Joint Modelling Approaches to Survival Analysis via Likelihood-Based Boosting Techniques

Joint models are a powerful class of statistical models which apply to any data where event times are recorded alongside a longitudinal outcome by connecting longitudinal and time-to-event data within a joint likelihood allowing for quantification of the association between the two outcomes without...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical methods in medicine 2021-11, Vol.2021, p.4384035-11
Hauptverfasser: Griesbach, Colin, Groll, Andreas, Bergherr, Elisabeth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 4384035
container_title Computational and mathematical methods in medicine
container_volume 2021
creator Griesbach, Colin
Groll, Andreas
Bergherr, Elisabeth
description Joint models are a powerful class of statistical models which apply to any data where event times are recorded alongside a longitudinal outcome by connecting longitudinal and time-to-event data within a joint likelihood allowing for quantification of the association between the two outcomes without possible bias. In order to make joint models feasible for regularization and variable selection, a statistical boosting algorithm has been proposed, which fits joint models using component-wise gradient boosting techniques. However, these methods have well-known limitations, i.e., they provide no balanced updating procedure for random effects in longitudinal analysis and tend to return biased effect estimation for time-dependent covariates in survival analysis. In this manuscript, we adapt likelihood-based boosting techniques to the framework of joint models and propose a novel algorithm in order to improve inference where gradient boosting has said limitations. The algorithm represents a novel boosting approach allowing for time-dependent covariates in survival analysis and in addition offers variable selection for joint models, which is evaluated via simulations and real world application modelling CD4 cell counts of patients infected with human immunodeficiency virus (HIV). Overall, the method stands out with respect to variable selection properties and represents an accessible way to boosting for time-dependent covariates in survival analysis, which lays a foundation for all kinds of possible extensions.
doi_str_mv 10.1155/2021/4384035
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8608498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2602640048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-53f75cd4b31a635acf7ab389f1214440ed902e6db1b6273038c7944927496e123</originalsourceid><addsrcrecordid>eNp9kc1Lw0AQxRdRrFZvniVHQWP3K5vNRWiLn1Q8WKG3ZbPZNKtpNmaTSP97E1qLXjzNwPzmzWMeAGcIXiMUBCMMMRpRwikkwR44QiHlPgsR39_1cDEAx869QxigMECHYEAoR1HE-RFYPFlT1N6zTXSem2LpjcuyslJl2nm19V6bqjWtzL1xIfO1M85rjfRm5kPnJrM28SfS6cSbWOvqfnuuVVaYz0a7E3CQytzp020dgre72_n0wZ-93D9OxzNfUQxrPyBpGKiExgRJRgKp0lDGhEcpwohSCnUSQaxZEqOY4ZBAwlUYURrhkEZMI0yG4GajWzbxSidKF3Ulc1FWZiWrtbDSiL-TwmRiaVvBGeQ04p3AxVagsr3xWqyMU903ZKFt4wRmEDMKIe3Rqw2qKutcpdPdGQRFH4bowxDbMDr8_Le1Hfzz_Q643ACZKRL5Zf6X-wbgmpIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602640048</pqid></control><display><type>article</type><title>Joint Modelling Approaches to Survival Analysis via Likelihood-Based Boosting Techniques</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Griesbach, Colin ; Groll, Andreas ; Bergherr, Elisabeth</creator><contributor>Arbeev, Konstantin G.</contributor><creatorcontrib>Griesbach, Colin ; Groll, Andreas ; Bergherr, Elisabeth ; Arbeev, Konstantin G.</creatorcontrib><description>Joint models are a powerful class of statistical models which apply to any data where event times are recorded alongside a longitudinal outcome by connecting longitudinal and time-to-event data within a joint likelihood allowing for quantification of the association between the two outcomes without possible bias. In order to make joint models feasible for regularization and variable selection, a statistical boosting algorithm has been proposed, which fits joint models using component-wise gradient boosting techniques. However, these methods have well-known limitations, i.e., they provide no balanced updating procedure for random effects in longitudinal analysis and tend to return biased effect estimation for time-dependent covariates in survival analysis. In this manuscript, we adapt likelihood-based boosting techniques to the framework of joint models and propose a novel algorithm in order to improve inference where gradient boosting has said limitations. The algorithm represents a novel boosting approach allowing for time-dependent covariates in survival analysis and in addition offers variable selection for joint models, which is evaluated via simulations and real world application modelling CD4 cell counts of patients infected with human immunodeficiency virus (HIV). Overall, the method stands out with respect to variable selection properties and represents an accessible way to boosting for time-dependent covariates in survival analysis, which lays a foundation for all kinds of possible extensions.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2021/4384035</identifier><identifier>PMID: 34819988</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Algorithms ; Anti-HIV Agents - therapeutic use ; Bias ; CD4 Lymphocyte Count - statistics &amp; numerical data ; Computational Biology ; Computer Simulation ; HIV Infections - drug therapy ; HIV Infections - immunology ; Humans ; Likelihood Functions ; Longitudinal Studies ; Models, Statistical ; Survival Analysis</subject><ispartof>Computational and mathematical methods in medicine, 2021-11, Vol.2021, p.4384035-11</ispartof><rights>Copyright © 2021 Colin Griesbach et al.</rights><rights>Copyright © 2021 Colin Griesbach et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-53f75cd4b31a635acf7ab389f1214440ed902e6db1b6273038c7944927496e123</citedby><cites>FETCH-LOGICAL-c420t-53f75cd4b31a635acf7ab389f1214440ed902e6db1b6273038c7944927496e123</cites><orcidid>0000-0003-1483-8261 ; 0000-0001-6787-9118 ; 0000-0003-3983-9957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8608498/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8608498/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34819988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Arbeev, Konstantin G.</contributor><creatorcontrib>Griesbach, Colin</creatorcontrib><creatorcontrib>Groll, Andreas</creatorcontrib><creatorcontrib>Bergherr, Elisabeth</creatorcontrib><title>Joint Modelling Approaches to Survival Analysis via Likelihood-Based Boosting Techniques</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>Joint models are a powerful class of statistical models which apply to any data where event times are recorded alongside a longitudinal outcome by connecting longitudinal and time-to-event data within a joint likelihood allowing for quantification of the association between the two outcomes without possible bias. In order to make joint models feasible for regularization and variable selection, a statistical boosting algorithm has been proposed, which fits joint models using component-wise gradient boosting techniques. However, these methods have well-known limitations, i.e., they provide no balanced updating procedure for random effects in longitudinal analysis and tend to return biased effect estimation for time-dependent covariates in survival analysis. In this manuscript, we adapt likelihood-based boosting techniques to the framework of joint models and propose a novel algorithm in order to improve inference where gradient boosting has said limitations. The algorithm represents a novel boosting approach allowing for time-dependent covariates in survival analysis and in addition offers variable selection for joint models, which is evaluated via simulations and real world application modelling CD4 cell counts of patients infected with human immunodeficiency virus (HIV). Overall, the method stands out with respect to variable selection properties and represents an accessible way to boosting for time-dependent covariates in survival analysis, which lays a foundation for all kinds of possible extensions.</description><subject>Algorithms</subject><subject>Anti-HIV Agents - therapeutic use</subject><subject>Bias</subject><subject>CD4 Lymphocyte Count - statistics &amp; numerical data</subject><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>HIV Infections - drug therapy</subject><subject>HIV Infections - immunology</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Longitudinal Studies</subject><subject>Models, Statistical</subject><subject>Survival Analysis</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc1Lw0AQxRdRrFZvniVHQWP3K5vNRWiLn1Q8WKG3ZbPZNKtpNmaTSP97E1qLXjzNwPzmzWMeAGcIXiMUBCMMMRpRwikkwR44QiHlPgsR39_1cDEAx869QxigMECHYEAoR1HE-RFYPFlT1N6zTXSem2LpjcuyslJl2nm19V6bqjWtzL1xIfO1M85rjfRm5kPnJrM28SfS6cSbWOvqfnuuVVaYz0a7E3CQytzp020dgre72_n0wZ-93D9OxzNfUQxrPyBpGKiExgRJRgKp0lDGhEcpwohSCnUSQaxZEqOY4ZBAwlUYURrhkEZMI0yG4GajWzbxSidKF3Ulc1FWZiWrtbDSiL-TwmRiaVvBGeQ04p3AxVagsr3xWqyMU903ZKFt4wRmEDMKIe3Rqw2qKutcpdPdGQRFH4bowxDbMDr8_Le1Hfzz_Q643ACZKRL5Zf6X-wbgmpIw</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Griesbach, Colin</creator><creator>Groll, Andreas</creator><creator>Bergherr, Elisabeth</creator><general>Hindawi</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1483-8261</orcidid><orcidid>https://orcid.org/0000-0001-6787-9118</orcidid><orcidid>https://orcid.org/0000-0003-3983-9957</orcidid></search><sort><creationdate>20211115</creationdate><title>Joint Modelling Approaches to Survival Analysis via Likelihood-Based Boosting Techniques</title><author>Griesbach, Colin ; Groll, Andreas ; Bergherr, Elisabeth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-53f75cd4b31a635acf7ab389f1214440ed902e6db1b6273038c7944927496e123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Anti-HIV Agents - therapeutic use</topic><topic>Bias</topic><topic>CD4 Lymphocyte Count - statistics &amp; numerical data</topic><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>HIV Infections - drug therapy</topic><topic>HIV Infections - immunology</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Longitudinal Studies</topic><topic>Models, Statistical</topic><topic>Survival Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Griesbach, Colin</creatorcontrib><creatorcontrib>Groll, Andreas</creatorcontrib><creatorcontrib>Bergherr, Elisabeth</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Griesbach, Colin</au><au>Groll, Andreas</au><au>Bergherr, Elisabeth</au><au>Arbeev, Konstantin G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Modelling Approaches to Survival Analysis via Likelihood-Based Boosting Techniques</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2021-11-15</date><risdate>2021</risdate><volume>2021</volume><spage>4384035</spage><epage>11</epage><pages>4384035-11</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>Joint models are a powerful class of statistical models which apply to any data where event times are recorded alongside a longitudinal outcome by connecting longitudinal and time-to-event data within a joint likelihood allowing for quantification of the association between the two outcomes without possible bias. In order to make joint models feasible for regularization and variable selection, a statistical boosting algorithm has been proposed, which fits joint models using component-wise gradient boosting techniques. However, these methods have well-known limitations, i.e., they provide no balanced updating procedure for random effects in longitudinal analysis and tend to return biased effect estimation for time-dependent covariates in survival analysis. In this manuscript, we adapt likelihood-based boosting techniques to the framework of joint models and propose a novel algorithm in order to improve inference where gradient boosting has said limitations. The algorithm represents a novel boosting approach allowing for time-dependent covariates in survival analysis and in addition offers variable selection for joint models, which is evaluated via simulations and real world application modelling CD4 cell counts of patients infected with human immunodeficiency virus (HIV). Overall, the method stands out with respect to variable selection properties and represents an accessible way to boosting for time-dependent covariates in survival analysis, which lays a foundation for all kinds of possible extensions.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>34819988</pmid><doi>10.1155/2021/4384035</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1483-8261</orcidid><orcidid>https://orcid.org/0000-0001-6787-9118</orcidid><orcidid>https://orcid.org/0000-0003-3983-9957</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-670X
ispartof Computational and mathematical methods in medicine, 2021-11, Vol.2021, p.4384035-11
issn 1748-670X
1748-6718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8608498
source MEDLINE; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Anti-HIV Agents - therapeutic use
Bias
CD4 Lymphocyte Count - statistics & numerical data
Computational Biology
Computer Simulation
HIV Infections - drug therapy
HIV Infections - immunology
Humans
Likelihood Functions
Longitudinal Studies
Models, Statistical
Survival Analysis
title Joint Modelling Approaches to Survival Analysis via Likelihood-Based Boosting Techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Modelling%20Approaches%20to%20Survival%20Analysis%20via%20Likelihood-Based%20Boosting%20Techniques&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Griesbach,%20Colin&rft.date=2021-11-15&rft.volume=2021&rft.spage=4384035&rft.epage=11&rft.pages=4384035-11&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2021/4384035&rft_dat=%3Cproquest_pubme%3E2602640048%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2602640048&rft_id=info:pmid/34819988&rfr_iscdi=true