Identification of the key functional genes in salt-stress tolerance of Cyanobacterium Phormidium tenue using in silico analysis
The development of artificial biocrust using cyanobacterium Phormidium tenue has been suggested as an effective strategy to prevent soil degradation. Here, a combination of in silico approaches with growth rate, photosynthetic pigment, morphology, and transcript analysis was used to identify specifi...
Gespeichert in:
Veröffentlicht in: | 3 Biotech 2021-12, Vol.11 (12), p.503-503, Article 503 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 503 |
---|---|
container_issue | 12 |
container_start_page | 503 |
container_title | 3 Biotech |
container_volume | 11 |
creator | Shahbazi, Mehrdad Tohidfar, Masoud Azimzadeh Irani, Maryam |
description | The development of artificial biocrust using cyanobacterium
Phormidium tenue
has been suggested as an effective strategy to prevent soil degradation. Here, a combination of in silico approaches with growth rate, photosynthetic pigment, morphology, and transcript analysis was used to identify specific genes and their protein products in response to 500 mM NaCl in
P. tenue
. The results show that 500 mM NaCl induces the expression of genes encoding glycerol-3-phosphate dehydrogenase (
glpD
) as a Flavoprotein, ribosomal protein S12 methylthiotransferase (
rimO
), and a hypothetical protein (
sll0939
). The constructed co-expression network revealed a group of abiotic stress-responsive genes. Using the Basic Local Alignment Search Tool (BLAST), the homologous proteins of rimO, glpD, and sll0939 were identified in the
P. tenue
genome. Encoded proteins of glpD, rimO, and DUF1622 genes, respectively, contain (DAO and DAO C), (UPF0004, Radical SAM and TRAM 2), and (DUF1622) domains. The predicted ligand included 22B and MG for DUF1622, FS5 for rimO, and FAD for glpD protein. There was no direct disruption in ligand-binding sites of these proteins by Na
+
, Cl
−
, or NaCl. The growth rate, photosynthetic pigment, and morphology of
P. tenue
were investigated, and the result showed an acceptable tolerance rate of this microorganism under salt stress. The quantitative real-time polymerase chain reaction (qRT-PCR) results revealed the up-regulation of
glpD
,
rimO
, and
DUF1622
genes under salt stress. This is the first report on computational and experimental analyses of the
glpD
,
rimO
, and
DUF1622
genes in
P. tenue
under salt stress to the best of our knowledge. |
doi_str_mv | 10.1007/s13205-021-03050-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8602552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2623076689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-bb5cf2715b5e488aac6d123b88e898af5669196b281fc0e33de9ca392b94ce1f3</originalsourceid><addsrcrecordid>eNp9kU1vVCEUhomxsU3bP-DCkLhxc5WPgYGNiZn40aSJLtrEHeFyDzPUe6ECt82s_OsynTp-LGTDCec5L-fNi9BzSl5TQpZvCuWMiI4w2hFOBOnun6ATRjXpxJKrp4eafT1G56XckHYEFZqSZ-iYL5SiVMoT9ONigFiDD87WkCJOHtcN4G-wxX6ObvdmR7yGCAWHiIsda1dqhlJwTSNkGx3shlZbG1NvXYUc5gl_2aQ8hWFXVogz4LmEuH5QCGNwCdsmuy2hnKEjb8cC54_3Kbr-8P5q9am7_PzxYvXusnMLJmrX98J5tqSiF9B2t9bJgTLeKwVKK-uFlJpq2TNFvSPA-QDaWa5ZrxcOqOen6O1e93buJxhcM53taG5zmGzemmSD-bsTw8as051RkjAhWBN49SiQ0_cZSjVTKA7G0UZIczFMMk6WUird0Jf_oDdpzs1wo4RuCSyIlo1ie8rlVEoGf1iGErOL2OwjNi1i8xCxuW9DL_60cRj5FWgD-B4orRXXkH___R_Zn8qEtY8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599104096</pqid></control><display><type>article</type><title>Identification of the key functional genes in salt-stress tolerance of Cyanobacterium Phormidium tenue using in silico analysis</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Shahbazi, Mehrdad ; Tohidfar, Masoud ; Azimzadeh Irani, Maryam</creator><creatorcontrib>Shahbazi, Mehrdad ; Tohidfar, Masoud ; Azimzadeh Irani, Maryam</creatorcontrib><description>The development of artificial biocrust using cyanobacterium
Phormidium tenue
has been suggested as an effective strategy to prevent soil degradation. Here, a combination of in silico approaches with growth rate, photosynthetic pigment, morphology, and transcript analysis was used to identify specific genes and their protein products in response to 500 mM NaCl in
P. tenue
. The results show that 500 mM NaCl induces the expression of genes encoding glycerol-3-phosphate dehydrogenase (
glpD
) as a Flavoprotein, ribosomal protein S12 methylthiotransferase (
rimO
), and a hypothetical protein (
sll0939
). The constructed co-expression network revealed a group of abiotic stress-responsive genes. Using the Basic Local Alignment Search Tool (BLAST), the homologous proteins of rimO, glpD, and sll0939 were identified in the
P. tenue
genome. Encoded proteins of glpD, rimO, and DUF1622 genes, respectively, contain (DAO and DAO C), (UPF0004, Radical SAM and TRAM 2), and (DUF1622) domains. The predicted ligand included 22B and MG for DUF1622, FS5 for rimO, and FAD for glpD protein. There was no direct disruption in ligand-binding sites of these proteins by Na
+
, Cl
−
, or NaCl. The growth rate, photosynthetic pigment, and morphology of
P. tenue
were investigated, and the result showed an acceptable tolerance rate of this microorganism under salt stress. The quantitative real-time polymerase chain reaction (qRT-PCR) results revealed the up-regulation of
glpD
,
rimO
, and
DUF1622
genes under salt stress. This is the first report on computational and experimental analyses of the
glpD
,
rimO
, and
DUF1622
genes in
P. tenue
under salt stress to the best of our knowledge.</description><identifier>ISSN: 2190-572X</identifier><identifier>EISSN: 2190-5738</identifier><identifier>DOI: 10.1007/s13205-021-03050-w</identifier><identifier>PMID: 34881166</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Abiotic stress ; Agriculture ; Binding sites ; Biodegradation ; Bioinformatics ; Biomaterials ; Biotechnology ; Cancer Research ; Chemistry ; Chemistry and Materials Science ; Computer applications ; Cyanobacteria ; Gene expression ; Genes ; Genomes ; Glycerol ; Glycerol-3-phosphate ; Glycerol-3-phosphate dehydrogenase ; Growth rate ; Homology ; Ligands ; Morphology ; Original ; Original Article ; Phormidium tenue ; Photosynthesis ; Polymerase chain reaction ; Proteins ; Ribosomal protein S12 ; Salinity tolerance ; Sodium chloride ; Soil degradation ; Stem Cells ; Transcription</subject><ispartof>3 Biotech, 2021-12, Vol.11 (12), p.503-503, Article 503</ispartof><rights>King Abdulaziz City for Science and Technology 2021</rights><rights>King Abdulaziz City for Science and Technology 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c425t-bb5cf2715b5e488aac6d123b88e898af5669196b281fc0e33de9ca392b94ce1f3</cites><orcidid>0000-0002-0175-7406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8602552/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8602552/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,41467,42536,51297,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34881166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shahbazi, Mehrdad</creatorcontrib><creatorcontrib>Tohidfar, Masoud</creatorcontrib><creatorcontrib>Azimzadeh Irani, Maryam</creatorcontrib><title>Identification of the key functional genes in salt-stress tolerance of Cyanobacterium Phormidium tenue using in silico analysis</title><title>3 Biotech</title><addtitle>3 Biotech</addtitle><addtitle>3 Biotech</addtitle><description>The development of artificial biocrust using cyanobacterium
Phormidium tenue
has been suggested as an effective strategy to prevent soil degradation. Here, a combination of in silico approaches with growth rate, photosynthetic pigment, morphology, and transcript analysis was used to identify specific genes and their protein products in response to 500 mM NaCl in
P. tenue
. The results show that 500 mM NaCl induces the expression of genes encoding glycerol-3-phosphate dehydrogenase (
glpD
) as a Flavoprotein, ribosomal protein S12 methylthiotransferase (
rimO
), and a hypothetical protein (
sll0939
). The constructed co-expression network revealed a group of abiotic stress-responsive genes. Using the Basic Local Alignment Search Tool (BLAST), the homologous proteins of rimO, glpD, and sll0939 were identified in the
P. tenue
genome. Encoded proteins of glpD, rimO, and DUF1622 genes, respectively, contain (DAO and DAO C), (UPF0004, Radical SAM and TRAM 2), and (DUF1622) domains. The predicted ligand included 22B and MG for DUF1622, FS5 for rimO, and FAD for glpD protein. There was no direct disruption in ligand-binding sites of these proteins by Na
+
, Cl
−
, or NaCl. The growth rate, photosynthetic pigment, and morphology of
P. tenue
were investigated, and the result showed an acceptable tolerance rate of this microorganism under salt stress. The quantitative real-time polymerase chain reaction (qRT-PCR) results revealed the up-regulation of
glpD
,
rimO
, and
DUF1622
genes under salt stress. This is the first report on computational and experimental analyses of the
glpD
,
rimO
, and
DUF1622
genes in
P. tenue
under salt stress to the best of our knowledge.</description><subject>Abiotic stress</subject><subject>Agriculture</subject><subject>Binding sites</subject><subject>Biodegradation</subject><subject>Bioinformatics</subject><subject>Biomaterials</subject><subject>Biotechnology</subject><subject>Cancer Research</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer applications</subject><subject>Cyanobacteria</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genomes</subject><subject>Glycerol</subject><subject>Glycerol-3-phosphate</subject><subject>Glycerol-3-phosphate dehydrogenase</subject><subject>Growth rate</subject><subject>Homology</subject><subject>Ligands</subject><subject>Morphology</subject><subject>Original</subject><subject>Original Article</subject><subject>Phormidium tenue</subject><subject>Photosynthesis</subject><subject>Polymerase chain reaction</subject><subject>Proteins</subject><subject>Ribosomal protein S12</subject><subject>Salinity tolerance</subject><subject>Sodium chloride</subject><subject>Soil degradation</subject><subject>Stem Cells</subject><subject>Transcription</subject><issn>2190-572X</issn><issn>2190-5738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1vVCEUhomxsU3bP-DCkLhxc5WPgYGNiZn40aSJLtrEHeFyDzPUe6ECt82s_OsynTp-LGTDCec5L-fNi9BzSl5TQpZvCuWMiI4w2hFOBOnun6ATRjXpxJKrp4eafT1G56XckHYEFZqSZ-iYL5SiVMoT9ONigFiDD87WkCJOHtcN4G-wxX6ObvdmR7yGCAWHiIsda1dqhlJwTSNkGx3shlZbG1NvXYUc5gl_2aQ8hWFXVogz4LmEuH5QCGNwCdsmuy2hnKEjb8cC54_3Kbr-8P5q9am7_PzxYvXusnMLJmrX98J5tqSiF9B2t9bJgTLeKwVKK-uFlJpq2TNFvSPA-QDaWa5ZrxcOqOen6O1e93buJxhcM53taG5zmGzemmSD-bsTw8as051RkjAhWBN49SiQ0_cZSjVTKA7G0UZIczFMMk6WUird0Jf_oDdpzs1wo4RuCSyIlo1ie8rlVEoGf1iGErOL2OwjNi1i8xCxuW9DL_60cRj5FWgD-B4orRXXkH___R_Zn8qEtY8</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Shahbazi, Mehrdad</creator><creator>Tohidfar, Masoud</creator><creator>Azimzadeh Irani, Maryam</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0175-7406</orcidid></search><sort><creationdate>20211201</creationdate><title>Identification of the key functional genes in salt-stress tolerance of Cyanobacterium Phormidium tenue using in silico analysis</title><author>Shahbazi, Mehrdad ; Tohidfar, Masoud ; Azimzadeh Irani, Maryam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-bb5cf2715b5e488aac6d123b88e898af5669196b281fc0e33de9ca392b94ce1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abiotic stress</topic><topic>Agriculture</topic><topic>Binding sites</topic><topic>Biodegradation</topic><topic>Bioinformatics</topic><topic>Biomaterials</topic><topic>Biotechnology</topic><topic>Cancer Research</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer applications</topic><topic>Cyanobacteria</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genomes</topic><topic>Glycerol</topic><topic>Glycerol-3-phosphate</topic><topic>Glycerol-3-phosphate dehydrogenase</topic><topic>Growth rate</topic><topic>Homology</topic><topic>Ligands</topic><topic>Morphology</topic><topic>Original</topic><topic>Original Article</topic><topic>Phormidium tenue</topic><topic>Photosynthesis</topic><topic>Polymerase chain reaction</topic><topic>Proteins</topic><topic>Ribosomal protein S12</topic><topic>Salinity tolerance</topic><topic>Sodium chloride</topic><topic>Soil degradation</topic><topic>Stem Cells</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahbazi, Mehrdad</creatorcontrib><creatorcontrib>Tohidfar, Masoud</creatorcontrib><creatorcontrib>Azimzadeh Irani, Maryam</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>3 Biotech</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahbazi, Mehrdad</au><au>Tohidfar, Masoud</au><au>Azimzadeh Irani, Maryam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of the key functional genes in salt-stress tolerance of Cyanobacterium Phormidium tenue using in silico analysis</atitle><jtitle>3 Biotech</jtitle><stitle>3 Biotech</stitle><addtitle>3 Biotech</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>11</volume><issue>12</issue><spage>503</spage><epage>503</epage><pages>503-503</pages><artnum>503</artnum><issn>2190-572X</issn><eissn>2190-5738</eissn><abstract>The development of artificial biocrust using cyanobacterium
Phormidium tenue
has been suggested as an effective strategy to prevent soil degradation. Here, a combination of in silico approaches with growth rate, photosynthetic pigment, morphology, and transcript analysis was used to identify specific genes and their protein products in response to 500 mM NaCl in
P. tenue
. The results show that 500 mM NaCl induces the expression of genes encoding glycerol-3-phosphate dehydrogenase (
glpD
) as a Flavoprotein, ribosomal protein S12 methylthiotransferase (
rimO
), and a hypothetical protein (
sll0939
). The constructed co-expression network revealed a group of abiotic stress-responsive genes. Using the Basic Local Alignment Search Tool (BLAST), the homologous proteins of rimO, glpD, and sll0939 were identified in the
P. tenue
genome. Encoded proteins of glpD, rimO, and DUF1622 genes, respectively, contain (DAO and DAO C), (UPF0004, Radical SAM and TRAM 2), and (DUF1622) domains. The predicted ligand included 22B and MG for DUF1622, FS5 for rimO, and FAD for glpD protein. There was no direct disruption in ligand-binding sites of these proteins by Na
+
, Cl
−
, or NaCl. The growth rate, photosynthetic pigment, and morphology of
P. tenue
were investigated, and the result showed an acceptable tolerance rate of this microorganism under salt stress. The quantitative real-time polymerase chain reaction (qRT-PCR) results revealed the up-regulation of
glpD
,
rimO
, and
DUF1622
genes under salt stress. This is the first report on computational and experimental analyses of the
glpD
,
rimO
, and
DUF1622
genes in
P. tenue
under salt stress to the best of our knowledge.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>34881166</pmid><doi>10.1007/s13205-021-03050-w</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0175-7406</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-572X |
ispartof | 3 Biotech, 2021-12, Vol.11 (12), p.503-503, Article 503 |
issn | 2190-572X 2190-5738 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8602552 |
source | EZB-FREE-00999 freely available EZB journals; PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | Abiotic stress Agriculture Binding sites Biodegradation Bioinformatics Biomaterials Biotechnology Cancer Research Chemistry Chemistry and Materials Science Computer applications Cyanobacteria Gene expression Genes Genomes Glycerol Glycerol-3-phosphate Glycerol-3-phosphate dehydrogenase Growth rate Homology Ligands Morphology Original Original Article Phormidium tenue Photosynthesis Polymerase chain reaction Proteins Ribosomal protein S12 Salinity tolerance Sodium chloride Soil degradation Stem Cells Transcription |
title | Identification of the key functional genes in salt-stress tolerance of Cyanobacterium Phormidium tenue using in silico analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A04%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20the%20key%20functional%20genes%20in%20salt-stress%20tolerance%20of%20Cyanobacterium%20Phormidium%20tenue%20using%20in%20silico%20analysis&rft.jtitle=3%20Biotech&rft.au=Shahbazi,%20Mehrdad&rft.date=2021-12-01&rft.volume=11&rft.issue=12&rft.spage=503&rft.epage=503&rft.pages=503-503&rft.artnum=503&rft.issn=2190-572X&rft.eissn=2190-5738&rft_id=info:doi/10.1007/s13205-021-03050-w&rft_dat=%3Cproquest_pubme%3E2623076689%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599104096&rft_id=info:pmid/34881166&rfr_iscdi=true |