An integrative transcriptional logic model of hepatic insulin resistance

Abnormalities of lipid/lipoprotein and glucose metabolism are hallmarks of hepatic insulin resistance in type 2 diabetes. The former antedate the latter, but the latter become progressively refractory to treatment and contribute to therapeutic failures. It’s unclear whether the two processes share a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-11, Vol.118 (45), p.1-12
Hauptverfasser: Kitamoto, Takumi, Kuo, Taiyi, Okabe, Atsushi, Kaneda, Atsushi, Accili, Domenico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 45
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Kitamoto, Takumi
Kuo, Taiyi
Okabe, Atsushi
Kaneda, Atsushi
Accili, Domenico
description Abnormalities of lipid/lipoprotein and glucose metabolism are hallmarks of hepatic insulin resistance in type 2 diabetes. The former antedate the latter, but the latter become progressively refractory to treatment and contribute to therapeutic failures. It’s unclear whether the two processes share a common pathogenesis and what underlies their progressive nature. In this study, we investigated the hypothesis that genes in the lipid/lipoprotein pathway and those in the glucose metabolic pathway are governed by different transcriptional regulatory logics that affect their response to physiologic (fasting/refeeding) as well as pathophysiologic cues (insulin resistance and hyperglycemia). To this end, we obtained genomic and transcriptomic maps of the key insulin-regulated transcription factor, FoxO1, and integrated them with those of CREB, PPAR-α, and glucocorticoid receptor. We found that glucose metabolic genes are primarily regulated by promoter and intergenic enhancers in a fasting-dependent manner, while lipid genes are regulated through fasting-dependent intron enhancers and fasting-independent enhancerless introns. Glucose genes also showed a remarkable transcriptional resiliency (i.e., the ability to compensate following constitutive FoxO1 ablation through an enrichment of active marks at shared PPAR-α/FoxO1 regulatory elements). Unexpectedly, insulin resistance and hyperglycemia were associated with a “spreading” of FoxO1 binding to enhancers and the emergence of unique target sites. We surmise that this unusual pattern correlates with the progressively intractable nature of hepatic insulin resistance. This transcriptional logic provides an integrated model to interpret the combined lipid and glucose abnormalities of type 2 diabetes.
doi_str_mv 10.1073/pnas.2102222118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8609333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27093672</jstor_id><sourcerecordid>27093672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-a9580b5ff1d6aa4a6912a6c0bb54ebf54546dd8653b529bff6d5e727e62680e33</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxa2qVVk-zj21itQLl7BjO3biSyWE2lJpJS5wthxnsniVtVM7QeK_r5eFLTCXOcxvnt7MI-QLhQsKNV-O3qQLRoHlorT5QBYUFC1lpeAjWQCwumwqVh2R45Q2AKBEA5_JEa9qzoRUC3J96QvnJ1xHM7kHLKZofLLRjZML3gzFENbOFtvQ4VCEvrjHMXM2r6R5cL6ImFyajLd4Sj71Zkh49txPyN2vn7dX1-Xq5vefq8tVaQWoqTQ7B63oe9pJYyojFWVGWmhbUWHbi0pUsusaKXgrmGr7XnYCa1ajZLIB5PyE_NjrjnO7xc6iz5YHPUa3NfFRB-P024l393odHnQjQXG-Ezh_Fojh74xp0luXLA6D8RjmpJlQXCjFFcvo93foJswxv-WJktkSNCJTyz1lY0gpYn8wQ0HvUtK7lPT_lPLGt9c3HPiXWDLwdQ9s0hTiYc7qfIKsGf8H3GqY4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596626085</pqid></control><display><type>article</type><title>An integrative transcriptional logic model of hepatic insulin resistance</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kitamoto, Takumi ; Kuo, Taiyi ; Okabe, Atsushi ; Kaneda, Atsushi ; Accili, Domenico</creator><creatorcontrib>Kitamoto, Takumi ; Kuo, Taiyi ; Okabe, Atsushi ; Kaneda, Atsushi ; Accili, Domenico</creatorcontrib><description>Abnormalities of lipid/lipoprotein and glucose metabolism are hallmarks of hepatic insulin resistance in type 2 diabetes. The former antedate the latter, but the latter become progressively refractory to treatment and contribute to therapeutic failures. It’s unclear whether the two processes share a common pathogenesis and what underlies their progressive nature. In this study, we investigated the hypothesis that genes in the lipid/lipoprotein pathway and those in the glucose metabolic pathway are governed by different transcriptional regulatory logics that affect their response to physiologic (fasting/refeeding) as well as pathophysiologic cues (insulin resistance and hyperglycemia). To this end, we obtained genomic and transcriptomic maps of the key insulin-regulated transcription factor, FoxO1, and integrated them with those of CREB, PPAR-α, and glucocorticoid receptor. We found that glucose metabolic genes are primarily regulated by promoter and intergenic enhancers in a fasting-dependent manner, while lipid genes are regulated through fasting-dependent intron enhancers and fasting-independent enhancerless introns. Glucose genes also showed a remarkable transcriptional resiliency (i.e., the ability to compensate following constitutive FoxO1 ablation through an enrichment of active marks at shared PPAR-α/FoxO1 regulatory elements). Unexpectedly, insulin resistance and hyperglycemia were associated with a “spreading” of FoxO1 binding to enhancers and the emergence of unique target sites. We surmise that this unusual pattern correlates with the progressively intractable nature of hepatic insulin resistance. This transcriptional logic provides an integrated model to interpret the combined lipid and glucose abnormalities of type 2 diabetes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2102222118</identifier><identifier>PMID: 34732569</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Ablation ; Abnormalities ; Animals ; Biological Sciences ; Cyclic AMP response element-binding protein ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; Enhancers ; Fasting ; Fasting - metabolism ; Forkhead Box Protein O1 - metabolism ; FOXO1 protein ; Gene Expression Regulation ; Gene mapping ; Genes ; Glucocorticoids ; Glucose ; Glucose metabolism ; Hyperglycemia ; Insulin ; Insulin Resistance ; Introns ; Lipid metabolism ; Lipids ; Liver ; Liver - metabolism ; Male ; Metabolic pathways ; Metabolism ; Mice ; Mice, Inbred C57BL ; Models, Biological ; Pathogenesis ; Peroxisome proliferator-activated receptors ; Regulatory sequences ; Transcription, Genetic ; Transcriptomics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-11, Vol.118 (45), p.1-12</ispartof><rights>Copyright National Academy of Sciences Nov 9, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-a9580b5ff1d6aa4a6912a6c0bb54ebf54546dd8653b529bff6d5e727e62680e33</citedby><cites>FETCH-LOGICAL-c509t-a9580b5ff1d6aa4a6912a6c0bb54ebf54546dd8653b529bff6d5e727e62680e33</cites><orcidid>0000-0001-6167-0284 ; 0000-0002-6980-5515 ; 0000-0001-7748-6078 ; 0000-0002-9457-267X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27093672$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27093672$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34732569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kitamoto, Takumi</creatorcontrib><creatorcontrib>Kuo, Taiyi</creatorcontrib><creatorcontrib>Okabe, Atsushi</creatorcontrib><creatorcontrib>Kaneda, Atsushi</creatorcontrib><creatorcontrib>Accili, Domenico</creatorcontrib><title>An integrative transcriptional logic model of hepatic insulin resistance</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Abnormalities of lipid/lipoprotein and glucose metabolism are hallmarks of hepatic insulin resistance in type 2 diabetes. The former antedate the latter, but the latter become progressively refractory to treatment and contribute to therapeutic failures. It’s unclear whether the two processes share a common pathogenesis and what underlies their progressive nature. In this study, we investigated the hypothesis that genes in the lipid/lipoprotein pathway and those in the glucose metabolic pathway are governed by different transcriptional regulatory logics that affect their response to physiologic (fasting/refeeding) as well as pathophysiologic cues (insulin resistance and hyperglycemia). To this end, we obtained genomic and transcriptomic maps of the key insulin-regulated transcription factor, FoxO1, and integrated them with those of CREB, PPAR-α, and glucocorticoid receptor. We found that glucose metabolic genes are primarily regulated by promoter and intergenic enhancers in a fasting-dependent manner, while lipid genes are regulated through fasting-dependent intron enhancers and fasting-independent enhancerless introns. Glucose genes also showed a remarkable transcriptional resiliency (i.e., the ability to compensate following constitutive FoxO1 ablation through an enrichment of active marks at shared PPAR-α/FoxO1 regulatory elements). Unexpectedly, insulin resistance and hyperglycemia were associated with a “spreading” of FoxO1 binding to enhancers and the emergence of unique target sites. We surmise that this unusual pattern correlates with the progressively intractable nature of hepatic insulin resistance. This transcriptional logic provides an integrated model to interpret the combined lipid and glucose abnormalities of type 2 diabetes.</description><subject>Ablation</subject><subject>Abnormalities</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cyclic AMP response element-binding protein</subject><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Enhancers</subject><subject>Fasting</subject><subject>Fasting - metabolism</subject><subject>Forkhead Box Protein O1 - metabolism</subject><subject>FOXO1 protein</subject><subject>Gene Expression Regulation</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Glucocorticoids</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Hyperglycemia</subject><subject>Insulin</subject><subject>Insulin Resistance</subject><subject>Introns</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Models, Biological</subject><subject>Pathogenesis</subject><subject>Peroxisome proliferator-activated receptors</subject><subject>Regulatory sequences</subject><subject>Transcription, Genetic</subject><subject>Transcriptomics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1P3DAQxa2qVVk-zj21itQLl7BjO3biSyWE2lJpJS5wthxnsniVtVM7QeK_r5eFLTCXOcxvnt7MI-QLhQsKNV-O3qQLRoHlorT5QBYUFC1lpeAjWQCwumwqVh2R45Q2AKBEA5_JEa9qzoRUC3J96QvnJ1xHM7kHLKZofLLRjZML3gzFENbOFtvQ4VCEvrjHMXM2r6R5cL6ImFyajLd4Sj71Zkh49txPyN2vn7dX1-Xq5vefq8tVaQWoqTQ7B63oe9pJYyojFWVGWmhbUWHbi0pUsusaKXgrmGr7XnYCa1ajZLIB5PyE_NjrjnO7xc6iz5YHPUa3NfFRB-P024l393odHnQjQXG-Ezh_Fojh74xp0luXLA6D8RjmpJlQXCjFFcvo93foJswxv-WJktkSNCJTyz1lY0gpYn8wQ0HvUtK7lPT_lPLGt9c3HPiXWDLwdQ9s0hTiYc7qfIKsGf8H3GqY4g</recordid><startdate>20211109</startdate><enddate>20211109</enddate><creator>Kitamoto, Takumi</creator><creator>Kuo, Taiyi</creator><creator>Okabe, Atsushi</creator><creator>Kaneda, Atsushi</creator><creator>Accili, Domenico</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6167-0284</orcidid><orcidid>https://orcid.org/0000-0002-6980-5515</orcidid><orcidid>https://orcid.org/0000-0001-7748-6078</orcidid><orcidid>https://orcid.org/0000-0002-9457-267X</orcidid></search><sort><creationdate>20211109</creationdate><title>An integrative transcriptional logic model of hepatic insulin resistance</title><author>Kitamoto, Takumi ; Kuo, Taiyi ; Okabe, Atsushi ; Kaneda, Atsushi ; Accili, Domenico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-a9580b5ff1d6aa4a6912a6c0bb54ebf54546dd8653b529bff6d5e727e62680e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>Abnormalities</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cyclic AMP response element-binding protein</topic><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Enhancers</topic><topic>Fasting</topic><topic>Fasting - metabolism</topic><topic>Forkhead Box Protein O1 - metabolism</topic><topic>FOXO1 protein</topic><topic>Gene Expression Regulation</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Glucocorticoids</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Hyperglycemia</topic><topic>Insulin</topic><topic>Insulin Resistance</topic><topic>Introns</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Models, Biological</topic><topic>Pathogenesis</topic><topic>Peroxisome proliferator-activated receptors</topic><topic>Regulatory sequences</topic><topic>Transcription, Genetic</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kitamoto, Takumi</creatorcontrib><creatorcontrib>Kuo, Taiyi</creatorcontrib><creatorcontrib>Okabe, Atsushi</creatorcontrib><creatorcontrib>Kaneda, Atsushi</creatorcontrib><creatorcontrib>Accili, Domenico</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kitamoto, Takumi</au><au>Kuo, Taiyi</au><au>Okabe, Atsushi</au><au>Kaneda, Atsushi</au><au>Accili, Domenico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integrative transcriptional logic model of hepatic insulin resistance</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-11-09</date><risdate>2021</risdate><volume>118</volume><issue>45</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Abnormalities of lipid/lipoprotein and glucose metabolism are hallmarks of hepatic insulin resistance in type 2 diabetes. The former antedate the latter, but the latter become progressively refractory to treatment and contribute to therapeutic failures. It’s unclear whether the two processes share a common pathogenesis and what underlies their progressive nature. In this study, we investigated the hypothesis that genes in the lipid/lipoprotein pathway and those in the glucose metabolic pathway are governed by different transcriptional regulatory logics that affect their response to physiologic (fasting/refeeding) as well as pathophysiologic cues (insulin resistance and hyperglycemia). To this end, we obtained genomic and transcriptomic maps of the key insulin-regulated transcription factor, FoxO1, and integrated them with those of CREB, PPAR-α, and glucocorticoid receptor. We found that glucose metabolic genes are primarily regulated by promoter and intergenic enhancers in a fasting-dependent manner, while lipid genes are regulated through fasting-dependent intron enhancers and fasting-independent enhancerless introns. Glucose genes also showed a remarkable transcriptional resiliency (i.e., the ability to compensate following constitutive FoxO1 ablation through an enrichment of active marks at shared PPAR-α/FoxO1 regulatory elements). Unexpectedly, insulin resistance and hyperglycemia were associated with a “spreading” of FoxO1 binding to enhancers and the emergence of unique target sites. We surmise that this unusual pattern correlates with the progressively intractable nature of hepatic insulin resistance. This transcriptional logic provides an integrated model to interpret the combined lipid and glucose abnormalities of type 2 diabetes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34732569</pmid><doi>10.1073/pnas.2102222118</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6167-0284</orcidid><orcidid>https://orcid.org/0000-0002-6980-5515</orcidid><orcidid>https://orcid.org/0000-0001-7748-6078</orcidid><orcidid>https://orcid.org/0000-0002-9457-267X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-11, Vol.118 (45), p.1-12
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8609333
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Ablation
Abnormalities
Animals
Biological Sciences
Cyclic AMP response element-binding protein
Diabetes
Diabetes mellitus (non-insulin dependent)
Enhancers
Fasting
Fasting - metabolism
Forkhead Box Protein O1 - metabolism
FOXO1 protein
Gene Expression Regulation
Gene mapping
Genes
Glucocorticoids
Glucose
Glucose metabolism
Hyperglycemia
Insulin
Insulin Resistance
Introns
Lipid metabolism
Lipids
Liver
Liver - metabolism
Male
Metabolic pathways
Metabolism
Mice
Mice, Inbred C57BL
Models, Biological
Pathogenesis
Peroxisome proliferator-activated receptors
Regulatory sequences
Transcription, Genetic
Transcriptomics
title An integrative transcriptional logic model of hepatic insulin resistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A22%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integrative%20transcriptional%20logic%20model%20of%20hepatic%20insulin%20resistance&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kitamoto,%20Takumi&rft.date=2021-11-09&rft.volume=118&rft.issue=45&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2102222118&rft_dat=%3Cjstor_pubme%3E27093672%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596626085&rft_id=info:pmid/34732569&rft_jstor_id=27093672&rfr_iscdi=true