Derivation and validation of predictive indices for 30-day mortality after coronary and valvular surgery in Ontario, Canada
Coronary artery bypass grafting (CABG) and surgical aortic valve replacement (AVR) are the 2 most common cardiac surgery procedures in North America. We derived and externally validated clinical models to estimate the likelihood of death within 30 days of CABG, AVR or combined CABG + AVR. We obtaine...
Gespeichert in:
Veröffentlicht in: | Canadian Medical Association journal (CMAJ) 2021-11, Vol.193 (46), p.E1757-E1765 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E1765 |
---|---|
container_issue | 46 |
container_start_page | E1757 |
container_title | Canadian Medical Association journal (CMAJ) |
container_volume | 193 |
creator | Sun, Louise Y Chu, Anna Tam, Derrick Y Wang, Xuesong Fang, Jiming Austin, Peter C Feindel, Christopher M Oakes, Garth H Alexopoulos, Vicki Tusevljak, Natasa Ouzounian, Maral Lee, Douglas S |
description | Coronary artery bypass grafting (CABG) and surgical aortic valve replacement (AVR) are the 2 most common cardiac surgery procedures in North America. We derived and externally validated clinical models to estimate the likelihood of death within 30 days of CABG, AVR or combined CABG + AVR.
We obtained data from the CorHealth Ontario Cardiac Registry and several linked population health administrative databases from Ontario, Canada. We derived multiple logistic regression models from all adult patients who underwent CABG, AVR or combined CABG + AVR from April 2017 to March 2019, and validated them in 2 temporally distinct cohorts (April 2015 to March 2017 and April 2019 to March 2020).
The derivation cohorts included 13 435 patients who underwent CABG (30-d mortality 1.73%), 1970 patients who underwent AVR (30-d mortality 1.68%) and 1510 patients who underwent combined CABG + AVR (30-d mortality 3.05%). The final models for predicting 30-day mortality included 15 variables for patients undergoing CABG, 5 variables for patients undergoing AVR and 5 variables for patients undergoing combined CABG + AVR. Model discrimination was excellent for the CABG (c-statistic 0.888, optimism-corrected 0.866) AVR (c-statistic 0.850, optimism-corrected 0.762) and CABG + AVR (c-statistic 0.844, optimism-corrected 0.776) models, with similar results in the validation cohorts.
Our models, leveraging readily available, multidimensional data sources, computed accurate risk-adjusted 30-day mortality rates for CABG, AVR and combined CABG + AVR, with discrimination comparable to more complex American and European models. The ability to accurately predict perioperative mortality rates for these procedures will be valuable for quality improvement initiatives across institutions. |
doi_str_mv | 10.1503/cmaj.202901 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8608458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A683074514</galeid><sourcerecordid>A683074514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c640t-485aac2991190ccd4fe5aaf2f99fbc8cb2db03816535145c1bbcfe04db4008ec3</originalsourceid><addsrcrecordid>eNqV081v0zAYB-AIgdgYnLgjCyQEghTbcVL7gjSVr0kTk_g4W47zunWV2J3tVFT887jqNlrUC8khifP4Fzv2WxRPCZ6QGlfv9KCWE4qpwORecUoY5yWtqLhfnGJOcVkJ1pwUj2Jc4nxUdPqwOKkYJ5g09LT4_QGCXatkvUPKdWitetvtHr1BqwCd1cmuAVmX7yAi4wOqcNmpDRp8SJmnDVImQUDaB-9U2NwGrcdeBRTHMIfcaB26ckkF69-imXKqU4-LB0b1EZ7cXM-Kn58-_ph9KS-vPl_Mzi9L3TCcSsZrpTQVghCBte6YgdxgqBHCtJrrlnYtrjhp6qomrNakbbUBzLqWYcxBV2fF-13uamwH6DS4FFQvV8EOebTSKysP3zi7kHO_lrzBnNU8B7y6CQj-eoSY5GCjhr5XDvwYJW1w_u2M02mmL_6hSz8Gl6e3VVhMBZmKv2quepDWGZ-_q7eh8rzhFZ6yPJOsyiNqDg7yIL0DY3PzgX9-xOuVvZb7aHIE5bODweqjqa8POmST4FeaqzFGefH923_Yr4f25Z5dgOrTIvp-3O69eAjf7KAOPsYA5m7lCJbbCpDbCpC7Csj62f5i39nbLV_9Abnm_kY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2600979179</pqid></control><display><type>article</type><title>Derivation and validation of predictive indices for 30-day mortality after coronary and valvular surgery in Ontario, Canada</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Sun, Louise Y ; Chu, Anna ; Tam, Derrick Y ; Wang, Xuesong ; Fang, Jiming ; Austin, Peter C ; Feindel, Christopher M ; Oakes, Garth H ; Alexopoulos, Vicki ; Tusevljak, Natasa ; Ouzounian, Maral ; Lee, Douglas S</creator><creatorcontrib>Sun, Louise Y ; Chu, Anna ; Tam, Derrick Y ; Wang, Xuesong ; Fang, Jiming ; Austin, Peter C ; Feindel, Christopher M ; Oakes, Garth H ; Alexopoulos, Vicki ; Tusevljak, Natasa ; Ouzounian, Maral ; Lee, Douglas S ; CorHealth Ontario Cardiac Surgery Risk Adjustment Task Group</creatorcontrib><description>Coronary artery bypass grafting (CABG) and surgical aortic valve replacement (AVR) are the 2 most common cardiac surgery procedures in North America. We derived and externally validated clinical models to estimate the likelihood of death within 30 days of CABG, AVR or combined CABG + AVR.
We obtained data from the CorHealth Ontario Cardiac Registry and several linked population health administrative databases from Ontario, Canada. We derived multiple logistic regression models from all adult patients who underwent CABG, AVR or combined CABG + AVR from April 2017 to March 2019, and validated them in 2 temporally distinct cohorts (April 2015 to March 2017 and April 2019 to March 2020).
The derivation cohorts included 13 435 patients who underwent CABG (30-d mortality 1.73%), 1970 patients who underwent AVR (30-d mortality 1.68%) and 1510 patients who underwent combined CABG + AVR (30-d mortality 3.05%). The final models for predicting 30-day mortality included 15 variables for patients undergoing CABG, 5 variables for patients undergoing AVR and 5 variables for patients undergoing combined CABG + AVR. Model discrimination was excellent for the CABG (c-statistic 0.888, optimism-corrected 0.866) AVR (c-statistic 0.850, optimism-corrected 0.762) and CABG + AVR (c-statistic 0.844, optimism-corrected 0.776) models, with similar results in the validation cohorts.
Our models, leveraging readily available, multidimensional data sources, computed accurate risk-adjusted 30-day mortality rates for CABG, AVR and combined CABG + AVR, with discrimination comparable to more complex American and European models. The ability to accurately predict perioperative mortality rates for these procedures will be valuable for quality improvement initiatives across institutions.</description><identifier>ISSN: 0820-3946</identifier><identifier>EISSN: 1488-2329</identifier><identifier>DOI: 10.1503/cmaj.202901</identifier><identifier>PMID: 34810162</identifier><language>eng</language><publisher>Canada: CMA Joule Inc</publisher><subject>Adult ; Aged ; Ambulatory care ; Aortic Valve - surgery ; Coronary artery bypass ; Coronary Artery Bypass - mortality ; Coronary vessels ; Ethnicity ; Female ; Health insurance ; Health risk assessment ; Health risks ; Heart surgery ; Heart Valve Prosthesis Implantation - mortality ; Heart valve replacement ; Hospitals ; Humans ; Laboratories ; Male ; Medical prognosis ; Methods ; Middle Aged ; Mortality ; Ontario - epidemiology ; Patient outcomes ; Patients ; Predictive Value of Tests ; Registries ; Retrospective Studies ; Statistical models ; Statistics ; Variables</subject><ispartof>Canadian Medical Association journal (CMAJ), 2021-11, Vol.193 (46), p.E1757-E1765</ispartof><rights>2021 CMA Joule Inc. or its licensors.</rights><rights>COPYRIGHT 2021 CMA Joule Inc.</rights><rights>Copyright Joule Inc Nov 22, 2021</rights><rights>2021 CMA Joule Inc. or its licensors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c640t-485aac2991190ccd4fe5aaf2f99fbc8cb2db03816535145c1bbcfe04db4008ec3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8608458/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8608458/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34810162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Louise Y</creatorcontrib><creatorcontrib>Chu, Anna</creatorcontrib><creatorcontrib>Tam, Derrick Y</creatorcontrib><creatorcontrib>Wang, Xuesong</creatorcontrib><creatorcontrib>Fang, Jiming</creatorcontrib><creatorcontrib>Austin, Peter C</creatorcontrib><creatorcontrib>Feindel, Christopher M</creatorcontrib><creatorcontrib>Oakes, Garth H</creatorcontrib><creatorcontrib>Alexopoulos, Vicki</creatorcontrib><creatorcontrib>Tusevljak, Natasa</creatorcontrib><creatorcontrib>Ouzounian, Maral</creatorcontrib><creatorcontrib>Lee, Douglas S</creatorcontrib><creatorcontrib>CorHealth Ontario Cardiac Surgery Risk Adjustment Task Group</creatorcontrib><title>Derivation and validation of predictive indices for 30-day mortality after coronary and valvular surgery in Ontario, Canada</title><title>Canadian Medical Association journal (CMAJ)</title><addtitle>CMAJ</addtitle><description>Coronary artery bypass grafting (CABG) and surgical aortic valve replacement (AVR) are the 2 most common cardiac surgery procedures in North America. We derived and externally validated clinical models to estimate the likelihood of death within 30 days of CABG, AVR or combined CABG + AVR.
We obtained data from the CorHealth Ontario Cardiac Registry and several linked population health administrative databases from Ontario, Canada. We derived multiple logistic regression models from all adult patients who underwent CABG, AVR or combined CABG + AVR from April 2017 to March 2019, and validated them in 2 temporally distinct cohorts (April 2015 to March 2017 and April 2019 to March 2020).
The derivation cohorts included 13 435 patients who underwent CABG (30-d mortality 1.73%), 1970 patients who underwent AVR (30-d mortality 1.68%) and 1510 patients who underwent combined CABG + AVR (30-d mortality 3.05%). The final models for predicting 30-day mortality included 15 variables for patients undergoing CABG, 5 variables for patients undergoing AVR and 5 variables for patients undergoing combined CABG + AVR. Model discrimination was excellent for the CABG (c-statistic 0.888, optimism-corrected 0.866) AVR (c-statistic 0.850, optimism-corrected 0.762) and CABG + AVR (c-statistic 0.844, optimism-corrected 0.776) models, with similar results in the validation cohorts.
Our models, leveraging readily available, multidimensional data sources, computed accurate risk-adjusted 30-day mortality rates for CABG, AVR and combined CABG + AVR, with discrimination comparable to more complex American and European models. The ability to accurately predict perioperative mortality rates for these procedures will be valuable for quality improvement initiatives across institutions.</description><subject>Adult</subject><subject>Aged</subject><subject>Ambulatory care</subject><subject>Aortic Valve - surgery</subject><subject>Coronary artery bypass</subject><subject>Coronary Artery Bypass - mortality</subject><subject>Coronary vessels</subject><subject>Ethnicity</subject><subject>Female</subject><subject>Health insurance</subject><subject>Health risk assessment</subject><subject>Health risks</subject><subject>Heart surgery</subject><subject>Heart Valve Prosthesis Implantation - mortality</subject><subject>Heart valve replacement</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Laboratories</subject><subject>Male</subject><subject>Medical prognosis</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Mortality</subject><subject>Ontario - epidemiology</subject><subject>Patient outcomes</subject><subject>Patients</subject><subject>Predictive Value of Tests</subject><subject>Registries</subject><subject>Retrospective Studies</subject><subject>Statistical models</subject><subject>Statistics</subject><subject>Variables</subject><issn>0820-3946</issn><issn>1488-2329</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqV081v0zAYB-AIgdgYnLgjCyQEghTbcVL7gjSVr0kTk_g4W47zunWV2J3tVFT887jqNlrUC8khifP4Fzv2WxRPCZ6QGlfv9KCWE4qpwORecUoY5yWtqLhfnGJOcVkJ1pwUj2Jc4nxUdPqwOKkYJ5g09LT4_QGCXatkvUPKdWitetvtHr1BqwCd1cmuAVmX7yAi4wOqcNmpDRp8SJmnDVImQUDaB-9U2NwGrcdeBRTHMIfcaB26ckkF69-imXKqU4-LB0b1EZ7cXM-Kn58-_ph9KS-vPl_Mzi9L3TCcSsZrpTQVghCBte6YgdxgqBHCtJrrlnYtrjhp6qomrNakbbUBzLqWYcxBV2fF-13uamwH6DS4FFQvV8EOebTSKysP3zi7kHO_lrzBnNU8B7y6CQj-eoSY5GCjhr5XDvwYJW1w_u2M02mmL_6hSz8Gl6e3VVhMBZmKv2quepDWGZ-_q7eh8rzhFZ6yPJOsyiNqDg7yIL0DY3PzgX9-xOuVvZb7aHIE5bODweqjqa8POmST4FeaqzFGefH923_Yr4f25Z5dgOrTIvp-3O69eAjf7KAOPsYA5m7lCJbbCpDbCpC7Csj62f5i39nbLV_9Abnm_kY</recordid><startdate>20211122</startdate><enddate>20211122</enddate><creator>Sun, Louise Y</creator><creator>Chu, Anna</creator><creator>Tam, Derrick Y</creator><creator>Wang, Xuesong</creator><creator>Fang, Jiming</creator><creator>Austin, Peter C</creator><creator>Feindel, Christopher M</creator><creator>Oakes, Garth H</creator><creator>Alexopoulos, Vicki</creator><creator>Tusevljak, Natasa</creator><creator>Ouzounian, Maral</creator><creator>Lee, Douglas S</creator><general>CMA Joule Inc</general><general>CMA Impact, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FQ</scope><scope>8FV</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>ASE</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FPQ</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K6X</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M3G</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20211122</creationdate><title>Derivation and validation of predictive indices for 30-day mortality after coronary and valvular surgery in Ontario, Canada</title><author>Sun, Louise Y ; Chu, Anna ; Tam, Derrick Y ; Wang, Xuesong ; Fang, Jiming ; Austin, Peter C ; Feindel, Christopher M ; Oakes, Garth H ; Alexopoulos, Vicki ; Tusevljak, Natasa ; Ouzounian, Maral ; Lee, Douglas S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c640t-485aac2991190ccd4fe5aaf2f99fbc8cb2db03816535145c1bbcfe04db4008ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Ambulatory care</topic><topic>Aortic Valve - surgery</topic><topic>Coronary artery bypass</topic><topic>Coronary Artery Bypass - mortality</topic><topic>Coronary vessels</topic><topic>Ethnicity</topic><topic>Female</topic><topic>Health insurance</topic><topic>Health risk assessment</topic><topic>Health risks</topic><topic>Heart surgery</topic><topic>Heart Valve Prosthesis Implantation - mortality</topic><topic>Heart valve replacement</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Laboratories</topic><topic>Male</topic><topic>Medical prognosis</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Mortality</topic><topic>Ontario - epidemiology</topic><topic>Patient outcomes</topic><topic>Patients</topic><topic>Predictive Value of Tests</topic><topic>Registries</topic><topic>Retrospective Studies</topic><topic>Statistical models</topic><topic>Statistics</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Louise Y</creatorcontrib><creatorcontrib>Chu, Anna</creatorcontrib><creatorcontrib>Tam, Derrick Y</creatorcontrib><creatorcontrib>Wang, Xuesong</creatorcontrib><creatorcontrib>Fang, Jiming</creatorcontrib><creatorcontrib>Austin, Peter C</creatorcontrib><creatorcontrib>Feindel, Christopher M</creatorcontrib><creatorcontrib>Oakes, Garth H</creatorcontrib><creatorcontrib>Alexopoulos, Vicki</creatorcontrib><creatorcontrib>Tusevljak, Natasa</creatorcontrib><creatorcontrib>Ouzounian, Maral</creatorcontrib><creatorcontrib>Lee, Douglas S</creatorcontrib><creatorcontrib>CorHealth Ontario Cardiac Surgery Risk Adjustment Task Group</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Canadian Business & Current Affairs Database</collection><collection>Canadian Business & Current Affairs Database (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>British Nursing Index</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>British Nursing Index (BNI) (1985 to Present)</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>British Nursing Index</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>CBCA Reference & Current Events</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Canadian Medical Association journal (CMAJ)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Louise Y</au><au>Chu, Anna</au><au>Tam, Derrick Y</au><au>Wang, Xuesong</au><au>Fang, Jiming</au><au>Austin, Peter C</au><au>Feindel, Christopher M</au><au>Oakes, Garth H</au><au>Alexopoulos, Vicki</au><au>Tusevljak, Natasa</au><au>Ouzounian, Maral</au><au>Lee, Douglas S</au><aucorp>CorHealth Ontario Cardiac Surgery Risk Adjustment Task Group</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation and validation of predictive indices for 30-day mortality after coronary and valvular surgery in Ontario, Canada</atitle><jtitle>Canadian Medical Association journal (CMAJ)</jtitle><addtitle>CMAJ</addtitle><date>2021-11-22</date><risdate>2021</risdate><volume>193</volume><issue>46</issue><spage>E1757</spage><epage>E1765</epage><pages>E1757-E1765</pages><issn>0820-3946</issn><eissn>1488-2329</eissn><abstract>Coronary artery bypass grafting (CABG) and surgical aortic valve replacement (AVR) are the 2 most common cardiac surgery procedures in North America. We derived and externally validated clinical models to estimate the likelihood of death within 30 days of CABG, AVR or combined CABG + AVR.
We obtained data from the CorHealth Ontario Cardiac Registry and several linked population health administrative databases from Ontario, Canada. We derived multiple logistic regression models from all adult patients who underwent CABG, AVR or combined CABG + AVR from April 2017 to March 2019, and validated them in 2 temporally distinct cohorts (April 2015 to March 2017 and April 2019 to March 2020).
The derivation cohorts included 13 435 patients who underwent CABG (30-d mortality 1.73%), 1970 patients who underwent AVR (30-d mortality 1.68%) and 1510 patients who underwent combined CABG + AVR (30-d mortality 3.05%). The final models for predicting 30-day mortality included 15 variables for patients undergoing CABG, 5 variables for patients undergoing AVR and 5 variables for patients undergoing combined CABG + AVR. Model discrimination was excellent for the CABG (c-statistic 0.888, optimism-corrected 0.866) AVR (c-statistic 0.850, optimism-corrected 0.762) and CABG + AVR (c-statistic 0.844, optimism-corrected 0.776) models, with similar results in the validation cohorts.
Our models, leveraging readily available, multidimensional data sources, computed accurate risk-adjusted 30-day mortality rates for CABG, AVR and combined CABG + AVR, with discrimination comparable to more complex American and European models. The ability to accurately predict perioperative mortality rates for these procedures will be valuable for quality improvement initiatives across institutions.</abstract><cop>Canada</cop><pub>CMA Joule Inc</pub><pmid>34810162</pmid><doi>10.1503/cmaj.202901</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0820-3946 |
ispartof | Canadian Medical Association journal (CMAJ), 2021-11, Vol.193 (46), p.E1757-E1765 |
issn | 0820-3946 1488-2329 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8608458 |
source | MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Adult Aged Ambulatory care Aortic Valve - surgery Coronary artery bypass Coronary Artery Bypass - mortality Coronary vessels Ethnicity Female Health insurance Health risk assessment Health risks Heart surgery Heart Valve Prosthesis Implantation - mortality Heart valve replacement Hospitals Humans Laboratories Male Medical prognosis Methods Middle Aged Mortality Ontario - epidemiology Patient outcomes Patients Predictive Value of Tests Registries Retrospective Studies Statistical models Statistics Variables |
title | Derivation and validation of predictive indices for 30-day mortality after coronary and valvular surgery in Ontario, Canada |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A40%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20and%20validation%20of%20predictive%20indices%20for%2030-day%20mortality%20after%20coronary%20and%20valvular%20surgery%20in%20Ontario,%20Canada&rft.jtitle=Canadian%20Medical%20Association%20journal%20(CMAJ)&rft.au=Sun,%20Louise%20Y&rft.aucorp=CorHealth%20Ontario%20Cardiac%20Surgery%20Risk%20Adjustment%20Task%20Group&rft.date=2021-11-22&rft.volume=193&rft.issue=46&rft.spage=E1757&rft.epage=E1765&rft.pages=E1757-E1765&rft.issn=0820-3946&rft.eissn=1488-2329&rft_id=info:doi/10.1503/cmaj.202901&rft_dat=%3Cgale_pubme%3EA683074514%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2600979179&rft_id=info:pmid/34810162&rft_galeid=A683074514&rfr_iscdi=true |