Improving Constraints on Planetary Interiors With PPs Receiver Functions

Seismological constraints obtained from receiver function (RF) analysis provide important information about the crust and mantle structure. Here, we explore the utility of the free‐surface multiple of the P‐wave (PP) and the corresponding conversions in RF analysis. Using earthquake records, we demo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Planets 2021-11, Vol.126 (11), p.e2021JE006983-n/a
Hauptverfasser: Kim, D., Lekić, V., Irving, J. C. E., Schmerr, N., Knapmeyer‐Endrun, B., Joshi, R., Panning, M. P., Tauzin, B., Karakostas, F., Maguire, R., Huang, Q., Ceylan, S., Khan, A., Giardini, D., Wieczorek, M. A., Lognonné, P., Banerdt, W. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page e2021JE006983
container_title Journal of geophysical research. Planets
container_volume 126
creator Kim, D.
Lekić, V.
Irving, J. C. E.
Schmerr, N.
Knapmeyer‐Endrun, B.
Joshi, R.
Panning, M. P.
Tauzin, B.
Karakostas, F.
Maguire, R.
Huang, Q.
Ceylan, S.
Khan, A.
Giardini, D.
Wieczorek, M. A.
Lognonné, P.
Banerdt, W. B.
description Seismological constraints obtained from receiver function (RF) analysis provide important information about the crust and mantle structure. Here, we explore the utility of the free‐surface multiple of the P‐wave (PP) and the corresponding conversions in RF analysis. Using earthquake records, we demonstrate the efficacy of PPs‐RFs before illustrating how they become especially useful when limited data is available in typical planetary missions. Using a transdimensional hierarchical Bayesian deconvolution approach, we compute robust P‐to‐S (Ps)‐ and PPs‐RFs with InSight recordings of five marsquakes. Our Ps‐RF results verify the direct Ps converted phases reported by previous RF analyses with increased coherence and reveal other phases including the primary multiple reverberating within the uppermost layer of the Martian crust. Unlike the Ps‐RFs, our PPs‐RFs lack an arrival at 7.2 s lag time. Whereas Ps‐RFs on Mars could be equally well fit by a two‐ or three‐layer crust, synthetic modeling shows that the disappearance of the 7.2 s phase requires a three‐layer crust, and is highly sensitive to velocity and thickness of intra‐crustal layers. We show that a three‐layer crust is also preferred by S‐to‐P (Sp)‐RFs. While the deepest interface of the three‐layer crust represents the crust‐mantle interface beneath the InSight landing site, the other two interfaces at shallower depths could represent a sharp transition between either fractured and unfractured materials or thick basaltic flows and pre‐existing crustal materials. PPs‐RFs can provide complementary constraints and maximize the extraction of information about crustal structure in data‐constrained circumstances such as planetary missions. Plain Language Summary Most of our geophysical understanding about the interior of other planets and moons comes from indirect, remote measurements. Other than Earth, only the Moon and Mars have been directly investigated with seismometers, by the Apollo and InSight missions, respectively. The ground vibration measurements on Mars have revealed much of the interior structure and dynamics of the red planet. A widely used tool for analyzing ground vibrations is the so‐called receiver function technique, which allows us to extract constraints on subsurface structure directly beneath the seismometer. Already, receiver functions have constrained the overall crustal structure of Mars. Our study explores the utility of one of many underused seismic phases from a seismic source,
doi_str_mv 10.1029/2021JE006983
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8597591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600834138</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5144-33d120ccca3c02d24007623af0483f75e39488dc4afdfb96f704446979653dd83</originalsourceid><addsrcrecordid>eNp9kc9LIzEUx8Oyyypdb55lwMsidvflx2SSiyCl2kphi-ziMcRMxkamSU1mKv73ZqiKethcEpLP--b73hehQwy_MBD5mwDBV1MALgX9gvYJ5nIsMcDX1zPIag8dpHQPeYl8hel3tEeZIExyvo9m8_Umhq3zd8Uk-NRF7XyXiuCLZau97XR8Kua-s9GFmIob162K5TIV19ZYt7WxuOi96Vyu_IG-NbpN9uBlH6F_F9O_k9l48edyPjlfjHWJGRtTWmMCxhhNDZCaMICKE6obYII2VWmpZELUhummbm4lbypgjHFZSV7SuhZ0hM52upv-dm1rY3323KpNdOvsVQXt1McX71bqLmyVKGVV5vZH6GQnsPpUNjtfKOdTr4CWQlYCbwf458tvMTz0NnVq7ZKx7TCb0CdFODDAkjCW0eNP6H3oo8-zGCgQlGE62D_dUSaGlKJt3ixgUEOk6n2kGT963-0b_BpgBugOeHStffqvmLq6vJ4SXHFGnwHnlKjP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2600834138</pqid></control><display><type>article</type><title>Improving Constraints on Planetary Interiors With PPs Receiver Functions</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Wiley Online Library Journals</source><source>Alma/SFX Local Collection</source><creator>Kim, D. ; Lekić, V. ; Irving, J. C. E. ; Schmerr, N. ; Knapmeyer‐Endrun, B. ; Joshi, R. ; Panning, M. P. ; Tauzin, B. ; Karakostas, F. ; Maguire, R. ; Huang, Q. ; Ceylan, S. ; Khan, A. ; Giardini, D. ; Wieczorek, M. A. ; Lognonné, P. ; Banerdt, W. B.</creator><creatorcontrib>Kim, D. ; Lekić, V. ; Irving, J. C. E. ; Schmerr, N. ; Knapmeyer‐Endrun, B. ; Joshi, R. ; Panning, M. P. ; Tauzin, B. ; Karakostas, F. ; Maguire, R. ; Huang, Q. ; Ceylan, S. ; Khan, A. ; Giardini, D. ; Wieczorek, M. A. ; Lognonné, P. ; Banerdt, W. B.</creatorcontrib><description>Seismological constraints obtained from receiver function (RF) analysis provide important information about the crust and mantle structure. Here, we explore the utility of the free‐surface multiple of the P‐wave (PP) and the corresponding conversions in RF analysis. Using earthquake records, we demonstrate the efficacy of PPs‐RFs before illustrating how they become especially useful when limited data is available in typical planetary missions. Using a transdimensional hierarchical Bayesian deconvolution approach, we compute robust P‐to‐S (Ps)‐ and PPs‐RFs with InSight recordings of five marsquakes. Our Ps‐RF results verify the direct Ps converted phases reported by previous RF analyses with increased coherence and reveal other phases including the primary multiple reverberating within the uppermost layer of the Martian crust. Unlike the Ps‐RFs, our PPs‐RFs lack an arrival at 7.2 s lag time. Whereas Ps‐RFs on Mars could be equally well fit by a two‐ or three‐layer crust, synthetic modeling shows that the disappearance of the 7.2 s phase requires a three‐layer crust, and is highly sensitive to velocity and thickness of intra‐crustal layers. We show that a three‐layer crust is also preferred by S‐to‐P (Sp)‐RFs. While the deepest interface of the three‐layer crust represents the crust‐mantle interface beneath the InSight landing site, the other two interfaces at shallower depths could represent a sharp transition between either fractured and unfractured materials or thick basaltic flows and pre‐existing crustal materials. PPs‐RFs can provide complementary constraints and maximize the extraction of information about crustal structure in data‐constrained circumstances such as planetary missions. Plain Language Summary Most of our geophysical understanding about the interior of other planets and moons comes from indirect, remote measurements. Other than Earth, only the Moon and Mars have been directly investigated with seismometers, by the Apollo and InSight missions, respectively. The ground vibration measurements on Mars have revealed much of the interior structure and dynamics of the red planet. A widely used tool for analyzing ground vibrations is the so‐called receiver function technique, which allows us to extract constraints on subsurface structure directly beneath the seismometer. Already, receiver functions have constrained the overall crustal structure of Mars. Our study explores the utility of one of many underused seismic phases from a seismic source, the P‐wave bouncing off the planet's surface (called PP), when studying planetary crustal structures with receiver functions. We show that using PP waves to compute receiver functions provides complementary information, to more commonly used direct P and S seismic arrivals and maximizes the amount of information extracted from limited data, which is particularly helpful in the context of planetary missions. Using data from the five best‐quality marsquakes, we find Mars' crust beneath the InSight lander in Elysium Planitia likely consists of three distinct layers. Key Points We compute robust P‐to‐S (Ps)‐, P‐waves (PPs)‐, and S‐to‐P (Sp)‐receiver functions (RFs) to infer properties of the crustal layers beneath the InSight lander in Elysium Planitia Sp‐RFs as well as observed variability of the 7.2 s phase between Ps‐ and PPs‐RFs require a three‐layer crust PPs‐RFs can provide complementary constraints for crustal imaging on Earth and other planetary bodies</description><identifier>ISSN: 2169-9097</identifier><identifier>EISSN: 2169-9100</identifier><identifier>DOI: 10.1029/2021JE006983</identifier><identifier>PMID: 34824966</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Body Waves ; Constraints ; Continental Margins: Divergent ; Core ; Core Processes ; Crustal structure ; Dynamics of Lithosphere and Mantle: General ; Earth's Interior: Composition and State ; Earth's Interior: Dynamics ; Earthquakes ; Geodesy and Gravity ; Geomagnetism and Paleomagnetism ; Ground motion ; InSight ; Interiors ; Lag time ; Mantle ; Mars ; Mars missions ; Mars satellites ; Martian crust ; Moon ; Phases ; Plains ; Planetary Interiors ; Planetary mantles ; Planetary Sciences: Comets and Small Bodies ; Planetary Sciences: Fluid Planets ; Planetary Sciences: Solar System Objects ; Planetary Sciences: Solid Surface Planets ; Planets ; Receiver function ; Sciences of the Universe ; Seismic activity ; Seismographs ; Seismology ; Seismometers ; Space missions ; Tectonophysics ; Thickness ; Transdimensional hierarchical Bayesian ; Vibration measurement</subject><ispartof>Journal of geophysical research. Planets, 2021-11, Vol.126 (11), p.e2021JE006983-n/a</ispartof><rights>2021. The Authors.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5144-33d120ccca3c02d24007623af0483f75e39488dc4afdfb96f704446979653dd83</citedby><cites>FETCH-LOGICAL-a5144-33d120ccca3c02d24007623af0483f75e39488dc4afdfb96f704446979653dd83</cites><orcidid>0000-0002-0434-4199 ; 0000-0002-3256-1262 ; 0000-0002-0866-8246 ; 0000-0003-4594-2336 ; 0000-0003-3309-6785 ; 0000-0002-0822-8849 ; 0000-0002-2041-3190 ; 0000-0001-5751-5900 ; 0000-0003-4462-3173 ; 0000-0001-7007-4222 ; 0000-0003-3125-1542 ; 0000-0002-9589-4304 ; 0000-0002-5681-5159 ; 0000-0002-5573-7638 ; 0000-0002-6552-6850 ; 0000-0002-1014-920X ; 0000-0002-3548-272X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2021JE006983$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2021JE006983$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34824966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://insu.hal.science/insu-03589781$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, D.</creatorcontrib><creatorcontrib>Lekić, V.</creatorcontrib><creatorcontrib>Irving, J. C. E.</creatorcontrib><creatorcontrib>Schmerr, N.</creatorcontrib><creatorcontrib>Knapmeyer‐Endrun, B.</creatorcontrib><creatorcontrib>Joshi, R.</creatorcontrib><creatorcontrib>Panning, M. P.</creatorcontrib><creatorcontrib>Tauzin, B.</creatorcontrib><creatorcontrib>Karakostas, F.</creatorcontrib><creatorcontrib>Maguire, R.</creatorcontrib><creatorcontrib>Huang, Q.</creatorcontrib><creatorcontrib>Ceylan, S.</creatorcontrib><creatorcontrib>Khan, A.</creatorcontrib><creatorcontrib>Giardini, D.</creatorcontrib><creatorcontrib>Wieczorek, M. A.</creatorcontrib><creatorcontrib>Lognonné, P.</creatorcontrib><creatorcontrib>Banerdt, W. B.</creatorcontrib><title>Improving Constraints on Planetary Interiors With PPs Receiver Functions</title><title>Journal of geophysical research. Planets</title><addtitle>J Geophys Res Planets</addtitle><description>Seismological constraints obtained from receiver function (RF) analysis provide important information about the crust and mantle structure. Here, we explore the utility of the free‐surface multiple of the P‐wave (PP) and the corresponding conversions in RF analysis. Using earthquake records, we demonstrate the efficacy of PPs‐RFs before illustrating how they become especially useful when limited data is available in typical planetary missions. Using a transdimensional hierarchical Bayesian deconvolution approach, we compute robust P‐to‐S (Ps)‐ and PPs‐RFs with InSight recordings of five marsquakes. Our Ps‐RF results verify the direct Ps converted phases reported by previous RF analyses with increased coherence and reveal other phases including the primary multiple reverberating within the uppermost layer of the Martian crust. Unlike the Ps‐RFs, our PPs‐RFs lack an arrival at 7.2 s lag time. Whereas Ps‐RFs on Mars could be equally well fit by a two‐ or three‐layer crust, synthetic modeling shows that the disappearance of the 7.2 s phase requires a three‐layer crust, and is highly sensitive to velocity and thickness of intra‐crustal layers. We show that a three‐layer crust is also preferred by S‐to‐P (Sp)‐RFs. While the deepest interface of the three‐layer crust represents the crust‐mantle interface beneath the InSight landing site, the other two interfaces at shallower depths could represent a sharp transition between either fractured and unfractured materials or thick basaltic flows and pre‐existing crustal materials. PPs‐RFs can provide complementary constraints and maximize the extraction of information about crustal structure in data‐constrained circumstances such as planetary missions. Plain Language Summary Most of our geophysical understanding about the interior of other planets and moons comes from indirect, remote measurements. Other than Earth, only the Moon and Mars have been directly investigated with seismometers, by the Apollo and InSight missions, respectively. The ground vibration measurements on Mars have revealed much of the interior structure and dynamics of the red planet. A widely used tool for analyzing ground vibrations is the so‐called receiver function technique, which allows us to extract constraints on subsurface structure directly beneath the seismometer. Already, receiver functions have constrained the overall crustal structure of Mars. Our study explores the utility of one of many underused seismic phases from a seismic source, the P‐wave bouncing off the planet's surface (called PP), when studying planetary crustal structures with receiver functions. We show that using PP waves to compute receiver functions provides complementary information, to more commonly used direct P and S seismic arrivals and maximizes the amount of information extracted from limited data, which is particularly helpful in the context of planetary missions. Using data from the five best‐quality marsquakes, we find Mars' crust beneath the InSight lander in Elysium Planitia likely consists of three distinct layers. Key Points We compute robust P‐to‐S (Ps)‐, P‐waves (PPs)‐, and S‐to‐P (Sp)‐receiver functions (RFs) to infer properties of the crustal layers beneath the InSight lander in Elysium Planitia Sp‐RFs as well as observed variability of the 7.2 s phase between Ps‐ and PPs‐RFs require a three‐layer crust PPs‐RFs can provide complementary constraints for crustal imaging on Earth and other planetary bodies</description><subject>Body Waves</subject><subject>Constraints</subject><subject>Continental Margins: Divergent</subject><subject>Core</subject><subject>Core Processes</subject><subject>Crustal structure</subject><subject>Dynamics of Lithosphere and Mantle: General</subject><subject>Earth's Interior: Composition and State</subject><subject>Earth's Interior: Dynamics</subject><subject>Earthquakes</subject><subject>Geodesy and Gravity</subject><subject>Geomagnetism and Paleomagnetism</subject><subject>Ground motion</subject><subject>InSight</subject><subject>Interiors</subject><subject>Lag time</subject><subject>Mantle</subject><subject>Mars</subject><subject>Mars missions</subject><subject>Mars satellites</subject><subject>Martian crust</subject><subject>Moon</subject><subject>Phases</subject><subject>Plains</subject><subject>Planetary Interiors</subject><subject>Planetary mantles</subject><subject>Planetary Sciences: Comets and Small Bodies</subject><subject>Planetary Sciences: Fluid Planets</subject><subject>Planetary Sciences: Solar System Objects</subject><subject>Planetary Sciences: Solid Surface Planets</subject><subject>Planets</subject><subject>Receiver function</subject><subject>Sciences of the Universe</subject><subject>Seismic activity</subject><subject>Seismographs</subject><subject>Seismology</subject><subject>Seismometers</subject><subject>Space missions</subject><subject>Tectonophysics</subject><subject>Thickness</subject><subject>Transdimensional hierarchical Bayesian</subject><subject>Vibration measurement</subject><issn>2169-9097</issn><issn>2169-9100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kc9LIzEUx8Oyyypdb55lwMsidvflx2SSiyCl2kphi-ziMcRMxkamSU1mKv73ZqiKethcEpLP--b73hehQwy_MBD5mwDBV1MALgX9gvYJ5nIsMcDX1zPIag8dpHQPeYl8hel3tEeZIExyvo9m8_Umhq3zd8Uk-NRF7XyXiuCLZau97XR8Kua-s9GFmIob162K5TIV19ZYt7WxuOi96Vyu_IG-NbpN9uBlH6F_F9O_k9l48edyPjlfjHWJGRtTWmMCxhhNDZCaMICKE6obYII2VWmpZELUhummbm4lbypgjHFZSV7SuhZ0hM52upv-dm1rY3323KpNdOvsVQXt1McX71bqLmyVKGVV5vZH6GQnsPpUNjtfKOdTr4CWQlYCbwf458tvMTz0NnVq7ZKx7TCb0CdFODDAkjCW0eNP6H3oo8-zGCgQlGE62D_dUSaGlKJt3ixgUEOk6n2kGT963-0b_BpgBugOeHStffqvmLq6vJ4SXHFGnwHnlKjP</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Kim, D.</creator><creator>Lekić, V.</creator><creator>Irving, J. C. E.</creator><creator>Schmerr, N.</creator><creator>Knapmeyer‐Endrun, B.</creator><creator>Joshi, R.</creator><creator>Panning, M. P.</creator><creator>Tauzin, B.</creator><creator>Karakostas, F.</creator><creator>Maguire, R.</creator><creator>Huang, Q.</creator><creator>Ceylan, S.</creator><creator>Khan, A.</creator><creator>Giardini, D.</creator><creator>Wieczorek, M. A.</creator><creator>Lognonné, P.</creator><creator>Banerdt, W. B.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0434-4199</orcidid><orcidid>https://orcid.org/0000-0002-3256-1262</orcidid><orcidid>https://orcid.org/0000-0002-0866-8246</orcidid><orcidid>https://orcid.org/0000-0003-4594-2336</orcidid><orcidid>https://orcid.org/0000-0003-3309-6785</orcidid><orcidid>https://orcid.org/0000-0002-0822-8849</orcidid><orcidid>https://orcid.org/0000-0002-2041-3190</orcidid><orcidid>https://orcid.org/0000-0001-5751-5900</orcidid><orcidid>https://orcid.org/0000-0003-4462-3173</orcidid><orcidid>https://orcid.org/0000-0001-7007-4222</orcidid><orcidid>https://orcid.org/0000-0003-3125-1542</orcidid><orcidid>https://orcid.org/0000-0002-9589-4304</orcidid><orcidid>https://orcid.org/0000-0002-5681-5159</orcidid><orcidid>https://orcid.org/0000-0002-5573-7638</orcidid><orcidid>https://orcid.org/0000-0002-6552-6850</orcidid><orcidid>https://orcid.org/0000-0002-1014-920X</orcidid><orcidid>https://orcid.org/0000-0002-3548-272X</orcidid></search><sort><creationdate>202111</creationdate><title>Improving Constraints on Planetary Interiors With PPs Receiver Functions</title><author>Kim, D. ; Lekić, V. ; Irving, J. C. E. ; Schmerr, N. ; Knapmeyer‐Endrun, B. ; Joshi, R. ; Panning, M. P. ; Tauzin, B. ; Karakostas, F. ; Maguire, R. ; Huang, Q. ; Ceylan, S. ; Khan, A. ; Giardini, D. ; Wieczorek, M. A. ; Lognonné, P. ; Banerdt, W. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5144-33d120ccca3c02d24007623af0483f75e39488dc4afdfb96f704446979653dd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Body Waves</topic><topic>Constraints</topic><topic>Continental Margins: Divergent</topic><topic>Core</topic><topic>Core Processes</topic><topic>Crustal structure</topic><topic>Dynamics of Lithosphere and Mantle: General</topic><topic>Earth's Interior: Composition and State</topic><topic>Earth's Interior: Dynamics</topic><topic>Earthquakes</topic><topic>Geodesy and Gravity</topic><topic>Geomagnetism and Paleomagnetism</topic><topic>Ground motion</topic><topic>InSight</topic><topic>Interiors</topic><topic>Lag time</topic><topic>Mantle</topic><topic>Mars</topic><topic>Mars missions</topic><topic>Mars satellites</topic><topic>Martian crust</topic><topic>Moon</topic><topic>Phases</topic><topic>Plains</topic><topic>Planetary Interiors</topic><topic>Planetary mantles</topic><topic>Planetary Sciences: Comets and Small Bodies</topic><topic>Planetary Sciences: Fluid Planets</topic><topic>Planetary Sciences: Solar System Objects</topic><topic>Planetary Sciences: Solid Surface Planets</topic><topic>Planets</topic><topic>Receiver function</topic><topic>Sciences of the Universe</topic><topic>Seismic activity</topic><topic>Seismographs</topic><topic>Seismology</topic><topic>Seismometers</topic><topic>Space missions</topic><topic>Tectonophysics</topic><topic>Thickness</topic><topic>Transdimensional hierarchical Bayesian</topic><topic>Vibration measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, D.</creatorcontrib><creatorcontrib>Lekić, V.</creatorcontrib><creatorcontrib>Irving, J. C. E.</creatorcontrib><creatorcontrib>Schmerr, N.</creatorcontrib><creatorcontrib>Knapmeyer‐Endrun, B.</creatorcontrib><creatorcontrib>Joshi, R.</creatorcontrib><creatorcontrib>Panning, M. P.</creatorcontrib><creatorcontrib>Tauzin, B.</creatorcontrib><creatorcontrib>Karakostas, F.</creatorcontrib><creatorcontrib>Maguire, R.</creatorcontrib><creatorcontrib>Huang, Q.</creatorcontrib><creatorcontrib>Ceylan, S.</creatorcontrib><creatorcontrib>Khan, A.</creatorcontrib><creatorcontrib>Giardini, D.</creatorcontrib><creatorcontrib>Wieczorek, M. A.</creatorcontrib><creatorcontrib>Lognonné, P.</creatorcontrib><creatorcontrib>Banerdt, W. B.</creatorcontrib><collection>Wiley Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of geophysical research. Planets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, D.</au><au>Lekić, V.</au><au>Irving, J. C. E.</au><au>Schmerr, N.</au><au>Knapmeyer‐Endrun, B.</au><au>Joshi, R.</au><au>Panning, M. P.</au><au>Tauzin, B.</au><au>Karakostas, F.</au><au>Maguire, R.</au><au>Huang, Q.</au><au>Ceylan, S.</au><au>Khan, A.</au><au>Giardini, D.</au><au>Wieczorek, M. A.</au><au>Lognonné, P.</au><au>Banerdt, W. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Constraints on Planetary Interiors With PPs Receiver Functions</atitle><jtitle>Journal of geophysical research. Planets</jtitle><addtitle>J Geophys Res Planets</addtitle><date>2021-11</date><risdate>2021</risdate><volume>126</volume><issue>11</issue><spage>e2021JE006983</spage><epage>n/a</epage><pages>e2021JE006983-n/a</pages><issn>2169-9097</issn><eissn>2169-9100</eissn><abstract>Seismological constraints obtained from receiver function (RF) analysis provide important information about the crust and mantle structure. Here, we explore the utility of the free‐surface multiple of the P‐wave (PP) and the corresponding conversions in RF analysis. Using earthquake records, we demonstrate the efficacy of PPs‐RFs before illustrating how they become especially useful when limited data is available in typical planetary missions. Using a transdimensional hierarchical Bayesian deconvolution approach, we compute robust P‐to‐S (Ps)‐ and PPs‐RFs with InSight recordings of five marsquakes. Our Ps‐RF results verify the direct Ps converted phases reported by previous RF analyses with increased coherence and reveal other phases including the primary multiple reverberating within the uppermost layer of the Martian crust. Unlike the Ps‐RFs, our PPs‐RFs lack an arrival at 7.2 s lag time. Whereas Ps‐RFs on Mars could be equally well fit by a two‐ or three‐layer crust, synthetic modeling shows that the disappearance of the 7.2 s phase requires a three‐layer crust, and is highly sensitive to velocity and thickness of intra‐crustal layers. We show that a three‐layer crust is also preferred by S‐to‐P (Sp)‐RFs. While the deepest interface of the three‐layer crust represents the crust‐mantle interface beneath the InSight landing site, the other two interfaces at shallower depths could represent a sharp transition between either fractured and unfractured materials or thick basaltic flows and pre‐existing crustal materials. PPs‐RFs can provide complementary constraints and maximize the extraction of information about crustal structure in data‐constrained circumstances such as planetary missions. Plain Language Summary Most of our geophysical understanding about the interior of other planets and moons comes from indirect, remote measurements. Other than Earth, only the Moon and Mars have been directly investigated with seismometers, by the Apollo and InSight missions, respectively. The ground vibration measurements on Mars have revealed much of the interior structure and dynamics of the red planet. A widely used tool for analyzing ground vibrations is the so‐called receiver function technique, which allows us to extract constraints on subsurface structure directly beneath the seismometer. Already, receiver functions have constrained the overall crustal structure of Mars. Our study explores the utility of one of many underused seismic phases from a seismic source, the P‐wave bouncing off the planet's surface (called PP), when studying planetary crustal structures with receiver functions. We show that using PP waves to compute receiver functions provides complementary information, to more commonly used direct P and S seismic arrivals and maximizes the amount of information extracted from limited data, which is particularly helpful in the context of planetary missions. Using data from the five best‐quality marsquakes, we find Mars' crust beneath the InSight lander in Elysium Planitia likely consists of three distinct layers. Key Points We compute robust P‐to‐S (Ps)‐, P‐waves (PPs)‐, and S‐to‐P (Sp)‐receiver functions (RFs) to infer properties of the crustal layers beneath the InSight lander in Elysium Planitia Sp‐RFs as well as observed variability of the 7.2 s phase between Ps‐ and PPs‐RFs require a three‐layer crust PPs‐RFs can provide complementary constraints for crustal imaging on Earth and other planetary bodies</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>34824966</pmid><doi>10.1029/2021JE006983</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0434-4199</orcidid><orcidid>https://orcid.org/0000-0002-3256-1262</orcidid><orcidid>https://orcid.org/0000-0002-0866-8246</orcidid><orcidid>https://orcid.org/0000-0003-4594-2336</orcidid><orcidid>https://orcid.org/0000-0003-3309-6785</orcidid><orcidid>https://orcid.org/0000-0002-0822-8849</orcidid><orcidid>https://orcid.org/0000-0002-2041-3190</orcidid><orcidid>https://orcid.org/0000-0001-5751-5900</orcidid><orcidid>https://orcid.org/0000-0003-4462-3173</orcidid><orcidid>https://orcid.org/0000-0001-7007-4222</orcidid><orcidid>https://orcid.org/0000-0003-3125-1542</orcidid><orcidid>https://orcid.org/0000-0002-9589-4304</orcidid><orcidid>https://orcid.org/0000-0002-5681-5159</orcidid><orcidid>https://orcid.org/0000-0002-5573-7638</orcidid><orcidid>https://orcid.org/0000-0002-6552-6850</orcidid><orcidid>https://orcid.org/0000-0002-1014-920X</orcidid><orcidid>https://orcid.org/0000-0002-3548-272X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9097
ispartof Journal of geophysical research. Planets, 2021-11, Vol.126 (11), p.e2021JE006983-n/a
issn 2169-9097
2169-9100
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8597591
source Wiley Online Library - AutoHoldings Journals; Wiley Online Library Journals; Alma/SFX Local Collection
subjects Body Waves
Constraints
Continental Margins: Divergent
Core
Core Processes
Crustal structure
Dynamics of Lithosphere and Mantle: General
Earth's Interior: Composition and State
Earth's Interior: Dynamics
Earthquakes
Geodesy and Gravity
Geomagnetism and Paleomagnetism
Ground motion
InSight
Interiors
Lag time
Mantle
Mars
Mars missions
Mars satellites
Martian crust
Moon
Phases
Plains
Planetary Interiors
Planetary mantles
Planetary Sciences: Comets and Small Bodies
Planetary Sciences: Fluid Planets
Planetary Sciences: Solar System Objects
Planetary Sciences: Solid Surface Planets
Planets
Receiver function
Sciences of the Universe
Seismic activity
Seismographs
Seismology
Seismometers
Space missions
Tectonophysics
Thickness
Transdimensional hierarchical Bayesian
Vibration measurement
title Improving Constraints on Planetary Interiors With PPs Receiver Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Constraints%20on%20Planetary%20Interiors%20With%20PPs%20Receiver%20Functions&rft.jtitle=Journal%20of%20geophysical%20research.%20Planets&rft.au=Kim,%20D.&rft.date=2021-11&rft.volume=126&rft.issue=11&rft.spage=e2021JE006983&rft.epage=n/a&rft.pages=e2021JE006983-n/a&rft.issn=2169-9097&rft.eissn=2169-9100&rft_id=info:doi/10.1029/2021JE006983&rft_dat=%3Cproquest_pubme%3E2600834138%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2600834138&rft_id=info:pmid/34824966&rfr_iscdi=true