Joint Modelling Approaches to Survival Analysis via Likelihood-Based Boosting Techniques
Joint models are a powerful class of statistical models which apply to any data where event times are recorded alongside a longitudinal outcome by connecting longitudinal and time-to-event data within a joint likelihood allowing for quantification of the association between the two outcomes without...
Gespeichert in:
Veröffentlicht in: | Computational and mathematical methods in medicine 2021-11, Vol.2021, p.4384035-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 4384035 |
container_title | Computational and mathematical methods in medicine |
container_volume | 2021 |
creator | Griesbach, Colin Groll, Andreas Bergherr, Elisabeth |
description | Joint models are a powerful class of statistical models which apply to any data where event times are recorded alongside a longitudinal outcome by connecting longitudinal and time-to-event data within a joint likelihood allowing for quantification of the association between the two outcomes without possible bias. In order to make joint models feasible for regularization and variable selection, a statistical boosting algorithm has been proposed, which fits joint models using component-wise gradient boosting techniques. However, these methods have well-known limitations, i.e., they provide no balanced updating procedure for random effects in longitudinal analysis and tend to return biased effect estimation for time-dependent covariates in survival analysis. In this manuscript, we adapt likelihood-based boosting techniques to the framework of joint models and propose a novel algorithm in order to improve inference where gradient boosting has said limitations. The algorithm represents a novel boosting approach allowing for time-dependent covariates in survival analysis and in addition offers variable selection for joint models, which is evaluated via simulations and real world application modelling CD4 cell counts of patients infected with human immunodeficiency virus (HIV). Overall, the method stands out with respect to variable selection properties and represents an accessible way to boosting for time-dependent covariates in survival analysis, which lays a foundation for all kinds of possible extensions. |
doi_str_mv | 10.1155/2021/4384035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8608498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2602640048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-53f75cd4b31a635acf7ab389f1214440ed902e6db1b6273038c7944927496e123</originalsourceid><addsrcrecordid>eNp9kc1Lw0AQxRdRrFZvniVHQWP3K5vNRWiLn1Q8WKG3ZbPZNKtpNmaTSP97E1qLXjzNwPzmzWMeAGcIXiMUBCMMMRpRwikkwR44QiHlPgsR39_1cDEAx869QxigMECHYEAoR1HE-RFYPFlT1N6zTXSem2LpjcuyslJl2nm19V6bqjWtzL1xIfO1M85rjfRm5kPnJrM28SfS6cSbWOvqfnuuVVaYz0a7E3CQytzp020dgre72_n0wZ-93D9OxzNfUQxrPyBpGKiExgRJRgKp0lDGhEcpwohSCnUSQaxZEqOY4ZBAwlUYURrhkEZMI0yG4GajWzbxSidKF3Ulc1FWZiWrtbDSiL-TwmRiaVvBGeQ04p3AxVagsr3xWqyMU903ZKFt4wRmEDMKIe3Rqw2qKutcpdPdGQRFH4bowxDbMDr8_Le1Hfzz_Q643ACZKRL5Zf6X-wbgmpIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602640048</pqid></control><display><type>article</type><title>Joint Modelling Approaches to Survival Analysis via Likelihood-Based Boosting Techniques</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Griesbach, Colin ; Groll, Andreas ; Bergherr, Elisabeth</creator><contributor>Arbeev, Konstantin G.</contributor><creatorcontrib>Griesbach, Colin ; Groll, Andreas ; Bergherr, Elisabeth ; Arbeev, Konstantin G.</creatorcontrib><description>Joint models are a powerful class of statistical models which apply to any data where event times are recorded alongside a longitudinal outcome by connecting longitudinal and time-to-event data within a joint likelihood allowing for quantification of the association between the two outcomes without possible bias. In order to make joint models feasible for regularization and variable selection, a statistical boosting algorithm has been proposed, which fits joint models using component-wise gradient boosting techniques. However, these methods have well-known limitations, i.e., they provide no balanced updating procedure for random effects in longitudinal analysis and tend to return biased effect estimation for time-dependent covariates in survival analysis. In this manuscript, we adapt likelihood-based boosting techniques to the framework of joint models and propose a novel algorithm in order to improve inference where gradient boosting has said limitations. The algorithm represents a novel boosting approach allowing for time-dependent covariates in survival analysis and in addition offers variable selection for joint models, which is evaluated via simulations and real world application modelling CD4 cell counts of patients infected with human immunodeficiency virus (HIV). Overall, the method stands out with respect to variable selection properties and represents an accessible way to boosting for time-dependent covariates in survival analysis, which lays a foundation for all kinds of possible extensions.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2021/4384035</identifier><identifier>PMID: 34819988</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Algorithms ; Anti-HIV Agents - therapeutic use ; Bias ; CD4 Lymphocyte Count - statistics & numerical data ; Computational Biology ; Computer Simulation ; HIV Infections - drug therapy ; HIV Infections - immunology ; Humans ; Likelihood Functions ; Longitudinal Studies ; Models, Statistical ; Survival Analysis</subject><ispartof>Computational and mathematical methods in medicine, 2021-11, Vol.2021, p.4384035-11</ispartof><rights>Copyright © 2021 Colin Griesbach et al.</rights><rights>Copyright © 2021 Colin Griesbach et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-53f75cd4b31a635acf7ab389f1214440ed902e6db1b6273038c7944927496e123</citedby><cites>FETCH-LOGICAL-c420t-53f75cd4b31a635acf7ab389f1214440ed902e6db1b6273038c7944927496e123</cites><orcidid>0000-0003-1483-8261 ; 0000-0001-6787-9118 ; 0000-0003-3983-9957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8608498/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8608498/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34819988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Arbeev, Konstantin G.</contributor><creatorcontrib>Griesbach, Colin</creatorcontrib><creatorcontrib>Groll, Andreas</creatorcontrib><creatorcontrib>Bergherr, Elisabeth</creatorcontrib><title>Joint Modelling Approaches to Survival Analysis via Likelihood-Based Boosting Techniques</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>Joint models are a powerful class of statistical models which apply to any data where event times are recorded alongside a longitudinal outcome by connecting longitudinal and time-to-event data within a joint likelihood allowing for quantification of the association between the two outcomes without possible bias. In order to make joint models feasible for regularization and variable selection, a statistical boosting algorithm has been proposed, which fits joint models using component-wise gradient boosting techniques. However, these methods have well-known limitations, i.e., they provide no balanced updating procedure for random effects in longitudinal analysis and tend to return biased effect estimation for time-dependent covariates in survival analysis. In this manuscript, we adapt likelihood-based boosting techniques to the framework of joint models and propose a novel algorithm in order to improve inference where gradient boosting has said limitations. The algorithm represents a novel boosting approach allowing for time-dependent covariates in survival analysis and in addition offers variable selection for joint models, which is evaluated via simulations and real world application modelling CD4 cell counts of patients infected with human immunodeficiency virus (HIV). Overall, the method stands out with respect to variable selection properties and represents an accessible way to boosting for time-dependent covariates in survival analysis, which lays a foundation for all kinds of possible extensions.</description><subject>Algorithms</subject><subject>Anti-HIV Agents - therapeutic use</subject><subject>Bias</subject><subject>CD4 Lymphocyte Count - statistics & numerical data</subject><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>HIV Infections - drug therapy</subject><subject>HIV Infections - immunology</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Longitudinal Studies</subject><subject>Models, Statistical</subject><subject>Survival Analysis</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc1Lw0AQxRdRrFZvniVHQWP3K5vNRWiLn1Q8WKG3ZbPZNKtpNmaTSP97E1qLXjzNwPzmzWMeAGcIXiMUBCMMMRpRwikkwR44QiHlPgsR39_1cDEAx869QxigMECHYEAoR1HE-RFYPFlT1N6zTXSem2LpjcuyslJl2nm19V6bqjWtzL1xIfO1M85rjfRm5kPnJrM28SfS6cSbWOvqfnuuVVaYz0a7E3CQytzp020dgre72_n0wZ-93D9OxzNfUQxrPyBpGKiExgRJRgKp0lDGhEcpwohSCnUSQaxZEqOY4ZBAwlUYURrhkEZMI0yG4GajWzbxSidKF3Ulc1FWZiWrtbDSiL-TwmRiaVvBGeQ04p3AxVagsr3xWqyMU903ZKFt4wRmEDMKIe3Rqw2qKutcpdPdGQRFH4bowxDbMDr8_Le1Hfzz_Q643ACZKRL5Zf6X-wbgmpIw</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Griesbach, Colin</creator><creator>Groll, Andreas</creator><creator>Bergherr, Elisabeth</creator><general>Hindawi</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1483-8261</orcidid><orcidid>https://orcid.org/0000-0001-6787-9118</orcidid><orcidid>https://orcid.org/0000-0003-3983-9957</orcidid></search><sort><creationdate>20211115</creationdate><title>Joint Modelling Approaches to Survival Analysis via Likelihood-Based Boosting Techniques</title><author>Griesbach, Colin ; Groll, Andreas ; Bergherr, Elisabeth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-53f75cd4b31a635acf7ab389f1214440ed902e6db1b6273038c7944927496e123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Anti-HIV Agents - therapeutic use</topic><topic>Bias</topic><topic>CD4 Lymphocyte Count - statistics & numerical data</topic><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>HIV Infections - drug therapy</topic><topic>HIV Infections - immunology</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Longitudinal Studies</topic><topic>Models, Statistical</topic><topic>Survival Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Griesbach, Colin</creatorcontrib><creatorcontrib>Groll, Andreas</creatorcontrib><creatorcontrib>Bergherr, Elisabeth</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Griesbach, Colin</au><au>Groll, Andreas</au><au>Bergherr, Elisabeth</au><au>Arbeev, Konstantin G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Modelling Approaches to Survival Analysis via Likelihood-Based Boosting Techniques</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2021-11-15</date><risdate>2021</risdate><volume>2021</volume><spage>4384035</spage><epage>11</epage><pages>4384035-11</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>Joint models are a powerful class of statistical models which apply to any data where event times are recorded alongside a longitudinal outcome by connecting longitudinal and time-to-event data within a joint likelihood allowing for quantification of the association between the two outcomes without possible bias. In order to make joint models feasible for regularization and variable selection, a statistical boosting algorithm has been proposed, which fits joint models using component-wise gradient boosting techniques. However, these methods have well-known limitations, i.e., they provide no balanced updating procedure for random effects in longitudinal analysis and tend to return biased effect estimation for time-dependent covariates in survival analysis. In this manuscript, we adapt likelihood-based boosting techniques to the framework of joint models and propose a novel algorithm in order to improve inference where gradient boosting has said limitations. The algorithm represents a novel boosting approach allowing for time-dependent covariates in survival analysis and in addition offers variable selection for joint models, which is evaluated via simulations and real world application modelling CD4 cell counts of patients infected with human immunodeficiency virus (HIV). Overall, the method stands out with respect to variable selection properties and represents an accessible way to boosting for time-dependent covariates in survival analysis, which lays a foundation for all kinds of possible extensions.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>34819988</pmid><doi>10.1155/2021/4384035</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1483-8261</orcidid><orcidid>https://orcid.org/0000-0001-6787-9118</orcidid><orcidid>https://orcid.org/0000-0003-3983-9957</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-670X |
ispartof | Computational and mathematical methods in medicine, 2021-11, Vol.2021, p.4384035-11 |
issn | 1748-670X 1748-6718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8608498 |
source | MEDLINE; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms Anti-HIV Agents - therapeutic use Bias CD4 Lymphocyte Count - statistics & numerical data Computational Biology Computer Simulation HIV Infections - drug therapy HIV Infections - immunology Humans Likelihood Functions Longitudinal Studies Models, Statistical Survival Analysis |
title | Joint Modelling Approaches to Survival Analysis via Likelihood-Based Boosting Techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Modelling%20Approaches%20to%20Survival%20Analysis%20via%20Likelihood-Based%20Boosting%20Techniques&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Griesbach,%20Colin&rft.date=2021-11-15&rft.volume=2021&rft.spage=4384035&rft.epage=11&rft.pages=4384035-11&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2021/4384035&rft_dat=%3Cproquest_pubme%3E2602640048%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2602640048&rft_id=info:pmid/34819988&rfr_iscdi=true |