An Efficient Classification of Neonates Cry Using Extreme Gradient Boosting-Assisted Grouped-Support-Vector Network
The cry is a loud, high pitched verbal communication of infants. The very high fundamental frequency and resonance frequency characterize a neonatal infant cry having certain sudden variations. Furthermore, in a tiny duration solitary utterance, the cry signal also possesses both voiced and unvoiced...
Gespeichert in:
Veröffentlicht in: | Journal of healthcare engineering 2021-11, Vol.2021, p.7517313-14 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 7517313 |
container_title | Journal of healthcare engineering |
container_volume | 2021 |
creator | Chang, Chuan-Yu Bhattacharya, Sweta Raj Vincent, P. M. Durai Lakshmanna, Kuruva Srinivasan, Kathiravan |
description | The cry is a loud, high pitched verbal communication of infants. The very high fundamental frequency and resonance frequency characterize a neonatal infant cry having certain sudden variations. Furthermore, in a tiny duration solitary utterance, the cry signal also possesses both voiced and unvoiced features. Mostly, infants communicate with their caretakers through cries, and sometimes, it becomes difficult for the caretakers to comprehend the reason behind the newborn infant cry. As a result, this research proposes a novel work for classifying the newborn infant cries under three groups such as hunger, sleep, and discomfort. For each crying frame, twelve features get extracted through acoustic feature engineering, and the variable selection using random forests was used for selecting the highly discriminative features among the twelve time and frequency domain features. Subsequently, the extreme gradient boosting-powered grouped-support-vector network is deployed for neonate cry classification. The empirical results show that the proposed method could effectively classify the neonate cries under three different groups. The finest experimental results showed a mean accuracy of around 91% for most scenarios, and this exhibits the potential of the proposed extreme gradient boosting-powered grouped-support-vector network in neonate cry classification. Also, the proposed method has a fast recognition rate of 27 seconds in the identification of these emotional cries. |
doi_str_mv | 10.1155/2021/7517313 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8601804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600825097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-68c1c15cfd3fe86762494433afc1f0a93fa94280c0e3218f7485e626a0ec87a53</originalsourceid><addsrcrecordid>eNp9kc1P3DAQxa2KChBw44xyrERTxh9JnAvSdrVQJFQOQK-W64zBNBsH2ynlv8d0FwQXfBlb7zfPo3mE7FP4RmlVHTFg9KipaMMp_0S2GQgoGYd24-XO2mqL7MV4B_nwlgvKN8kWFxKEqGGbxNlQLKx1xuGQinmvY3T5pZPzQ-Ft8RP9oBPGYh4ei-vohpti8S8FXGJxGnT3v-u79zFlpZzl5piwy5KfRuzKy2kcfUjlLzTJh2yWHnz4s0s-W91H3FvXHXJ9sria_yjPL07P5rPz0ggGqayloYZWxnbcoqybmolWCM61NdSCbrnVrWASDCBnVNpGyAprVmtAIxtd8R1yvPIdp99L7EyeNehejcEtdXhUXjv1Xhncrbrxf5WsgeYFZYMva4Pg7yeMSS1dNNj3ekA_RcVqAMkqaJuMfl2hJvgYA9rXbyio56jUc1RqHVXGD96O9gq_BJOBwxVw64ZOP7iP7Z4AVxGc3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2600825097</pqid></control><display><type>article</type><title>An Efficient Classification of Neonates Cry Using Extreme Gradient Boosting-Assisted Grouped-Support-Vector Network</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Chang, Chuan-Yu ; Bhattacharya, Sweta ; Raj Vincent, P. M. Durai ; Lakshmanna, Kuruva ; Srinivasan, Kathiravan</creator><contributor>Satapathy, Suresh</contributor><creatorcontrib>Chang, Chuan-Yu ; Bhattacharya, Sweta ; Raj Vincent, P. M. Durai ; Lakshmanna, Kuruva ; Srinivasan, Kathiravan ; Satapathy, Suresh</creatorcontrib><description>The cry is a loud, high pitched verbal communication of infants. The very high fundamental frequency and resonance frequency characterize a neonatal infant cry having certain sudden variations. Furthermore, in a tiny duration solitary utterance, the cry signal also possesses both voiced and unvoiced features. Mostly, infants communicate with their caretakers through cries, and sometimes, it becomes difficult for the caretakers to comprehend the reason behind the newborn infant cry. As a result, this research proposes a novel work for classifying the newborn infant cries under three groups such as hunger, sleep, and discomfort. For each crying frame, twelve features get extracted through acoustic feature engineering, and the variable selection using random forests was used for selecting the highly discriminative features among the twelve time and frequency domain features. Subsequently, the extreme gradient boosting-powered grouped-support-vector network is deployed for neonate cry classification. The empirical results show that the proposed method could effectively classify the neonate cries under three different groups. The finest experimental results showed a mean accuracy of around 91% for most scenarios, and this exhibits the potential of the proposed extreme gradient boosting-powered grouped-support-vector network in neonate cry classification. Also, the proposed method has a fast recognition rate of 27 seconds in the identification of these emotional cries.</description><identifier>ISSN: 2040-2295</identifier><identifier>EISSN: 2040-2309</identifier><identifier>DOI: 10.1155/2021/7517313</identifier><identifier>PMID: 34804460</identifier><language>eng</language><publisher>England: Hindawi</publisher><subject>Acoustics ; Crying ; Data Collection ; Humans ; Infant ; Infant, Newborn ; Research Design ; Voice</subject><ispartof>Journal of healthcare engineering, 2021-11, Vol.2021, p.7517313-14</ispartof><rights>Copyright © 2021 Chuan-Yu Chang et al.</rights><rights>Copyright © 2021 Chuan-Yu Chang et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-68c1c15cfd3fe86762494433afc1f0a93fa94280c0e3218f7485e626a0ec87a53</citedby><cites>FETCH-LOGICAL-c420t-68c1c15cfd3fe86762494433afc1f0a93fa94280c0e3218f7485e626a0ec87a53</cites><orcidid>0000-0002-6082-164X ; 0000-0002-9352-0237 ; 0000-0003-3480-4851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8601804/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8601804/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34804460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Satapathy, Suresh</contributor><creatorcontrib>Chang, Chuan-Yu</creatorcontrib><creatorcontrib>Bhattacharya, Sweta</creatorcontrib><creatorcontrib>Raj Vincent, P. M. Durai</creatorcontrib><creatorcontrib>Lakshmanna, Kuruva</creatorcontrib><creatorcontrib>Srinivasan, Kathiravan</creatorcontrib><title>An Efficient Classification of Neonates Cry Using Extreme Gradient Boosting-Assisted Grouped-Support-Vector Network</title><title>Journal of healthcare engineering</title><addtitle>J Healthc Eng</addtitle><description>The cry is a loud, high pitched verbal communication of infants. The very high fundamental frequency and resonance frequency characterize a neonatal infant cry having certain sudden variations. Furthermore, in a tiny duration solitary utterance, the cry signal also possesses both voiced and unvoiced features. Mostly, infants communicate with their caretakers through cries, and sometimes, it becomes difficult for the caretakers to comprehend the reason behind the newborn infant cry. As a result, this research proposes a novel work for classifying the newborn infant cries under three groups such as hunger, sleep, and discomfort. For each crying frame, twelve features get extracted through acoustic feature engineering, and the variable selection using random forests was used for selecting the highly discriminative features among the twelve time and frequency domain features. Subsequently, the extreme gradient boosting-powered grouped-support-vector network is deployed for neonate cry classification. The empirical results show that the proposed method could effectively classify the neonate cries under three different groups. The finest experimental results showed a mean accuracy of around 91% for most scenarios, and this exhibits the potential of the proposed extreme gradient boosting-powered grouped-support-vector network in neonate cry classification. Also, the proposed method has a fast recognition rate of 27 seconds in the identification of these emotional cries.</description><subject>Acoustics</subject><subject>Crying</subject><subject>Data Collection</subject><subject>Humans</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Research Design</subject><subject>Voice</subject><issn>2040-2295</issn><issn>2040-2309</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc1P3DAQxa2KChBw44xyrERTxh9JnAvSdrVQJFQOQK-W64zBNBsH2ynlv8d0FwQXfBlb7zfPo3mE7FP4RmlVHTFg9KipaMMp_0S2GQgoGYd24-XO2mqL7MV4B_nwlgvKN8kWFxKEqGGbxNlQLKx1xuGQinmvY3T5pZPzQ-Ft8RP9oBPGYh4ei-vohpti8S8FXGJxGnT3v-u79zFlpZzl5piwy5KfRuzKy2kcfUjlLzTJh2yWHnz4s0s-W91H3FvXHXJ9sria_yjPL07P5rPz0ggGqayloYZWxnbcoqybmolWCM61NdSCbrnVrWASDCBnVNpGyAprVmtAIxtd8R1yvPIdp99L7EyeNehejcEtdXhUXjv1Xhncrbrxf5WsgeYFZYMva4Pg7yeMSS1dNNj3ekA_RcVqAMkqaJuMfl2hJvgYA9rXbyio56jUc1RqHVXGD96O9gq_BJOBwxVw64ZOP7iP7Z4AVxGc3g</recordid><startdate>20211111</startdate><enddate>20211111</enddate><creator>Chang, Chuan-Yu</creator><creator>Bhattacharya, Sweta</creator><creator>Raj Vincent, P. M. Durai</creator><creator>Lakshmanna, Kuruva</creator><creator>Srinivasan, Kathiravan</creator><general>Hindawi</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6082-164X</orcidid><orcidid>https://orcid.org/0000-0002-9352-0237</orcidid><orcidid>https://orcid.org/0000-0003-3480-4851</orcidid></search><sort><creationdate>20211111</creationdate><title>An Efficient Classification of Neonates Cry Using Extreme Gradient Boosting-Assisted Grouped-Support-Vector Network</title><author>Chang, Chuan-Yu ; Bhattacharya, Sweta ; Raj Vincent, P. M. Durai ; Lakshmanna, Kuruva ; Srinivasan, Kathiravan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-68c1c15cfd3fe86762494433afc1f0a93fa94280c0e3218f7485e626a0ec87a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustics</topic><topic>Crying</topic><topic>Data Collection</topic><topic>Humans</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Research Design</topic><topic>Voice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Chuan-Yu</creatorcontrib><creatorcontrib>Bhattacharya, Sweta</creatorcontrib><creatorcontrib>Raj Vincent, P. M. Durai</creatorcontrib><creatorcontrib>Lakshmanna, Kuruva</creatorcontrib><creatorcontrib>Srinivasan, Kathiravan</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of healthcare engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Chuan-Yu</au><au>Bhattacharya, Sweta</au><au>Raj Vincent, P. M. Durai</au><au>Lakshmanna, Kuruva</au><au>Srinivasan, Kathiravan</au><au>Satapathy, Suresh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Classification of Neonates Cry Using Extreme Gradient Boosting-Assisted Grouped-Support-Vector Network</atitle><jtitle>Journal of healthcare engineering</jtitle><addtitle>J Healthc Eng</addtitle><date>2021-11-11</date><risdate>2021</risdate><volume>2021</volume><spage>7517313</spage><epage>14</epage><pages>7517313-14</pages><issn>2040-2295</issn><eissn>2040-2309</eissn><abstract>The cry is a loud, high pitched verbal communication of infants. The very high fundamental frequency and resonance frequency characterize a neonatal infant cry having certain sudden variations. Furthermore, in a tiny duration solitary utterance, the cry signal also possesses both voiced and unvoiced features. Mostly, infants communicate with their caretakers through cries, and sometimes, it becomes difficult for the caretakers to comprehend the reason behind the newborn infant cry. As a result, this research proposes a novel work for classifying the newborn infant cries under three groups such as hunger, sleep, and discomfort. For each crying frame, twelve features get extracted through acoustic feature engineering, and the variable selection using random forests was used for selecting the highly discriminative features among the twelve time and frequency domain features. Subsequently, the extreme gradient boosting-powered grouped-support-vector network is deployed for neonate cry classification. The empirical results show that the proposed method could effectively classify the neonate cries under three different groups. The finest experimental results showed a mean accuracy of around 91% for most scenarios, and this exhibits the potential of the proposed extreme gradient boosting-powered grouped-support-vector network in neonate cry classification. Also, the proposed method has a fast recognition rate of 27 seconds in the identification of these emotional cries.</abstract><cop>England</cop><pub>Hindawi</pub><pmid>34804460</pmid><doi>10.1155/2021/7517313</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6082-164X</orcidid><orcidid>https://orcid.org/0000-0002-9352-0237</orcidid><orcidid>https://orcid.org/0000-0003-3480-4851</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-2295 |
ispartof | Journal of healthcare engineering, 2021-11, Vol.2021, p.7517313-14 |
issn | 2040-2295 2040-2309 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8601804 |
source | MEDLINE; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central; Alma/SFX Local Collection |
subjects | Acoustics Crying Data Collection Humans Infant Infant, Newborn Research Design Voice |
title | An Efficient Classification of Neonates Cry Using Extreme Gradient Boosting-Assisted Grouped-Support-Vector Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A12%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Classification%20of%20Neonates%20Cry%20Using%20Extreme%20Gradient%20Boosting-Assisted%20Grouped-Support-Vector%20Network&rft.jtitle=Journal%20of%20healthcare%20engineering&rft.au=Chang,%20Chuan-Yu&rft.date=2021-11-11&rft.volume=2021&rft.spage=7517313&rft.epage=14&rft.pages=7517313-14&rft.issn=2040-2295&rft.eissn=2040-2309&rft_id=info:doi/10.1155/2021/7517313&rft_dat=%3Cproquest_pubme%3E2600825097%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2600825097&rft_id=info:pmid/34804460&rfr_iscdi=true |