3D Bioprinting of Biomimetic Bilayered Scaffold Consisting of Decellularized Extracellular Matrix and Silk Fibroin for Osteochondral Repair

Recently, three-dimensional (3D) bioprinting technology is becoming an appealing approach for osteochondral repair. However, it is challenging to develop a bilayered scaffold with anisotropic structural properties to mimic a native osteochondral tissue. Herein, we developed a bioink consisting of de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of bioprinting 2021-01, Vol.7 (4), p.401-401
Hauptverfasser: Zhang, Xiao, Liu, Yang, Zuo, Qiang, Wang, Qingyun, Li, Zuxi, Yan, Kai, Yuan, Tao, Zhang, Yi, Shen, Kai, Xie, Rui, Fan, Weimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 401
container_issue 4
container_start_page 401
container_title International journal of bioprinting
container_volume 7
creator Zhang, Xiao
Liu, Yang
Zuo, Qiang
Wang, Qingyun
Li, Zuxi
Yan, Kai
Yuan, Tao
Zhang, Yi
Shen, Kai
Xie, Rui
Fan, Weimin
description Recently, three-dimensional (3D) bioprinting technology is becoming an appealing approach for osteochondral repair. However, it is challenging to develop a bilayered scaffold with anisotropic structural properties to mimic a native osteochondral tissue. Herein, we developed a bioink consisting of decellularized extracellular matrix and silk fibroin to print the bilayered scaffold. The bilayered scaffold mimics the natural osteochondral tissue by controlling the composition, mechanical properties, and growth factor release in each layer of the scaffold. The in vitro results show that each layer of scaffolds had a suitable mechanical strength and degradation rate. Furthermore, the scaffolds encapsulating transforming growth factor-beta (TGF-β) and bone morphogenetic protein-2 (BMP-2) can act as a controlled release system and promote directed differentiation of bone marrow-derived mesenchymal stem cells. Furthermore, the in vivo experiments suggested that the scaffolds loaded with growth factors promoted osteochondral regeneration in the rabbit knee joint model. Consequently, the biomimetic bilayered scaffold loaded with TGF-β and BMP-2 would be a promising strategy for osteochondral repair.
doi_str_mv 10.18063/ijb.v7i4.401
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8611412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604026647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-813520a6a5852b0a1b172225b52b25723cfd5f1ef449c40822fb74345c90de593</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EotXSI3dLXLhk8WfiXJBg2wJSUSU-zpbj2O0sjr3YSdXyF_qn8dItEsgHz4yfeTXjF6GXlKypIi1_A9thfdOBWAtCn6BjJphoFCHs6SHuOsaP0EkpW1KrihLK1XN0xIVikvT9Mbrnp_g9pF2GOEO8wsnv0wkmN4OtYTB3LrsRf7XG-xRGvEmxQHlkT511ISzBZPhVqbPbOZvHCv5s5gy32MTaDuEHPochJ4jYp4wvy-ySvU5xzCbgL25nIL9Az7wJxZ0c7hX6fn72bfOxubj88Gnz7qKxvGdzoyiXjJjWSCXZQAwdaMcYk0PNmKwLWz9KT50XoreCKMb80AkupO3J6GTPV-jtg-5uGSY3Whfr1EHXP5hMvtPJgP73JcK1vko3WrWUCsqqwOuDQE4_F1dmPUHZr22iS0vRrCWCsLYVXUVf_Ydu05JjXa9SrWw5V_WsUPNA2ZxKyc7_HYYS_cdpXZ3We6d1dZr_BsMJnJc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665633838</pqid></control><display><type>article</type><title>3D Bioprinting of Biomimetic Bilayered Scaffold Consisting of Decellularized Extracellular Matrix and Silk Fibroin for Osteochondral Repair</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Zhang, Xiao ; Liu, Yang ; Zuo, Qiang ; Wang, Qingyun ; Li, Zuxi ; Yan, Kai ; Yuan, Tao ; Zhang, Yi ; Shen, Kai ; Xie, Rui ; Fan, Weimin</creator><creatorcontrib>Zhang, Xiao ; Liu, Yang ; Zuo, Qiang ; Wang, Qingyun ; Li, Zuxi ; Yan, Kai ; Yuan, Tao ; Zhang, Yi ; Shen, Kai ; Xie, Rui ; Fan, Weimin</creatorcontrib><description>Recently, three-dimensional (3D) bioprinting technology is becoming an appealing approach for osteochondral repair. However, it is challenging to develop a bilayered scaffold with anisotropic structural properties to mimic a native osteochondral tissue. Herein, we developed a bioink consisting of decellularized extracellular matrix and silk fibroin to print the bilayered scaffold. The bilayered scaffold mimics the natural osteochondral tissue by controlling the composition, mechanical properties, and growth factor release in each layer of the scaffold. The in vitro results show that each layer of scaffolds had a suitable mechanical strength and degradation rate. Furthermore, the scaffolds encapsulating transforming growth factor-beta (TGF-β) and bone morphogenetic protein-2 (BMP-2) can act as a controlled release system and promote directed differentiation of bone marrow-derived mesenchymal stem cells. Furthermore, the in vivo experiments suggested that the scaffolds loaded with growth factors promoted osteochondral regeneration in the rabbit knee joint model. Consequently, the biomimetic bilayered scaffold loaded with TGF-β and BMP-2 would be a promising strategy for osteochondral repair.</description><identifier>ISSN: 2424-7723</identifier><identifier>EISSN: 2424-8002</identifier><identifier>DOI: 10.18063/ijb.v7i4.401</identifier><identifier>PMID: 34825099</identifier><language>eng</language><publisher>Singapore: AccScience Publishing</publisher><subject>Biomedical materials ; Biomimetics ; Bone growth ; Bone marrow ; Bone morphogenetic protein 2 ; Bone morphogenetic proteins ; Controlled release ; Extracellular matrix ; Growth factors ; Knee ; Mechanical properties ; Mesenchyme ; Regeneration ; Repair ; Scaffolds ; Silk ; Silk fibroin ; Stem cells ; Three dimensional printing ; Tissue engineering ; Transforming growth factor-b</subject><ispartof>International journal of bioprinting, 2021-01, Vol.7 (4), p.401-401</ispartof><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright: © 2021 Zhang, 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-813520a6a5852b0a1b172225b52b25723cfd5f1ef449c40822fb74345c90de593</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611412/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611412/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Zuo, Qiang</creatorcontrib><creatorcontrib>Wang, Qingyun</creatorcontrib><creatorcontrib>Li, Zuxi</creatorcontrib><creatorcontrib>Yan, Kai</creatorcontrib><creatorcontrib>Yuan, Tao</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Shen, Kai</creatorcontrib><creatorcontrib>Xie, Rui</creatorcontrib><creatorcontrib>Fan, Weimin</creatorcontrib><title>3D Bioprinting of Biomimetic Bilayered Scaffold Consisting of Decellularized Extracellular Matrix and Silk Fibroin for Osteochondral Repair</title><title>International journal of bioprinting</title><description>Recently, three-dimensional (3D) bioprinting technology is becoming an appealing approach for osteochondral repair. However, it is challenging to develop a bilayered scaffold with anisotropic structural properties to mimic a native osteochondral tissue. Herein, we developed a bioink consisting of decellularized extracellular matrix and silk fibroin to print the bilayered scaffold. The bilayered scaffold mimics the natural osteochondral tissue by controlling the composition, mechanical properties, and growth factor release in each layer of the scaffold. The in vitro results show that each layer of scaffolds had a suitable mechanical strength and degradation rate. Furthermore, the scaffolds encapsulating transforming growth factor-beta (TGF-β) and bone morphogenetic protein-2 (BMP-2) can act as a controlled release system and promote directed differentiation of bone marrow-derived mesenchymal stem cells. Furthermore, the in vivo experiments suggested that the scaffolds loaded with growth factors promoted osteochondral regeneration in the rabbit knee joint model. Consequently, the biomimetic bilayered scaffold loaded with TGF-β and BMP-2 would be a promising strategy for osteochondral repair.</description><subject>Biomedical materials</subject><subject>Biomimetics</subject><subject>Bone growth</subject><subject>Bone marrow</subject><subject>Bone morphogenetic protein 2</subject><subject>Bone morphogenetic proteins</subject><subject>Controlled release</subject><subject>Extracellular matrix</subject><subject>Growth factors</subject><subject>Knee</subject><subject>Mechanical properties</subject><subject>Mesenchyme</subject><subject>Regeneration</subject><subject>Repair</subject><subject>Scaffolds</subject><subject>Silk</subject><subject>Silk fibroin</subject><subject>Stem cells</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><subject>Transforming growth factor-b</subject><issn>2424-7723</issn><issn>2424-8002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU1v1DAQhi0EotXSI3dLXLhk8WfiXJBg2wJSUSU-zpbj2O0sjr3YSdXyF_qn8dItEsgHz4yfeTXjF6GXlKypIi1_A9thfdOBWAtCn6BjJphoFCHs6SHuOsaP0EkpW1KrihLK1XN0xIVikvT9Mbrnp_g9pF2GOEO8wsnv0wkmN4OtYTB3LrsRf7XG-xRGvEmxQHlkT511ISzBZPhVqbPbOZvHCv5s5gy32MTaDuEHPochJ4jYp4wvy-ySvU5xzCbgL25nIL9Az7wJxZ0c7hX6fn72bfOxubj88Gnz7qKxvGdzoyiXjJjWSCXZQAwdaMcYk0PNmKwLWz9KT50XoreCKMb80AkupO3J6GTPV-jtg-5uGSY3Whfr1EHXP5hMvtPJgP73JcK1vko3WrWUCsqqwOuDQE4_F1dmPUHZr22iS0vRrCWCsLYVXUVf_Ydu05JjXa9SrWw5V_WsUPNA2ZxKyc7_HYYS_cdpXZ3We6d1dZr_BsMJnJc</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Zhang, Xiao</creator><creator>Liu, Yang</creator><creator>Zuo, Qiang</creator><creator>Wang, Qingyun</creator><creator>Li, Zuxi</creator><creator>Yan, Kai</creator><creator>Yuan, Tao</creator><creator>Zhang, Yi</creator><creator>Shen, Kai</creator><creator>Xie, Rui</creator><creator>Fan, Weimin</creator><general>AccScience Publishing</general><general>Whioce Publishing Pte. Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210101</creationdate><title>3D Bioprinting of Biomimetic Bilayered Scaffold Consisting of Decellularized Extracellular Matrix and Silk Fibroin for Osteochondral Repair</title><author>Zhang, Xiao ; Liu, Yang ; Zuo, Qiang ; Wang, Qingyun ; Li, Zuxi ; Yan, Kai ; Yuan, Tao ; Zhang, Yi ; Shen, Kai ; Xie, Rui ; Fan, Weimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-813520a6a5852b0a1b172225b52b25723cfd5f1ef449c40822fb74345c90de593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical materials</topic><topic>Biomimetics</topic><topic>Bone growth</topic><topic>Bone marrow</topic><topic>Bone morphogenetic protein 2</topic><topic>Bone morphogenetic proteins</topic><topic>Controlled release</topic><topic>Extracellular matrix</topic><topic>Growth factors</topic><topic>Knee</topic><topic>Mechanical properties</topic><topic>Mesenchyme</topic><topic>Regeneration</topic><topic>Repair</topic><topic>Scaffolds</topic><topic>Silk</topic><topic>Silk fibroin</topic><topic>Stem cells</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><topic>Transforming growth factor-b</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Zuo, Qiang</creatorcontrib><creatorcontrib>Wang, Qingyun</creatorcontrib><creatorcontrib>Li, Zuxi</creatorcontrib><creatorcontrib>Yan, Kai</creatorcontrib><creatorcontrib>Yuan, Tao</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Shen, Kai</creatorcontrib><creatorcontrib>Xie, Rui</creatorcontrib><creatorcontrib>Fan, Weimin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of bioprinting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiao</au><au>Liu, Yang</au><au>Zuo, Qiang</au><au>Wang, Qingyun</au><au>Li, Zuxi</au><au>Yan, Kai</au><au>Yuan, Tao</au><au>Zhang, Yi</au><au>Shen, Kai</au><au>Xie, Rui</au><au>Fan, Weimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Bioprinting of Biomimetic Bilayered Scaffold Consisting of Decellularized Extracellular Matrix and Silk Fibroin for Osteochondral Repair</atitle><jtitle>International journal of bioprinting</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>7</volume><issue>4</issue><spage>401</spage><epage>401</epage><pages>401-401</pages><issn>2424-7723</issn><eissn>2424-8002</eissn><abstract>Recently, three-dimensional (3D) bioprinting technology is becoming an appealing approach for osteochondral repair. However, it is challenging to develop a bilayered scaffold with anisotropic structural properties to mimic a native osteochondral tissue. Herein, we developed a bioink consisting of decellularized extracellular matrix and silk fibroin to print the bilayered scaffold. The bilayered scaffold mimics the natural osteochondral tissue by controlling the composition, mechanical properties, and growth factor release in each layer of the scaffold. The in vitro results show that each layer of scaffolds had a suitable mechanical strength and degradation rate. Furthermore, the scaffolds encapsulating transforming growth factor-beta (TGF-β) and bone morphogenetic protein-2 (BMP-2) can act as a controlled release system and promote directed differentiation of bone marrow-derived mesenchymal stem cells. Furthermore, the in vivo experiments suggested that the scaffolds loaded with growth factors promoted osteochondral regeneration in the rabbit knee joint model. Consequently, the biomimetic bilayered scaffold loaded with TGF-β and BMP-2 would be a promising strategy for osteochondral repair.</abstract><cop>Singapore</cop><pub>AccScience Publishing</pub><pmid>34825099</pmid><doi>10.18063/ijb.v7i4.401</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2424-7723
ispartof International journal of bioprinting, 2021-01, Vol.7 (4), p.401-401
issn 2424-7723
2424-8002
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8611412
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Biomedical materials
Biomimetics
Bone growth
Bone marrow
Bone morphogenetic protein 2
Bone morphogenetic proteins
Controlled release
Extracellular matrix
Growth factors
Knee
Mechanical properties
Mesenchyme
Regeneration
Repair
Scaffolds
Silk
Silk fibroin
Stem cells
Three dimensional printing
Tissue engineering
Transforming growth factor-b
title 3D Bioprinting of Biomimetic Bilayered Scaffold Consisting of Decellularized Extracellular Matrix and Silk Fibroin for Osteochondral Repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T10%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Bioprinting%20of%20Biomimetic%20Bilayered%20Scaffold%20Consisting%20of%20Decellularized%20Extracellular%20Matrix%20and%20Silk%20Fibroin%20for%20Osteochondral%20Repair&rft.jtitle=International%20journal%20of%20bioprinting&rft.au=Zhang,%20Xiao&rft.date=2021-01-01&rft.volume=7&rft.issue=4&rft.spage=401&rft.epage=401&rft.pages=401-401&rft.issn=2424-7723&rft.eissn=2424-8002&rft_id=info:doi/10.18063/ijb.v7i4.401&rft_dat=%3Cproquest_pubme%3E2604026647%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665633838&rft_id=info:pmid/34825099&rfr_iscdi=true