cells ; Three dimensional printing ; Tissue engineering ; Transforming growth factor-b</subject><ispartof>International journal of bioprinting, 2021-01, Vol.7 (4), p.401-401</ispartof><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright: © 2021 Zhang, 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-813520a6a5852b0a1b172225b52b25723cfd5f1ef449c40822fb74345c90de593</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611412/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611412/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Zuo, Qiang</creatorcontrib><creatorcontrib>Wang, Qingyun</creatorcontrib><creatorcontrib>Li, Zuxi</creatorcontrib><creatorcontrib>Yan, Kai</creatorcontrib><creatorcontrib>Yuan, Tao</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Shen, Kai</creatorcontrib><creatorcontrib>Xie, Rui</creatorcontrib><creatorcontrib>Fan, Weimin</creatorcontrib><title>3D Bioprinting of Biomimetic Bilayered Scaffold Consisting of Decellularized Extracellular Matrix and Silk Fibroin for Osteochondral Repair</title><title>International journal of bioprinting</title><description>Recently, three-dimensional (3D) bioprinting technology is becoming an appealing approach for osteochondral repair. However, it is challenging to develop a bilayered scaffold with anisotropic structural properties to mimic a native osteochondral tissue. Herein, we developed a bioink consisting of decellularized extracellular matrix and silk fibroin to print the bilayered scaffold. The bilayered scaffold mimics the natural osteochondral tissue by controlling the composition, mechanical properties, and growth factor release in each layer of the scaffold. The in vitro results show that each layer of scaffolds had a suitable mechanical strength and degradation rate. Furthermore, the scaffolds encapsulating transforming growth factor-beta (TGF-β) and bone morphogenetic protein-2 (BMP-2) can act as a controlled release system and promote directed differentiation of bone marrow-derived mesenchymal stem cells. Furthermore, the in vivo experiments suggested that the scaffolds loaded with growth factors promoted osteochondral regeneration in the rabbit knee joint model. Consequently, the biomimetic bilayered scaffold loaded with TGF-β and BMP-2 would be a promising strategy for osteochondral repair.</description><subject>Biomedical materials</subject><subject>Biomimetics</subject><subject>Bone growth</subject><subject>Bone marrow</subject><subject>Bone morphogenetic protein 2</subject><subject>Bone morphogenetic proteins</subject><subject>Controlled release</subject><subject>Extracellular matrix</subject><subject>Growth factors</subject><subject>Knee</subject><subject>Mechanical properties</subject><subject>Mesenchyme</subject><subject>Regeneration</subject><subject>Repair</subject><subject>Scaffolds</subject><subject>Silk</subject><subject>Silk fibroin</subject><subject>Stem cells</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><subject>Transforming growth factor-b</subject><issn>2424-7723</issn><issn>2424-8002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU1v1DAQhi0EotXSI3dLXLhk8WfiXJBg2wJSUSU-zpbj2O0sjr3YSdXyF_qn8dItEsgHz4yfeTXjF6GXlKypIi1_A9thfdOBWAtCn6BjJphoFCHs6SHuOsaP0EkpW1KrihLK1XN0xIVikvT9Mbrnp_g9pF2GOEO8wsnv0wkmN4OtYTB3LrsRf7XG-xRGvEmxQHlkT511ISzBZPhVqbPbOZvHCv5s5gy32MTaDuEHPochJ4jYp4wvy-ySvU5xzCbgL25nIL9Az7wJxZ0c7hX6fn72bfOxubj88Gnz7qKxvGdzoyiXjJjWSCXZQAwdaMcYk0PNmKwLWz9KT50XoreCKMb80AkupO3J6GTPV-jtg-5uGSY3Whfr1EHXP5hMvtPJgP73JcK1vko3WrWUCsqqwOuDQE4_F1dmPUHZr22iS0vRrCWCsLYVXUVf_Ydu05JjXa9SrWw5V_WsUPNA2ZxKyc7_HYYS_cdpXZ3We6d1dZr_BsMJnJc</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Zhang, Xiao</creator><creator>Liu, Yang</creator><creator>Zuo, Qiang</creator><creator>Wang, Qingyun</creator><creator>Li, Zuxi</creator><creator>Yan, Kai</creator><creator>Yuan, Tao</creator><creator>Zhang, Yi</creator><creator>Shen, Kai</creator><creator>Xie, Rui</creator><creator>Fan, Weimin</creator><general>AccScience Publishing</general><general>Whioce Publishing Pte. Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210101</creationdate><title>3D Bioprinting of Biomimetic Bilayered Scaffold Consisting of Decellularized Extracellular Matrix and Silk Fibroin for Osteochondral Repair</title><author>Zhang, Xiao ; Liu, Yang ; Zuo, Qiang ; Wang, Qingyun ; Li, Zuxi ; Yan, Kai ; Yuan, Tao ; Zhang, Yi ; Shen, Kai ; Xie, Rui ; Fan, Weimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-813520a6a5852b0a1b172225b52b25723cfd5f1ef449c40822fb74345c90de593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical materials</topic><topic>Biomimetics</topic><topic>Bone growth</topic><topic>Bone marrow</topic><topic>Bone morphogenetic protein 2</topic><topic>Bone morphogenetic proteins</topic><topic>Controlled release</topic><topic>Extracellular matrix</topic><topic>Growth factors</topic><topic>Knee</topic><topic>Mechanical properties</topic><topic>Mesenchyme</topic><topic>Regeneration</topic><topic>Repair</topic><topic>Scaffolds</topic><topic>Silk</topic><topic>Silk fibroin</topic><topic>Stem cells</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><topic>Transforming growth factor-b</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Zuo, Qiang</creatorcontrib><creatorcontrib>Wang, Qingyun</creatorcontrib><creatorcontrib>Li, Zuxi</creatorcontrib><creatorcontrib>Yan, Kai</creatorcontrib><creatorcontrib>Yuan, Tao</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Shen, Kai</creatorcontrib><creatorcontrib>Xie, Rui</creatorcontrib><creatorcontrib>Fan, Weimin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of bioprinting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiao</au><au>Liu, Yang</au><au>Zuo, Qiang</au><au>Wang, Qingyun</au><au>Li, Zuxi</au><au>Yan, Kai</au><au>Yuan, Tao</au><au>Zhang, Yi</au><au>Shen, Kai</au><au>Xie, Rui</au><au>Fan, Weimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Bioprinting of Biomimetic Bilayered Scaffold Consisting of Decellularized Extracellular Matrix and Silk Fibroin for Osteochondral Repair</atitle><jtitle>International journal of bioprinting</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>7</volume><issue>4</issue><spage>401</spage><epage>401</epage><pages>401-401</pages><issn>2424-7723</issn><eissn>2424-8002</eissn><abstract>Recently, three-dimensional (3D) bioprinting technology is becoming an appealing approach for osteochondral repair. However, it is challenging to develop a bilayered scaffold with anisotropic structural properties to mimic a native osteochondral tissue. Herein, we developed a bioink consisting of decellularized extracellular matrix and silk fibroin to print the bilayered scaffold. The bilayered scaffold mimics the natural osteochondral tissue by controlling the composition, mechanical properties, and growth factor release in each layer of the scaffold. The in vitro results show that each layer of scaffolds had a suitable mechanical strength and degradation rate. Furthermore, the scaffolds encapsulating transforming growth factor-beta (TGF-β) and bone morphogenetic protein-2 (BMP-2) can act as a controlled release system and promote directed differentiation of bone marrow-derived mesenchymal stem cells. Furthermore, the in vivo experiments suggested that the scaffolds loaded with growth factors promoted osteochondral regeneration in the rabbit knee joint model. Consequently, the biomimetic bilayered scaffold loaded with TGF-β and BMP-2 would be a promising strategy for osteochondral repair.</abstract><cop>Singapore</cop><pub>AccScience Publishing</pub><pmid>34825099</pmid><doi>10.18063/ijb.v7i4.401</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2424-7723 |
ispartof | International journal of bioprinting, 2021-01, Vol.7 (4), p.401-401 |
issn | 2424-7723 2424-8002 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8611412 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Biomedical materials Biomimetics Bone growth Bone marrow Bone morphogenetic protein 2 Bone morphogenetic proteins Controlled release Extracellular matrix Growth factors Knee Mechanical properties Mesenchyme Regeneration Repair Scaffolds Silk Silk fibroin Stem cells Three dimensional printing Tissue engineering Transforming growth factor-b |
title | 3D Bioprinting of Biomimetic Bilayered Scaffold Consisting of Decellularized Extracellular Matrix and Silk Fibroin for Osteochondral Repair |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T10%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Bioprinting%20of%20Biomimetic%20Bilayered%20Scaffold%20Consisting%20of%20Decellularized%20Extracellular%20Matrix%20and%20Silk%20Fibroin%20for%20Osteochondral%20Repair&rft.jtitle=International%20journal%20of%20bioprinting&rft.au=Zhang,%20Xiao&rft.date=2021-01-01&rft.volume=7&rft.issue=4&rft.spage=401&rft.epage=401&rft.pages=401-401&rft.issn=2424-7723&rft.eissn=2424-8002&rft_id=info:doi/10.18063/ijb.v7i4.401&rft_dat=%3Cproquest_pubme%3E2604026647%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665633838&rft_id=info:pmid/34825099&rfr_iscdi=true |