An integrative transcriptional logic model of hepatic insulin resistance
Abnormalities of lipid/lipoprotein and glucose metabolism are hallmarks of hepatic insulin resistance in type 2 diabetes. The former antedate the latter, but the latter become progressively refractory to treatment and contribute to therapeutic failures. It’s unclear whether the two processes share a...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-11, Vol.118 (45), p.1-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 45 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Kitamoto, Takumi Kuo, Taiyi Okabe, Atsushi Kaneda, Atsushi Accili, Domenico |
description | Abnormalities of lipid/lipoprotein and glucose metabolism are hallmarks of hepatic insulin resistance in type 2 diabetes. The former antedate the latter, but the latter become progressively refractory to treatment and contribute to therapeutic failures. It’s unclear whether the two processes share a common pathogenesis and what underlies their progressive nature. In this study, we investigated the hypothesis that genes in the lipid/lipoprotein pathway and those in the glucose metabolic pathway are governed by different transcriptional regulatory logics that affect their response to physiologic (fasting/refeeding) as well as pathophysiologic cues (insulin resistance and hyperglycemia). To this end, we obtained genomic and transcriptomic maps of the key insulin-regulated transcription factor, FoxO1, and integrated them with those of CREB, PPAR-α, and glucocorticoid receptor. We found that glucose metabolic genes are primarily regulated by promoter and intergenic enhancers in a fasting-dependent manner, while lipid genes are regulated through fasting-dependent intron enhancers and fasting-independent enhancerless introns. Glucose genes also showed a remarkable transcriptional resiliency (i.e., the ability to compensate following constitutive FoxO1 ablation through an enrichment of active marks at shared PPAR-α/FoxO1 regulatory elements). Unexpectedly, insulin resistance and hyperglycemia were associated with a “spreading” of FoxO1 binding to enhancers and the emergence of unique target sites. We surmise that this unusual pattern correlates with the progressively intractable nature of hepatic insulin resistance. This transcriptional logic provides an integrated model to interpret the combined lipid and glucose abnormalities of type 2 diabetes. |
doi_str_mv | 10.1073/pnas.2102222118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8609333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27093672</jstor_id><sourcerecordid>27093672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-a9580b5ff1d6aa4a6912a6c0bb54ebf54546dd8653b529bff6d5e727e62680e33</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxa2qVVk-zj21itQLl7BjO3biSyWE2lJpJS5wthxnsniVtVM7QeK_r5eFLTCXOcxvnt7MI-QLhQsKNV-O3qQLRoHlorT5QBYUFC1lpeAjWQCwumwqVh2R45Q2AKBEA5_JEa9qzoRUC3J96QvnJ1xHM7kHLKZofLLRjZML3gzFENbOFtvQ4VCEvrjHMXM2r6R5cL6ImFyajLd4Sj71Zkh49txPyN2vn7dX1-Xq5vefq8tVaQWoqTQ7B63oe9pJYyojFWVGWmhbUWHbi0pUsusaKXgrmGr7XnYCa1ajZLIB5PyE_NjrjnO7xc6iz5YHPUa3NfFRB-P024l393odHnQjQXG-Ezh_Fojh74xp0luXLA6D8RjmpJlQXCjFFcvo93foJswxv-WJktkSNCJTyz1lY0gpYn8wQ0HvUtK7lPT_lPLGt9c3HPiXWDLwdQ9s0hTiYc7qfIKsGf8H3GqY4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596626085</pqid></control><display><type>article</type><title>An integrative transcriptional logic model of hepatic insulin resistance</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kitamoto, Takumi ; Kuo, Taiyi ; Okabe, Atsushi ; Kaneda, Atsushi ; Accili, Domenico</creator><creatorcontrib>Kitamoto, Takumi ; Kuo, Taiyi ; Okabe, Atsushi ; Kaneda, Atsushi ; Accili, Domenico</creatorcontrib><description>Abnormalities of lipid/lipoprotein and glucose metabolism are hallmarks of hepatic insulin resistance in type 2 diabetes. The former antedate the latter, but the latter become progressively refractory to treatment and contribute to therapeutic failures. It’s unclear whether the two processes share a common pathogenesis and what underlies their progressive nature. In this study, we investigated the hypothesis that genes in the lipid/lipoprotein pathway and those in the glucose metabolic pathway are governed by different transcriptional regulatory logics that affect their response to physiologic (fasting/refeeding) as well as pathophysiologic cues (insulin resistance and hyperglycemia). To this end, we obtained genomic and transcriptomic maps of the key insulin-regulated transcription factor, FoxO1, and integrated them with those of CREB, PPAR-α, and glucocorticoid receptor. We found that glucose metabolic genes are primarily regulated by promoter and intergenic enhancers in a fasting-dependent manner, while lipid genes are regulated through fasting-dependent intron enhancers and fasting-independent enhancerless introns. Glucose genes also showed a remarkable transcriptional resiliency (i.e., the ability to compensate following constitutive FoxO1 ablation through an enrichment of active marks at shared PPAR-α/FoxO1 regulatory elements). Unexpectedly, insulin resistance and hyperglycemia were associated with a “spreading” of FoxO1 binding to enhancers and the emergence of unique target sites. We surmise that this unusual pattern correlates with the progressively intractable nature of hepatic insulin resistance. This transcriptional logic provides an integrated model to interpret the combined lipid and glucose abnormalities of type 2 diabetes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2102222118</identifier><identifier>PMID: 34732569</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Ablation ; Abnormalities ; Animals ; Biological Sciences ; Cyclic AMP response element-binding protein ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; Enhancers ; Fasting ; Fasting - metabolism ; Forkhead Box Protein O1 - metabolism ; FOXO1 protein ; Gene Expression Regulation ; Gene mapping ; Genes ; Glucocorticoids ; Glucose ; Glucose metabolism ; Hyperglycemia ; Insulin ; Insulin Resistance ; Introns ; Lipid metabolism ; Lipids ; Liver ; Liver - metabolism ; Male ; Metabolic pathways ; Metabolism ; Mice ; Mice, Inbred C57BL ; Models, Biological ; Pathogenesis ; Peroxisome proliferator-activated receptors ; Regulatory sequences ; Transcription, Genetic ; Transcriptomics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-11, Vol.118 (45), p.1-12</ispartof><rights>Copyright National Academy of Sciences Nov 9, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-a9580b5ff1d6aa4a6912a6c0bb54ebf54546dd8653b529bff6d5e727e62680e33</citedby><cites>FETCH-LOGICAL-c509t-a9580b5ff1d6aa4a6912a6c0bb54ebf54546dd8653b529bff6d5e727e62680e33</cites><orcidid>0000-0001-6167-0284 ; 0000-0002-6980-5515 ; 0000-0001-7748-6078 ; 0000-0002-9457-267X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27093672$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27093672$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34732569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kitamoto, Takumi</creatorcontrib><creatorcontrib>Kuo, Taiyi</creatorcontrib><creatorcontrib>Okabe, Atsushi</creatorcontrib><creatorcontrib>Kaneda, Atsushi</creatorcontrib><creatorcontrib>Accili, Domenico</creatorcontrib><title>An integrative transcriptional logic model of hepatic insulin resistance</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Abnormalities of lipid/lipoprotein and glucose metabolism are hallmarks of hepatic insulin resistance in type 2 diabetes. The former antedate the latter, but the latter become progressively refractory to treatment and contribute to therapeutic failures. It’s unclear whether the two processes share a common pathogenesis and what underlies their progressive nature. In this study, we investigated the hypothesis that genes in the lipid/lipoprotein pathway and those in the glucose metabolic pathway are governed by different transcriptional regulatory logics that affect their response to physiologic (fasting/refeeding) as well as pathophysiologic cues (insulin resistance and hyperglycemia). To this end, we obtained genomic and transcriptomic maps of the key insulin-regulated transcription factor, FoxO1, and integrated them with those of CREB, PPAR-α, and glucocorticoid receptor. We found that glucose metabolic genes are primarily regulated by promoter and intergenic enhancers in a fasting-dependent manner, while lipid genes are regulated through fasting-dependent intron enhancers and fasting-independent enhancerless introns. Glucose genes also showed a remarkable transcriptional resiliency (i.e., the ability to compensate following constitutive FoxO1 ablation through an enrichment of active marks at shared PPAR-α/FoxO1 regulatory elements). Unexpectedly, insulin resistance and hyperglycemia were associated with a “spreading” of FoxO1 binding to enhancers and the emergence of unique target sites. We surmise that this unusual pattern correlates with the progressively intractable nature of hepatic insulin resistance. This transcriptional logic provides an integrated model to interpret the combined lipid and glucose abnormalities of type 2 diabetes.</description><subject>Ablation</subject><subject>Abnormalities</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cyclic AMP response element-binding protein</subject><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Enhancers</subject><subject>Fasting</subject><subject>Fasting - metabolism</subject><subject>Forkhead Box Protein O1 - metabolism</subject><subject>FOXO1 protein</subject><subject>Gene Expression Regulation</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Glucocorticoids</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Hyperglycemia</subject><subject>Insulin</subject><subject>Insulin Resistance</subject><subject>Introns</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Models, Biological</subject><subject>Pathogenesis</subject><subject>Peroxisome proliferator-activated receptors</subject><subject>Regulatory sequences</subject><subject>Transcription, Genetic</subject><subject>Transcriptomics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1P3DAQxa2qVVk-zj21itQLl7BjO3biSyWE2lJpJS5wthxnsniVtVM7QeK_r5eFLTCXOcxvnt7MI-QLhQsKNV-O3qQLRoHlorT5QBYUFC1lpeAjWQCwumwqVh2R45Q2AKBEA5_JEa9qzoRUC3J96QvnJ1xHM7kHLKZofLLRjZML3gzFENbOFtvQ4VCEvrjHMXM2r6R5cL6ImFyajLd4Sj71Zkh49txPyN2vn7dX1-Xq5vefq8tVaQWoqTQ7B63oe9pJYyojFWVGWmhbUWHbi0pUsusaKXgrmGr7XnYCa1ajZLIB5PyE_NjrjnO7xc6iz5YHPUa3NfFRB-P024l393odHnQjQXG-Ezh_Fojh74xp0luXLA6D8RjmpJlQXCjFFcvo93foJswxv-WJktkSNCJTyz1lY0gpYn8wQ0HvUtK7lPT_lPLGt9c3HPiXWDLwdQ9s0hTiYc7qfIKsGf8H3GqY4g</recordid><startdate>20211109</startdate><enddate>20211109</enddate><creator>Kitamoto, Takumi</creator><creator>Kuo, Taiyi</creator><creator>Okabe, Atsushi</creator><creator>Kaneda, Atsushi</creator><creator>Accili, Domenico</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6167-0284</orcidid><orcidid>https://orcid.org/0000-0002-6980-5515</orcidid><orcidid>https://orcid.org/0000-0001-7748-6078</orcidid><orcidid>https://orcid.org/0000-0002-9457-267X</orcidid></search><sort><creationdate>20211109</creationdate><title>An integrative transcriptional logic model of hepatic insulin resistance</title><author>Kitamoto, Takumi ; Kuo, Taiyi ; Okabe, Atsushi ; Kaneda, Atsushi ; Accili, Domenico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-a9580b5ff1d6aa4a6912a6c0bb54ebf54546dd8653b529bff6d5e727e62680e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>Abnormalities</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cyclic AMP response element-binding protein</topic><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Enhancers</topic><topic>Fasting</topic><topic>Fasting - metabolism</topic><topic>Forkhead Box Protein O1 - metabolism</topic><topic>FOXO1 protein</topic><topic>Gene Expression Regulation</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Glucocorticoids</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Hyperglycemia</topic><topic>Insulin</topic><topic>Insulin Resistance</topic><topic>Introns</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Models, Biological</topic><topic>Pathogenesis</topic><topic>Peroxisome proliferator-activated receptors</topic><topic>Regulatory sequences</topic><topic>Transcription, Genetic</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kitamoto, Takumi</creatorcontrib><creatorcontrib>Kuo, Taiyi</creatorcontrib><creatorcontrib>Okabe, Atsushi</creatorcontrib><creatorcontrib>Kaneda, Atsushi</creatorcontrib><creatorcontrib>Accili, Domenico</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kitamoto, Takumi</au><au>Kuo, Taiyi</au><au>Okabe, Atsushi</au><au>Kaneda, Atsushi</au><au>Accili, Domenico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integrative transcriptional logic model of hepatic insulin resistance</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-11-09</date><risdate>2021</risdate><volume>118</volume><issue>45</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Abnormalities of lipid/lipoprotein and glucose metabolism are hallmarks of hepatic insulin resistance in type 2 diabetes. The former antedate the latter, but the latter become progressively refractory to treatment and contribute to therapeutic failures. It’s unclear whether the two processes share a common pathogenesis and what underlies their progressive nature. In this study, we investigated the hypothesis that genes in the lipid/lipoprotein pathway and those in the glucose metabolic pathway are governed by different transcriptional regulatory logics that affect their response to physiologic (fasting/refeeding) as well as pathophysiologic cues (insulin resistance and hyperglycemia). To this end, we obtained genomic and transcriptomic maps of the key insulin-regulated transcription factor, FoxO1, and integrated them with those of CREB, PPAR-α, and glucocorticoid receptor. We found that glucose metabolic genes are primarily regulated by promoter and intergenic enhancers in a fasting-dependent manner, while lipid genes are regulated through fasting-dependent intron enhancers and fasting-independent enhancerless introns. Glucose genes also showed a remarkable transcriptional resiliency (i.e., the ability to compensate following constitutive FoxO1 ablation through an enrichment of active marks at shared PPAR-α/FoxO1 regulatory elements). Unexpectedly, insulin resistance and hyperglycemia were associated with a “spreading” of FoxO1 binding to enhancers and the emergence of unique target sites. We surmise that this unusual pattern correlates with the progressively intractable nature of hepatic insulin resistance. This transcriptional logic provides an integrated model to interpret the combined lipid and glucose abnormalities of type 2 diabetes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34732569</pmid><doi>10.1073/pnas.2102222118</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6167-0284</orcidid><orcidid>https://orcid.org/0000-0002-6980-5515</orcidid><orcidid>https://orcid.org/0000-0001-7748-6078</orcidid><orcidid>https://orcid.org/0000-0002-9457-267X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-11, Vol.118 (45), p.1-12 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8609333 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Ablation Abnormalities Animals Biological Sciences Cyclic AMP response element-binding protein Diabetes Diabetes mellitus (non-insulin dependent) Enhancers Fasting Fasting - metabolism Forkhead Box Protein O1 - metabolism FOXO1 protein Gene Expression Regulation Gene mapping Genes Glucocorticoids Glucose Glucose metabolism Hyperglycemia Insulin Insulin Resistance Introns Lipid metabolism Lipids Liver Liver - metabolism Male Metabolic pathways Metabolism Mice Mice, Inbred C57BL Models, Biological Pathogenesis Peroxisome proliferator-activated receptors Regulatory sequences Transcription, Genetic Transcriptomics |
title | An integrative transcriptional logic model of hepatic insulin resistance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A22%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integrative%20transcriptional%20logic%20model%20of%20hepatic%20insulin%20resistance&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kitamoto,%20Takumi&rft.date=2021-11-09&rft.volume=118&rft.issue=45&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2102222118&rft_dat=%3Cjstor_pubme%3E27093672%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596626085&rft_id=info:pmid/34732569&rft_jstor_id=27093672&rfr_iscdi=true |