Reconstruction of visible light optical coherence tomography images retrieved from discontinuous spectral data using a conditional generative adversarial network
Achieving high resolution in optical coherence tomography typically requires the continuous extension of the spectral bandwidth of the light source. This work demonstrates an alternative approach: combining two discrete spectral windows located in the visible spectrum with a trained conditional gene...
Gespeichert in:
Veröffentlicht in: | Biomedical optics express 2021-11, Vol.12 (11), p.6780-6795 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6795 |
---|---|
container_issue | 11 |
container_start_page | 6780 |
container_title | Biomedical optics express |
container_volume | 12 |
creator | Lichtenegger, Antonia Salas, Matthias Sing, Alexander Duelk, Marcus Licandro, Roxane Gesperger, Johanna Baumann, Bernhard Drexler, Wolfgang Leitgeb, Rainer A |
description | Achieving high resolution in optical coherence tomography typically requires the continuous extension of the spectral bandwidth of the light source. This work demonstrates an alternative approach: combining two discrete spectral windows located in the visible spectrum with a trained conditional generative adversarial network (cGAN) to reconstruct a high-resolution image equivalent to that generated using a continuous spectral band. The cGAN was trained using OCT image pairs acquired with the continuous and discontinuous visible range spectra to learn the relation between low- and high-resolution data. The reconstruction performance was tested using 6000 B-scans of a layered phantom, micro-beads and ex-vivo mouse ear tissue. The resultant cGAN-generated images demonstrate an image quality and axial resolution which approaches that of the high-resolution system. |
doi_str_mv | 10.1364/boe.435124 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8606123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2606921956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-d7954cc1231f75ebb671cd743a0d166613c0cba93b5ae40cd5cc5e8af50230f33</originalsourceid><addsrcrecordid>eNpVkd1KHTEUhYO0qKg3PoDkshSOTSY_M-dGaMU_EISi1yGT7JmTdiaZJpkpPo5v2hyOis1Nwt6Lb-3shdApJeeUSf6tDXDOmaAV30OHFRVyVZNGfPrwPkAnKf0i5XBeE9bsowPGG9HIhhyil59ggk85zia74HHo8OKSawfAg-s3GYcpO6MHbMIGIngDOIcx9FFPm2fsRt1DwhFydLCAxV0MI7YuFWZ2fg5zwmkCk2MhWJ01npPzPdYF563bOpZGDx6izm4BrO0CMenoStlD_hvi72P0udNDgpPX-wg9XV89Xt6u7h9u7i6_368M5zyvbL0W3BhaMdrVAtpW1tTYmjNNLJVSUmaIafWatUIDJ8YKYwQ0uhOkYqRj7Ahd7LjT3I5gDfjt1GqK5ZPxWQXt1P8d7zaqD4tqJJHFtgC-vAJi-DNDymosi4Bh0B7KIlRVdOuKroUs0q87qYkhpQjduw0lahur-vFwpXaxFvHZx8HepW8hsn82wKRE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2606921956</pqid></control><display><type>article</type><title>Reconstruction of visible light optical coherence tomography images retrieved from discontinuous spectral data using a conditional generative adversarial network</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Lichtenegger, Antonia ; Salas, Matthias ; Sing, Alexander ; Duelk, Marcus ; Licandro, Roxane ; Gesperger, Johanna ; Baumann, Bernhard ; Drexler, Wolfgang ; Leitgeb, Rainer A</creator><creatorcontrib>Lichtenegger, Antonia ; Salas, Matthias ; Sing, Alexander ; Duelk, Marcus ; Licandro, Roxane ; Gesperger, Johanna ; Baumann, Bernhard ; Drexler, Wolfgang ; Leitgeb, Rainer A</creatorcontrib><description>Achieving high resolution in optical coherence tomography typically requires the continuous extension of the spectral bandwidth of the light source. This work demonstrates an alternative approach: combining two discrete spectral windows located in the visible spectrum with a trained conditional generative adversarial network (cGAN) to reconstruct a high-resolution image equivalent to that generated using a continuous spectral band. The cGAN was trained using OCT image pairs acquired with the continuous and discontinuous visible range spectra to learn the relation between low- and high-resolution data. The reconstruction performance was tested using 6000 B-scans of a layered phantom, micro-beads and ex-vivo mouse ear tissue. The resultant cGAN-generated images demonstrate an image quality and axial resolution which approaches that of the high-resolution system.</description><identifier>ISSN: 2156-7085</identifier><identifier>EISSN: 2156-7085</identifier><identifier>DOI: 10.1364/boe.435124</identifier><identifier>PMID: 34858680</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><ispartof>Biomedical optics express, 2021-11, Vol.12 (11), p.6780-6795</ispartof><rights>Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.</rights><rights>Published by The Optical Society under the terms of the . Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-d7954cc1231f75ebb671cd743a0d166613c0cba93b5ae40cd5cc5e8af50230f33</citedby><cites>FETCH-LOGICAL-c444t-d7954cc1231f75ebb671cd743a0d166613c0cba93b5ae40cd5cc5e8af50230f33</cites><orcidid>0000-0002-6422-9547 ; 0000-0001-6419-1932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8606123/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8606123/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34858680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lichtenegger, Antonia</creatorcontrib><creatorcontrib>Salas, Matthias</creatorcontrib><creatorcontrib>Sing, Alexander</creatorcontrib><creatorcontrib>Duelk, Marcus</creatorcontrib><creatorcontrib>Licandro, Roxane</creatorcontrib><creatorcontrib>Gesperger, Johanna</creatorcontrib><creatorcontrib>Baumann, Bernhard</creatorcontrib><creatorcontrib>Drexler, Wolfgang</creatorcontrib><creatorcontrib>Leitgeb, Rainer A</creatorcontrib><title>Reconstruction of visible light optical coherence tomography images retrieved from discontinuous spectral data using a conditional generative adversarial network</title><title>Biomedical optics express</title><addtitle>Biomed Opt Express</addtitle><description>Achieving high resolution in optical coherence tomography typically requires the continuous extension of the spectral bandwidth of the light source. This work demonstrates an alternative approach: combining two discrete spectral windows located in the visible spectrum with a trained conditional generative adversarial network (cGAN) to reconstruct a high-resolution image equivalent to that generated using a continuous spectral band. The cGAN was trained using OCT image pairs acquired with the continuous and discontinuous visible range spectra to learn the relation between low- and high-resolution data. The reconstruction performance was tested using 6000 B-scans of a layered phantom, micro-beads and ex-vivo mouse ear tissue. The resultant cGAN-generated images demonstrate an image quality and axial resolution which approaches that of the high-resolution system.</description><issn>2156-7085</issn><issn>2156-7085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkd1KHTEUhYO0qKg3PoDkshSOTSY_M-dGaMU_EISi1yGT7JmTdiaZJpkpPo5v2hyOis1Nwt6Lb-3shdApJeeUSf6tDXDOmaAV30OHFRVyVZNGfPrwPkAnKf0i5XBeE9bsowPGG9HIhhyil59ggk85zia74HHo8OKSawfAg-s3GYcpO6MHbMIGIngDOIcx9FFPm2fsRt1DwhFydLCAxV0MI7YuFWZ2fg5zwmkCk2MhWJ01npPzPdYF563bOpZGDx6izm4BrO0CMenoStlD_hvi72P0udNDgpPX-wg9XV89Xt6u7h9u7i6_368M5zyvbL0W3BhaMdrVAtpW1tTYmjNNLJVSUmaIafWatUIDJ8YKYwQ0uhOkYqRj7Ahd7LjT3I5gDfjt1GqK5ZPxWQXt1P8d7zaqD4tqJJHFtgC-vAJi-DNDymosi4Bh0B7KIlRVdOuKroUs0q87qYkhpQjduw0lahur-vFwpXaxFvHZx8HepW8hsn82wKRE</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Lichtenegger, Antonia</creator><creator>Salas, Matthias</creator><creator>Sing, Alexander</creator><creator>Duelk, Marcus</creator><creator>Licandro, Roxane</creator><creator>Gesperger, Johanna</creator><creator>Baumann, Bernhard</creator><creator>Drexler, Wolfgang</creator><creator>Leitgeb, Rainer A</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6422-9547</orcidid><orcidid>https://orcid.org/0000-0001-6419-1932</orcidid></search><sort><creationdate>20211101</creationdate><title>Reconstruction of visible light optical coherence tomography images retrieved from discontinuous spectral data using a conditional generative adversarial network</title><author>Lichtenegger, Antonia ; Salas, Matthias ; Sing, Alexander ; Duelk, Marcus ; Licandro, Roxane ; Gesperger, Johanna ; Baumann, Bernhard ; Drexler, Wolfgang ; Leitgeb, Rainer A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-d7954cc1231f75ebb671cd743a0d166613c0cba93b5ae40cd5cc5e8af50230f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lichtenegger, Antonia</creatorcontrib><creatorcontrib>Salas, Matthias</creatorcontrib><creatorcontrib>Sing, Alexander</creatorcontrib><creatorcontrib>Duelk, Marcus</creatorcontrib><creatorcontrib>Licandro, Roxane</creatorcontrib><creatorcontrib>Gesperger, Johanna</creatorcontrib><creatorcontrib>Baumann, Bernhard</creatorcontrib><creatorcontrib>Drexler, Wolfgang</creatorcontrib><creatorcontrib>Leitgeb, Rainer A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lichtenegger, Antonia</au><au>Salas, Matthias</au><au>Sing, Alexander</au><au>Duelk, Marcus</au><au>Licandro, Roxane</au><au>Gesperger, Johanna</au><au>Baumann, Bernhard</au><au>Drexler, Wolfgang</au><au>Leitgeb, Rainer A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstruction of visible light optical coherence tomography images retrieved from discontinuous spectral data using a conditional generative adversarial network</atitle><jtitle>Biomedical optics express</jtitle><addtitle>Biomed Opt Express</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>12</volume><issue>11</issue><spage>6780</spage><epage>6795</epage><pages>6780-6795</pages><issn>2156-7085</issn><eissn>2156-7085</eissn><abstract>Achieving high resolution in optical coherence tomography typically requires the continuous extension of the spectral bandwidth of the light source. This work demonstrates an alternative approach: combining two discrete spectral windows located in the visible spectrum with a trained conditional generative adversarial network (cGAN) to reconstruct a high-resolution image equivalent to that generated using a continuous spectral band. The cGAN was trained using OCT image pairs acquired with the continuous and discontinuous visible range spectra to learn the relation between low- and high-resolution data. The reconstruction performance was tested using 6000 B-scans of a layered phantom, micro-beads and ex-vivo mouse ear tissue. The resultant cGAN-generated images demonstrate an image quality and axial resolution which approaches that of the high-resolution system.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>34858680</pmid><doi>10.1364/boe.435124</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6422-9547</orcidid><orcidid>https://orcid.org/0000-0001-6419-1932</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2156-7085 |
ispartof | Biomedical optics express, 2021-11, Vol.12 (11), p.6780-6795 |
issn | 2156-7085 2156-7085 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8606123 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
title | Reconstruction of visible light optical coherence tomography images retrieved from discontinuous spectral data using a conditional generative adversarial network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstruction%20of%20visible%20light%20optical%20coherence%20tomography%20images%20retrieved%20from%20discontinuous%20spectral%20data%20using%20a%20conditional%20generative%20adversarial%20network&rft.jtitle=Biomedical%20optics%20express&rft.au=Lichtenegger,%20Antonia&rft.date=2021-11-01&rft.volume=12&rft.issue=11&rft.spage=6780&rft.epage=6795&rft.pages=6780-6795&rft.issn=2156-7085&rft.eissn=2156-7085&rft_id=info:doi/10.1364/boe.435124&rft_dat=%3Cproquest_pubme%3E2606921956%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2606921956&rft_id=info:pmid/34858680&rfr_iscdi=true |