Identification of the key functional genes in salt-stress tolerance of Cyanobacterium Phormidium tenue using in silico analysis

The development of artificial biocrust using cyanobacterium Phormidium tenue has been suggested as an effective strategy to prevent soil degradation. Here, a combination of in silico approaches with growth rate, photosynthetic pigment, morphology, and transcript analysis was used to identify specifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:3 Biotech 2021-12, Vol.11 (12), p.503-503, Article 503
Hauptverfasser: Shahbazi, Mehrdad, Tohidfar, Masoud, Azimzadeh Irani, Maryam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 503
container_issue 12
container_start_page 503
container_title 3 Biotech
container_volume 11
creator Shahbazi, Mehrdad
Tohidfar, Masoud
Azimzadeh Irani, Maryam
description The development of artificial biocrust using cyanobacterium Phormidium tenue has been suggested as an effective strategy to prevent soil degradation. Here, a combination of in silico approaches with growth rate, photosynthetic pigment, morphology, and transcript analysis was used to identify specific genes and their protein products in response to 500 mM NaCl in P. tenue . The results show that 500 mM NaCl induces the expression of genes encoding glycerol-3-phosphate dehydrogenase ( glpD ) as a Flavoprotein, ribosomal protein S12 methylthiotransferase ( rimO ), and a hypothetical protein ( sll0939 ). The constructed co-expression network revealed a group of abiotic stress-responsive genes. Using the Basic Local Alignment Search Tool (BLAST), the homologous proteins of rimO, glpD, and sll0939 were identified in the P. tenue genome. Encoded proteins of glpD, rimO, and DUF1622 genes, respectively, contain (DAO and DAO C), (UPF0004, Radical SAM and TRAM 2), and (DUF1622) domains. The predicted ligand included 22B and MG for DUF1622, FS5 for rimO, and FAD for glpD protein. There was no direct disruption in ligand-binding sites of these proteins by Na + , Cl − , or NaCl. The growth rate, photosynthetic pigment, and morphology of P. tenue were investigated, and the result showed an acceptable tolerance rate of this microorganism under salt stress. The quantitative real-time polymerase chain reaction (qRT-PCR) results revealed the up-regulation of glpD , rimO , and DUF1622 genes under salt stress. This is the first report on computational and experimental analyses of the glpD , rimO , and DUF1622 genes in P. tenue under salt stress to the best of our knowledge.
doi_str_mv 10.1007/s13205-021-03050-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8602552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2623076689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-bb5cf2715b5e488aac6d123b88e898af5669196b281fc0e33de9ca392b94ce1f3</originalsourceid><addsrcrecordid>eNp9kU1vVCEUhomxsU3bP-DCkLhxc5WPgYGNiZn40aSJLtrEHeFyDzPUe6ECt82s_OsynTp-LGTDCec5L-fNi9BzSl5TQpZvCuWMiI4w2hFOBOnun6ATRjXpxJKrp4eafT1G56XckHYEFZqSZ-iYL5SiVMoT9ONigFiDD87WkCJOHtcN4G-wxX6ObvdmR7yGCAWHiIsda1dqhlJwTSNkGx3shlZbG1NvXYUc5gl_2aQ8hWFXVogz4LmEuH5QCGNwCdsmuy2hnKEjb8cC54_3Kbr-8P5q9am7_PzxYvXusnMLJmrX98J5tqSiF9B2t9bJgTLeKwVKK-uFlJpq2TNFvSPA-QDaWa5ZrxcOqOen6O1e93buJxhcM53taG5zmGzemmSD-bsTw8as051RkjAhWBN49SiQ0_cZSjVTKA7G0UZIczFMMk6WUird0Jf_oDdpzs1wo4RuCSyIlo1ie8rlVEoGf1iGErOL2OwjNi1i8xCxuW9DL_60cRj5FWgD-B4orRXXkH___R_Zn8qEtY8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599104096</pqid></control><display><type>article</type><title>Identification of the key functional genes in salt-stress tolerance of Cyanobacterium Phormidium tenue using in silico analysis</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Shahbazi, Mehrdad ; Tohidfar, Masoud ; Azimzadeh Irani, Maryam</creator><creatorcontrib>Shahbazi, Mehrdad ; Tohidfar, Masoud ; Azimzadeh Irani, Maryam</creatorcontrib><description>The development of artificial biocrust using cyanobacterium Phormidium tenue has been suggested as an effective strategy to prevent soil degradation. Here, a combination of in silico approaches with growth rate, photosynthetic pigment, morphology, and transcript analysis was used to identify specific genes and their protein products in response to 500 mM NaCl in P. tenue . The results show that 500 mM NaCl induces the expression of genes encoding glycerol-3-phosphate dehydrogenase ( glpD ) as a Flavoprotein, ribosomal protein S12 methylthiotransferase ( rimO ), and a hypothetical protein ( sll0939 ). The constructed co-expression network revealed a group of abiotic stress-responsive genes. Using the Basic Local Alignment Search Tool (BLAST), the homologous proteins of rimO, glpD, and sll0939 were identified in the P. tenue genome. Encoded proteins of glpD, rimO, and DUF1622 genes, respectively, contain (DAO and DAO C), (UPF0004, Radical SAM and TRAM 2), and (DUF1622) domains. The predicted ligand included 22B and MG for DUF1622, FS5 for rimO, and FAD for glpD protein. There was no direct disruption in ligand-binding sites of these proteins by Na + , Cl − , or NaCl. The growth rate, photosynthetic pigment, and morphology of P. tenue were investigated, and the result showed an acceptable tolerance rate of this microorganism under salt stress. The quantitative real-time polymerase chain reaction (qRT-PCR) results revealed the up-regulation of glpD , rimO , and DUF1622 genes under salt stress. This is the first report on computational and experimental analyses of the glpD , rimO , and DUF1622 genes in P. tenue under salt stress to the best of our knowledge.</description><identifier>ISSN: 2190-572X</identifier><identifier>EISSN: 2190-5738</identifier><identifier>DOI: 10.1007/s13205-021-03050-w</identifier><identifier>PMID: 34881166</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Abiotic stress ; Agriculture ; Binding sites ; Biodegradation ; Bioinformatics ; Biomaterials ; Biotechnology ; Cancer Research ; Chemistry ; Chemistry and Materials Science ; Computer applications ; Cyanobacteria ; Gene expression ; Genes ; Genomes ; Glycerol ; Glycerol-3-phosphate ; Glycerol-3-phosphate dehydrogenase ; Growth rate ; Homology ; Ligands ; Morphology ; Original ; Original Article ; Phormidium tenue ; Photosynthesis ; Polymerase chain reaction ; Proteins ; Ribosomal protein S12 ; Salinity tolerance ; Sodium chloride ; Soil degradation ; Stem Cells ; Transcription</subject><ispartof>3 Biotech, 2021-12, Vol.11 (12), p.503-503, Article 503</ispartof><rights>King Abdulaziz City for Science and Technology 2021</rights><rights>King Abdulaziz City for Science and Technology 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c425t-bb5cf2715b5e488aac6d123b88e898af5669196b281fc0e33de9ca392b94ce1f3</cites><orcidid>0000-0002-0175-7406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8602552/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8602552/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,41467,42536,51297,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34881166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shahbazi, Mehrdad</creatorcontrib><creatorcontrib>Tohidfar, Masoud</creatorcontrib><creatorcontrib>Azimzadeh Irani, Maryam</creatorcontrib><title>Identification of the key functional genes in salt-stress tolerance of Cyanobacterium Phormidium tenue using in silico analysis</title><title>3 Biotech</title><addtitle>3 Biotech</addtitle><addtitle>3 Biotech</addtitle><description>The development of artificial biocrust using cyanobacterium Phormidium tenue has been suggested as an effective strategy to prevent soil degradation. Here, a combination of in silico approaches with growth rate, photosynthetic pigment, morphology, and transcript analysis was used to identify specific genes and their protein products in response to 500 mM NaCl in P. tenue . The results show that 500 mM NaCl induces the expression of genes encoding glycerol-3-phosphate dehydrogenase ( glpD ) as a Flavoprotein, ribosomal protein S12 methylthiotransferase ( rimO ), and a hypothetical protein ( sll0939 ). The constructed co-expression network revealed a group of abiotic stress-responsive genes. Using the Basic Local Alignment Search Tool (BLAST), the homologous proteins of rimO, glpD, and sll0939 were identified in the P. tenue genome. Encoded proteins of glpD, rimO, and DUF1622 genes, respectively, contain (DAO and DAO C), (UPF0004, Radical SAM and TRAM 2), and (DUF1622) domains. The predicted ligand included 22B and MG for DUF1622, FS5 for rimO, and FAD for glpD protein. There was no direct disruption in ligand-binding sites of these proteins by Na + , Cl − , or NaCl. The growth rate, photosynthetic pigment, and morphology of P. tenue were investigated, and the result showed an acceptable tolerance rate of this microorganism under salt stress. The quantitative real-time polymerase chain reaction (qRT-PCR) results revealed the up-regulation of glpD , rimO , and DUF1622 genes under salt stress. This is the first report on computational and experimental analyses of the glpD , rimO , and DUF1622 genes in P. tenue under salt stress to the best of our knowledge.</description><subject>Abiotic stress</subject><subject>Agriculture</subject><subject>Binding sites</subject><subject>Biodegradation</subject><subject>Bioinformatics</subject><subject>Biomaterials</subject><subject>Biotechnology</subject><subject>Cancer Research</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer applications</subject><subject>Cyanobacteria</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genomes</subject><subject>Glycerol</subject><subject>Glycerol-3-phosphate</subject><subject>Glycerol-3-phosphate dehydrogenase</subject><subject>Growth rate</subject><subject>Homology</subject><subject>Ligands</subject><subject>Morphology</subject><subject>Original</subject><subject>Original Article</subject><subject>Phormidium tenue</subject><subject>Photosynthesis</subject><subject>Polymerase chain reaction</subject><subject>Proteins</subject><subject>Ribosomal protein S12</subject><subject>Salinity tolerance</subject><subject>Sodium chloride</subject><subject>Soil degradation</subject><subject>Stem Cells</subject><subject>Transcription</subject><issn>2190-572X</issn><issn>2190-5738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1vVCEUhomxsU3bP-DCkLhxc5WPgYGNiZn40aSJLtrEHeFyDzPUe6ECt82s_OsynTp-LGTDCec5L-fNi9BzSl5TQpZvCuWMiI4w2hFOBOnun6ATRjXpxJKrp4eafT1G56XckHYEFZqSZ-iYL5SiVMoT9ONigFiDD87WkCJOHtcN4G-wxX6ObvdmR7yGCAWHiIsda1dqhlJwTSNkGx3shlZbG1NvXYUc5gl_2aQ8hWFXVogz4LmEuH5QCGNwCdsmuy2hnKEjb8cC54_3Kbr-8P5q9am7_PzxYvXusnMLJmrX98J5tqSiF9B2t9bJgTLeKwVKK-uFlJpq2TNFvSPA-QDaWa5ZrxcOqOen6O1e93buJxhcM53taG5zmGzemmSD-bsTw8as051RkjAhWBN49SiQ0_cZSjVTKA7G0UZIczFMMk6WUird0Jf_oDdpzs1wo4RuCSyIlo1ie8rlVEoGf1iGErOL2OwjNi1i8xCxuW9DL_60cRj5FWgD-B4orRXXkH___R_Zn8qEtY8</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Shahbazi, Mehrdad</creator><creator>Tohidfar, Masoud</creator><creator>Azimzadeh Irani, Maryam</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0175-7406</orcidid></search><sort><creationdate>20211201</creationdate><title>Identification of the key functional genes in salt-stress tolerance of Cyanobacterium Phormidium tenue using in silico analysis</title><author>Shahbazi, Mehrdad ; Tohidfar, Masoud ; Azimzadeh Irani, Maryam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-bb5cf2715b5e488aac6d123b88e898af5669196b281fc0e33de9ca392b94ce1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abiotic stress</topic><topic>Agriculture</topic><topic>Binding sites</topic><topic>Biodegradation</topic><topic>Bioinformatics</topic><topic>Biomaterials</topic><topic>Biotechnology</topic><topic>Cancer Research</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer applications</topic><topic>Cyanobacteria</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genomes</topic><topic>Glycerol</topic><topic>Glycerol-3-phosphate</topic><topic>Glycerol-3-phosphate dehydrogenase</topic><topic>Growth rate</topic><topic>Homology</topic><topic>Ligands</topic><topic>Morphology</topic><topic>Original</topic><topic>Original Article</topic><topic>Phormidium tenue</topic><topic>Photosynthesis</topic><topic>Polymerase chain reaction</topic><topic>Proteins</topic><topic>Ribosomal protein S12</topic><topic>Salinity tolerance</topic><topic>Sodium chloride</topic><topic>Soil degradation</topic><topic>Stem Cells</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahbazi, Mehrdad</creatorcontrib><creatorcontrib>Tohidfar, Masoud</creatorcontrib><creatorcontrib>Azimzadeh Irani, Maryam</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>3 Biotech</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahbazi, Mehrdad</au><au>Tohidfar, Masoud</au><au>Azimzadeh Irani, Maryam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of the key functional genes in salt-stress tolerance of Cyanobacterium Phormidium tenue using in silico analysis</atitle><jtitle>3 Biotech</jtitle><stitle>3 Biotech</stitle><addtitle>3 Biotech</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>11</volume><issue>12</issue><spage>503</spage><epage>503</epage><pages>503-503</pages><artnum>503</artnum><issn>2190-572X</issn><eissn>2190-5738</eissn><abstract>The development of artificial biocrust using cyanobacterium Phormidium tenue has been suggested as an effective strategy to prevent soil degradation. Here, a combination of in silico approaches with growth rate, photosynthetic pigment, morphology, and transcript analysis was used to identify specific genes and their protein products in response to 500 mM NaCl in P. tenue . The results show that 500 mM NaCl induces the expression of genes encoding glycerol-3-phosphate dehydrogenase ( glpD ) as a Flavoprotein, ribosomal protein S12 methylthiotransferase ( rimO ), and a hypothetical protein ( sll0939 ). The constructed co-expression network revealed a group of abiotic stress-responsive genes. Using the Basic Local Alignment Search Tool (BLAST), the homologous proteins of rimO, glpD, and sll0939 were identified in the P. tenue genome. Encoded proteins of glpD, rimO, and DUF1622 genes, respectively, contain (DAO and DAO C), (UPF0004, Radical SAM and TRAM 2), and (DUF1622) domains. The predicted ligand included 22B and MG for DUF1622, FS5 for rimO, and FAD for glpD protein. There was no direct disruption in ligand-binding sites of these proteins by Na + , Cl − , or NaCl. The growth rate, photosynthetic pigment, and morphology of P. tenue were investigated, and the result showed an acceptable tolerance rate of this microorganism under salt stress. The quantitative real-time polymerase chain reaction (qRT-PCR) results revealed the up-regulation of glpD , rimO , and DUF1622 genes under salt stress. This is the first report on computational and experimental analyses of the glpD , rimO , and DUF1622 genes in P. tenue under salt stress to the best of our knowledge.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>34881166</pmid><doi>10.1007/s13205-021-03050-w</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0175-7406</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2190-572X
ispartof 3 Biotech, 2021-12, Vol.11 (12), p.503-503, Article 503
issn 2190-572X
2190-5738
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8602552
source EZB-FREE-00999 freely available EZB journals; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Abiotic stress
Agriculture
Binding sites
Biodegradation
Bioinformatics
Biomaterials
Biotechnology
Cancer Research
Chemistry
Chemistry and Materials Science
Computer applications
Cyanobacteria
Gene expression
Genes
Genomes
Glycerol
Glycerol-3-phosphate
Glycerol-3-phosphate dehydrogenase
Growth rate
Homology
Ligands
Morphology
Original
Original Article
Phormidium tenue
Photosynthesis
Polymerase chain reaction
Proteins
Ribosomal protein S12
Salinity tolerance
Sodium chloride
Soil degradation
Stem Cells
Transcription
title Identification of the key functional genes in salt-stress tolerance of Cyanobacterium Phormidium tenue using in silico analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A04%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20the%20key%20functional%20genes%20in%20salt-stress%20tolerance%20of%20Cyanobacterium%20Phormidium%20tenue%20using%20in%20silico%20analysis&rft.jtitle=3%20Biotech&rft.au=Shahbazi,%20Mehrdad&rft.date=2021-12-01&rft.volume=11&rft.issue=12&rft.spage=503&rft.epage=503&rft.pages=503-503&rft.artnum=503&rft.issn=2190-572X&rft.eissn=2190-5738&rft_id=info:doi/10.1007/s13205-021-03050-w&rft_dat=%3Cproquest_pubme%3E2623076689%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599104096&rft_id=info:pmid/34881166&rfr_iscdi=true